Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 365
Filter
1.
Drug Metab Dispos ; 52(10): 1048-1059, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39095207

ABSTRACT

Hepatic clearance (CLH ) prediction is a critical parameter to estimate human dose. However, CLH underpredictions are common, especially for slowly metabolized drugs, and may be attributable to drug properties that pose challenges for conventional in vitro absorption, distribution, metabolism, and elimination (ADME) assays, resulting in nonvalid data, which prevents in vitro to in vivo extrapolation and CLH predictions. Other processes, including hepatocyte and biliary distribution via transporters, can also play significant roles in CLH Recent advances in understanding the interplay of metabolism and drug transport for clearance processes have aided in developing the extended clearance model. In this study, we demonstrate proof of concept of a novel two-step assay enabling the measurement of multiple kinetic parameters from a single experiment in plated human primary hepatocytes with and without transporter and cytochrome P450 inhibitors-the hepatocyte uptake and loss assay (HUpLA). HUpLA accurately predicted the CLH of eight of the nine drugs (within twofold of the observed CLH ). Distribution clearances were within threefold of observed literature values in standard uptake and efflux assays. In comparison, the conventional suspension hepatocyte stability assay poorly predicted the CLH The CLH of only two drugs was predicted within twofold of the observed CLH Therefore, HUpLA is advantageous by enabling the measurement of enzymatic and transport processes concurrently within the same system, alleviating the need for applying scaling factors independently. The use of primary human hepatocytes enables physiologically relevant exploration of transporter-enzyme interplay. Most importantly, HUpLA shows promise as a sensitive measure for low-turnover drugs. Further evaluation across different drug characteristics is needed to demonstrate method robustness. SIGNIFICANCE STATEMENT: The hepatocyte uptake and loss assay involves measuring four commonly derived in vitro hepatic clearance endpoints. Since endpoints are generated within a single test system, it blunts experimental error originating from assays otherwise conducted independently. A key advantage is the concept of removing drug-containing media following intracellular drug loading, enabling the measurement of drug reappearance rate in media as well as the measurement of loss of total drug in the test system unencumbered by background quantities of drug in media otherwise present in a conventional assay.


Subject(s)
Hepatocytes , Liver , Metabolic Clearance Rate , Humans , Hepatocytes/metabolism , Liver/metabolism , Pharmaceutical Preparations/metabolism , Proof of Concept Study , Biological Transport/physiology , Cells, Cultured , Hepatobiliary Elimination/physiology , Models, Biological , Cytochrome P-450 Enzyme System/metabolism
2.
Nat Commun ; 15(1): 7463, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39198443

ABSTRACT

Most cancer cells reprogram their glucose metabolic pathway from oxidative phosphorylation to aerobic glycolysis for energy production. By reducing enzyme activity of pyruvate kinase M2 (PKM2), cancer cells attain a greater fraction of glycolytic metabolites for macromolecule synthesis needed for rapid proliferation. Here we demonstrate that hydrogen sulfide (H2S) destabilizes the PKM2 tetramer into monomer/dimer through sulfhydration at cysteines, notably at C326, leading to reduced PKM2 enzyme activity and increased PKM2-mediated transcriptional activation. Blocking PKM2 sulfhydration at C326 through amino acid mutation stabilizes the PKM2 tetramer and crystal structure further revealing the tetramer organization of PKM2-C326S. The PKM2-C326S mutant in cancer cells rewires glucose metabolism to mitochondrial respiration, significantly inhibiting tumor growth. In this work, we demonstrate that PKM2 sulfhydration by H2S inactivates PKM2 activity to promote tumorigenesis and inhibiting this process could be a potential therapeutic approach for targeting cancer metabolism.


Subject(s)
Glucose , Hydrogen Sulfide , Hydrogen Sulfide/metabolism , Humans , Glucose/metabolism , Animals , Cell Line, Tumor , Mice , Pyruvate Kinase/metabolism , Pyruvate Kinase/genetics , Pyruvate Kinase/chemistry , Cysteine/metabolism , Glycolysis , Thyroid Hormones/metabolism , Mutation , Mitochondria/metabolism , Neoplasms/metabolism , Neoplasms/genetics , Neoplasms/pathology , Protein Multimerization , Mice, Nude , Carrier Proteins/metabolism , Carrier Proteins/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Thyroid Hormone-Binding Proteins
3.
ACS Nano ; 18(33): 22572-22585, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39110092

ABSTRACT

Two-dimension graphene oxide (GO) nanosheets with high and low serum protein binding profiles (high/low hard-bound protein corona/HChigh/low) are used in this study as model materials and screening tools to investigate the underlying roles of the protein corona on nanomaterial toxicities in vivo. We proposed that the in vivo biocompatibility/nanotoxicity of GO is protein corona-dependent and host immunity-dependent. The hypothesis was tested by injecting HChigh/low GO nanosheets in immunocompetent ICR/CD1 and immunodeficient NOD-scid II2rγnull mice and performed histopathological and hematological evaluation studies on days 1 and 14 post-injection. HClow GO induced more severe acute lung injury compared to HChigh GO in both immunocompetent and immunodeficient mice, with the effect being particularly pronounced in immunocompetent animals. Additionally, HClow GO caused more significant liver injury in both types of mice, with immunodeficient mice being more susceptible to its hepatotoxic effects. Moreover, administration of HClow GO resulted in increased hematological toxicity and elevated levels of serum pro-inflammatory cytokines in immunocompromised and immunocompetent mice, respectively. Correlation studies were conducted to explore the impact of distinct protein corona compositions on resulting toxicities in both immunocompetent and immunodeficient mice. This facilitated the identification of consistent patterns, aligning with those observed in vitro, thus indicating a robust in vitro-in vivo correlation. This research will advance our comprehension of how hard corona proteins interact with immune cells, leading to toxicity, and will facilitate the development of improved immune-modulating nanomaterials for therapeutic purposes.


Subject(s)
Graphite , Mice, Inbred ICR , Nanostructures , Protein Corona , Animals , Graphite/chemistry , Graphite/toxicity , Mice , Protein Corona/chemistry , Protein Corona/immunology , Nanostructures/chemistry , Nanostructures/toxicity , Mice, SCID , Mice, Inbred NOD
5.
Sci China Life Sci ; 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39153050

ABSTRACT

Diabetic foot ulcers (DFUs) are a serious vascular disease. Currently, no effective methods are available for treating DFUs. Pro-protein convertase subtilisin/kexin type 9 (PCSK9) regulates lipid levels to promote atherosclerosis. However, the role of PCSK9 in DFUs remains unclear. In this study, we found that the expression of PCSK9 in endothelial cells (ECs) increased significantly under high glucose (HG) stimulation and in diabetic plasma and vessels. Specifically, PCSK9 promotes the E3 ubiquitin-protein ligase NEDD4 binding to vascular endothelial growth factor receptor 2 (VEGFR2), which led to the ubiquitination of VEGFR2, resulting in its degradation and downregulation in ECs. Furthermore, PCSK9 suppresses the expression and activation of AKT, endothelial nitric oxide synthase (eNOS), and ERK1/2, leading to decreased nitric oxide (NO) production and increased superoxide anion (O2._) generation, which impairs vascular endothelial function and angiogenesis. Importantly, using evolocumab to limit the increase in PCSK9 expression blocked the HG-induced inhibition of NO production and the increase in O2._ production, as well as inhibited the phosphorylation and expression of AKT, eNOS, and ERK1/2. Moreover, evolocumab improved vascular endothelial function and angiogenesis, and promoted wound healing in diabetes. Our findings suggest that targeting PCSK9 is a novel therapeutic approach for treating DFUs.

6.
Mol Psychiatry ; 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39215183

ABSTRACT

Educational attainment (EA), socioeconomic status (SES) and cognition are phenotypically and genetically linked to health outcomes. However, the role of copy number variations (CNVs) in influencing EA/SES/cognition remains unclear. Using a large-scale (n = 305,401) genome-wide CNV-level association analysis, we discovered 33 CNV loci significantly associated with EA/SES/cognition, 20 of which were novel (deletions at 2p22.2, 2p16.2, 2p12, 3p25.3, 4p15.2, 5p15.33, 5q21.1, 8p21.3, 9p21.1, 11p14.3, 13q12.13, 17q21.31, and 20q13.33, as well as duplications at 3q12.2, 3q23, 7p22.3, 8p23.1, 8p23.2, 17q12 (105 kb), and 19q13.32). The genes identified in gene-level tests were enriched in biological pathways such as neurodegeneration, telomere maintenance and axon guidance. Phenome-wide association studies further identified novel associations of EA/SES/cognition-associated CNVs with mental and physical diseases, such as 6q27 duplication with upper respiratory disease and 17q12 (105 kb) duplication with mood disorders. Our findings provide a genome-wide CNV profile for EA/SES/cognition and bridge their connections to health. The expanded candidate CNVs database and the residing genes would be a valuable resource for future studies aimed at uncovering the biological mechanisms underlying cognitive function and related clinical phenotypes.

7.
Alzheimers Dement ; 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39129223

ABSTRACT

INTRODUCTION: The heritability of Alzheimer's disease (AD) is estimated to be 58%-79%. However, known genes can only partially explain the heritability. METHODS: Here, we conducted gene-based exome-wide association study (ExWAS) of rare variants and single-variant ExWAS of common variants, utilizing data of 54,569 clinically diagnosed/proxy AD and related dementia (ADRD) and 295,421 controls from the UK Biobank. RESULTS: Gene-based ExWAS identified 11 genes predicting a higher ADRD risk, including five novel ones, namely FRMD8, DDX1, DNMT3L, MORC1, and TGM2, along with six previously reported ones, SORL1, GRN, PSEN1, ABCA7, GBA, and ADAM10. Single-variant ExWAS identified two ADRD-associated novel genes, SLCO1C1 and NDNF. The identified genes were predominantly enriched in amyloid-ß process pathways, microglia, and brain regions like hippocampus. The druggability evidence suggests that DDX1, DNMT3L, TGM2, SLCO1C1, and NDNF could be effective drug targets. DISCUSSION: Our study contributes to the current body of evidence on the genetic etiology of ADRD. HIGHLIGHTS: Gene-based analyses of rare variants identified five novel genes for Alzheimer's disease and related dementia (ADRD), including FRMD8, DDX1, DNMT3L, MORC1, and TGM2. Single-variant analyses of common variants identified two novel genes for ADRD, including SLCO1C1 and NDNF. The identified genes were predominantly enriched in amyloid-ß process pathways, microglia, and brain regions like hippocampus. DDX1, DNMT3L, TGM2, SLCO1C1, and NDNF could be effective drug targets.

8.
Article in English | MEDLINE | ID: mdl-39023202

ABSTRACT

BACKGROUND: Ischemic preconditioning (IPC) has been suggested to improve exercise performance by 1-8%. Prior research concerning its impact on short-duration exercises, such as sprints, has been limited and yielded conflicting results. The aim of this study, which included a non-occlusion-based placebo control, was to determine whether IPC improves repeated sprint performance in a manner that accounted for psychophysiological effects. METHODS: Twenty-two healthy males participated in this study, which employed a randomized crossover design. Following the 10-min baseline period, participants received intervention under four different conditions: 1) no-intervention control (CON); 2) non-occlusion-based placebo control (SHAM); 3) remote IPC (RIPC); and 4) local IPC (LIPC). Participants then performed a standardized repeated sprint cycling (5×10s maximal cycling sprint, separated by a 40-s rest in each set). RESULTS: Repeated sprint performance, as indexed by average power output, peak power output, and total work, the improvement was observed in the RIPC and LIPC during the initial phase (set 1-3) when compared with CON (P<0.05). SHAM condition also showed an increase in peak power output in the set 1 (CON 9.97±1.05 vs. SHAM 10.30±1.13 w/kg, P<0.05), which may represent a psychophysiological component in the IPC-induced improvement. Higher lactate concertation was found in the SHAM and LIPC groups, than in the CON group, 5 minutes after the exercise (CON 15.72±0.68 vs. SHAM 16.82±0.41 vs. LIPC 17.19±0.39 mmol/L, P<0.0001 for both, respectively). CONCLUSIONS: In conclusion, LIPC enhanced repeated sprint cycling performance during the initial phase, beyond what could be accounted for entirely by a psychophysiological effect. The improvement associated with RIPC, however, did not surpass the effect of a placebo intervention.

9.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3270-3279, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39041089

ABSTRACT

This study established a rat model of obesity by using a high-fat diet(HFD) to explore the effect of polymethoxylated flavonoids on glucose and lipid metabolism in the model rats and decipher the role and mechanism of polymethoxylated flavonoids in mitigating obesity. Thirty normal SD rats were selected and randomized into normal, model, ezetimibe(0.1 mg·kg~(-1)), and polymethoxylated flavonoids(62.5 mg·kg~(-1) and 125 mg·kg~(-1)) groups based on the body weight. Except the normal group receiving a conventional diet, the other groups received a HFD. Rats were administrated with corresponding doses of drugs by gavage. During the administration period, the body weight of each group of rats was regularly weighed, and the serum lipid and glucose levels were measured by a fully automated biochemical analyzer. Islet homeostasis and serum levels of obesity factors were measured by ELISA. The 16S rRNA high-throughput sequencing was employed to study the gut microbiota. Hematoxylin-eosin staining was employed to observe the histomorphology of white fat, brown fat, and pancreas. After the wet weights of white fat and brown fat were measured, the organ index was calculated. Immunohistochemistry and Western blot were employed to determine the protein levels. The results showed that polymethoxylated flavonoids reduced the body weight and Lee's index and improved blood lipid levels of the model rats. Polymethoxylated flavonoids reduced blood glucose and insulin secretion, increased insulin responsiveness, and alleviated insulin resistance. In addition, polymethoxylated flavonoids regulated the serum levels of obesity factors and reduced the weights and indexes of white fat and brown fat, the diameter of white adipocytes, and the number of fat vacuoles in brown fat and pancreatic islet cells. The intervention with polymethoxylated flavonoids increased the diversity of gut microbiota in the model rats, increasing the beneficial bacteria associated with glucose and lipid metabolism and reduced the harmful bacteria at the genus level. In addition, polymethoxylated flavonoids up-regulated the protein levels of glucose transporter 4(GLUT4), phosphorylated AMP-activated protein kinase(p-AMPK), peroxisome proliferator-activated receptor gamma coactivator-1α(PGC-1α), and uncoupling protein 1(UCP1). In summary, polymethoxylated flavonoids may increase the body utilization of glucose and lipids by regulating the homeostasis of insulin, the serum levels of obesity factors, the diversity of gut microbiota, and the expression of mitochondrial metabolism-related proteins in brown adipocytes, thereby mitigating obesity in rats.


Subject(s)
Diet, High-Fat , Flavonoids , Lipid Metabolism , Obesity , Rats, Sprague-Dawley , Animals , Obesity/drug therapy , Obesity/metabolism , Rats , Lipid Metabolism/drug effects , Flavonoids/pharmacology , Flavonoids/administration & dosage , Diet, High-Fat/adverse effects , Male , Glucose/metabolism , Disease Models, Animal , Humans , Blood Glucose/metabolism , Blood Glucose/drug effects , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/administration & dosage , Gastrointestinal Microbiome/drug effects , Body Weight/drug effects
10.
Data Brief ; 55: 110583, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39022697

ABSTRACT

Wheat (Triticum aestivum L.) is one of the world's most important staple crops, whose production is critical to feed the expanding population worldwide. The 90-kDa Heat Shock Protein 90 (HSP90) is a highly abundant chaperone protein involved in multiple cellular processes. It facilitates the folding of nascent preproteins for their maturation and functioning. This data described HSP90.2 clients identified from the whole genome of wheat. The HSP90.2 chaperome contains over 1500 proteins, most detected by the C terminus and full-length of HSP90.2. Over 60 % of the clients reside in the cytosol, nucleus, and chloroplasts. Cytoskeleton-related proteins are enriched in the chaperome of the N terminus of HSP90.2. The clients of the middle part of HSP90.2 contains several factors involved in ethylene biosynthesis and extracellular vesicle or organelle-related activities. Some clients related to plant hypersensitive response are induced by stripe rust. The presented dataset could isolate proteins regulated by HSP90.2 at the post-translational level.

11.
Nat Commun ; 15(1): 5924, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009607

ABSTRACT

The genetic contribution of protein-coding variants to immune-mediated diseases (IMDs) remains underexplored. Through whole exome sequencing of 40 IMDs in 350,770 UK Biobank participants, we identified 162 unique genes in 35 IMDs, among which 124 were novel genes. Several genes, including FLG which is associated with atopic dermatitis and asthma, showed converging evidence from both rare and common variants. 91 genes exerted significant effects on longitudinal outcomes (interquartile range of Hazard Ratio: 1.12-5.89). Mendelian randomization identified five causal genes, of which four were approved drug targets (CDSN, DDR1, LTA, and IL18BP). Proteomic analysis indicated that mutations associated with specific IMDs might also affect protein expression in other IMDs. For example, DXO (celiac disease-related gene) and PSMB9 (alopecia areata-related gene) could modulate CDSN (autoimmune hypothyroidism-, psoriasis-, asthma-, and Graves' disease-related gene) expression. Identified genes predominantly impact immune and biochemical processes, and can be clustered into pathways of immune-related, urate metabolism, and antigen processing. Our findings identified protein-coding variants which are the key to IMDs pathogenesis and provided new insights into tailored innovative therapies.


Subject(s)
Exome Sequencing , Filaggrin Proteins , Humans , Male , Female , Adult , Genetic Predisposition to Disease/genetics , Middle Aged , Immune System Diseases/genetics , Mendelian Randomization Analysis , Mutation , Proteomics , Genetic Variation , Asthma/genetics , Asthma/immunology , Aged , Dermatitis, Atopic/genetics , Dermatitis, Atopic/immunology
12.
Nat Hum Behav ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987357

ABSTRACT

Recent expansion of proteomic coverage opens unparalleled avenues to unveil new biomarkers of Alzheimer's disease (AD). Among 6,361 cerebrospinal fluid (CSF) proteins analysed from the ADNI database, YWHAG performed best in diagnosing both biologically (AUC = 0.969) and clinically (AUC = 0.857) defined AD. Four- (YWHAG, SMOC1, PIGR and TMOD2) and five- (ACHE, YWHAG, PCSK1, MMP10 and IRF1) protein panels greatly improved the accuracy to 0.987 and 0.975, respectively. Their superior performance was validated in an independent external cohort and in discriminating autopsy-confirmed AD versus non-AD, rivalling even canonical CSF ATN biomarkers. Moreover, they effectively predicted the clinical progression to AD dementia and were strongly associated with AD core biomarkers and cognitive decline. Synaptic, neurogenic and infectious pathways were enriched in distinct AD stages. Mendelian randomization did not support the significant genetic link between CSF proteins and AD. Our findings revealed promising high-performance biomarkers for AD diagnosis and prediction, with implications for clinical trials targeting different pathomechanisms.

13.
Nat Commun ; 15(1): 5777, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38982111

ABSTRACT

Alcohol consumption is a heritable behavior seriously endangers human health. However, genetic studies on alcohol consumption primarily focuses on common variants, while insights from rare coding variants are lacking. Here we leverage whole exome sequencing data across 304,119 white British individuals from UK Biobank to identify protein-coding variants associated with alcohol consumption. Twenty-five variants are associated with alcohol consumption through single variant analysis and thirteen genes through gene-based analysis, ten of which have not been reported previously. Notably, the two unreported alcohol consumption-related genes GIGYF1 and ANKRD12 show enrichment in brain function-related pathways including glial cell differentiation and are strongly expressed in the cerebellum. Phenome-wide association analyses reveal that alcohol consumption-related genes are associated with brain white matter integrity and risk of digestive and neuropsychiatric diseases. In summary, this study enhances the comprehension of the genetic architecture of alcohol consumption and implies biological mechanisms underlying alcohol-related adverse outcomes.


Subject(s)
Alcohol Drinking , Exome Sequencing , Humans , Alcohol Drinking/genetics , Male , Female , Genetic Predisposition to Disease , United Kingdom/epidemiology , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Exome/genetics , Middle Aged , Brain/metabolism , Brain/pathology
14.
J Affect Disord ; 362: 323-333, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38971194

ABSTRACT

BACKGROUND: Shift work is associated with susceptibility to several neuropsychiatric disorders. This study aims to investigate the effect of shift work on the incidence of neuropsychiatric disorders, and highlighting how individual variability may influence the association. METHODS: UK Biobank participants with employment information were included. Cox survival was conducted in main and subgroup analyses. Correlation analyses explored the impact of shift work on brain structures, and mediation analyses were performed to elucidate the shared underlying mechanisms. Shift work tolerance was evaluated through survival analyses contrasting the risks associated with five neuropsychiatric disorders in shift versus non-shift workers across different demographic or occupational strata. RESULTS: The analysis encompassed 254,646 participants. Shift work was associated with higher risk of dementia (HR 1.29, 95 % CI 1.10-1.52), anxiety (1.08, 1.01-1.15), depression (1.29, 1.22-1.36), and sleep disorders (1.18, 1.09-1.28), but not stroke (p = 0.20). Shift work was correlated with decreasing volume of various brain regions, particularly in thalamus, lateral orbitofrontal, and middle temporal. Mediation analysis revealed that increased immune response and glucose levels are common pathways linking shift work to these disorders. We observed diversity in shift work tolerance across different individual characteristics, among which socioeconomic status and length of working hours were the most essential. LIMITATIONS: Self-reported employment information may cause misclassification and recall bias. And since we focused on the middle-aged population, the conclusions may not be representative of younger or older populations. CONCLUSIONS: Our findings indicated the need to monitor shift worker health and provide personalized management to help adapt to shift work.


Subject(s)
Shift Work Schedule , Humans , Male , Female , Middle Aged , Shift Work Schedule/adverse effects , United Kingdom/epidemiology , Adult , Incidence , Aged , Dementia/epidemiology , Work Schedule Tolerance/physiology , Anxiety/epidemiology , Sleep Wake Disorders/epidemiology , Brain/physiopathology , Mental Disorders/epidemiology , Depression/epidemiology
15.
J Med Chem ; 67(16): 13765-13777, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-38976596

ABSTRACT

Permeability is a key factor driving the absorption of orally administered drugs. In early discovery, the efficient evaluation of permeability, particularly for compounds violating Lipinski's Rule of 5, remains challenging. Addressing this, we established a high-throughput method to measure the experimental polar surface area (HT-EPSA) as an in vitro surrogate to measure permeability. Compared to earlier methods, HT-EPSA significantly reduces data acquisition time with enhanced sensitivity, selectivity, and data quality. In the effort of translating EPSA to human in vitro and in vivo passive permeability, we demonstrated the application of EPSA for predicting Caco-2 cell and human intestinal permeability, showing improvements over topological polar surface area and the parallel artificial membrane permeability assay for rank-ordering permeability in a proteolysis targeting chimera case study. The HT-EPSA method is expected to be highly beneficial in guiding early stage compound rank-ordering, faster decision-making, and in predicting in vitro and/or in vivo human intestinal permeability.


Subject(s)
High-Throughput Screening Assays , Permeability , Tandem Mass Spectrometry , Humans , Caco-2 Cells , High-Throughput Screening Assays/methods , Tandem Mass Spectrometry/methods , Intestinal Absorption , Cell Membrane Permeability , Animals
16.
Huan Jing Ke Xue ; 45(6): 3412-3420, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38897762

ABSTRACT

The fifth session of the 13th National People's Congress proposed to be committed to promoting carbon peaking and carbon neutrality, promoting the comprehensive green and low-carbon transformation of the economy and society and achieving high-quality development. As an important scientific and technological innovation and industrial cluster in Shaanxi Province, the economic development of the Xi'an Hi-tech Zone largely relies on energy consumption, making the task of carbon reduction particularly challenging. Firstly, taking the Xi'an Hi-tech Zone as the research object, through systematic accounting of carbon emissions within the park, we analyzed the current carbon emission status of enterprises in different energy types and industries. Then, using the Kaya model, multiple independent carbon peak scenarios were set up to predict the total carbon emissions and peak time under different scenarios. Finally, based on the development characteristics of the Xi'an Hi-tech Zone, we scientifically selected corresponding carbon emission reduction paths and provided reasonable emission reduction suggestions. The results showed that the proportion of carbon emissions consumed by electricity was currently the highest, and the share was increasing yearly. Industrial carbon emissions had always been dominant, and the development of the tertiary industry was becoming increasingly prosperous. In the scenario prediction, the carbon emission factor scenario, energy intensity scenario, and economic level scenario could reach the carbon peak by 2030. Among them, the economic development level had the greatest impact on the peak and time of the future carbon peak in the Xi'an Hi-tech Zone, whereas the industrial structure scenario, energy source structure scenario, and population size scenario had no peak before 2030. The future emission reduction path mainly started from decarbonization of the power sector, stable and high-quality economic development, green upgrading of energy and industrial structure, and building a green transportation system. This can reserve more preparation time for achieving carbon neutrality and provide decision-making reference for the low-carbon development of industrial parks in China.

17.
JAAD Int ; 16: 91-96, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38868401

ABSTRACT

Background: Dermatoscopy is a noninvasive method of examining skin lesions under high magnification, gradually replacing the need for invasive biopsies. Training is required to gain clinical competency. Gamification employs game-like elements to enhance education engagement and is an engaging means of delivering medical education. We sought to use gamification and a mobile-based platform to deliver dermatoscopy education to physicians. Methods: We developed SKIN@GoPRIME, an interactive smartphone platform. Thirty physician participants were randomly assigned to watch an online dermatoscopy lecture or to use SKIN@GoPRIME. Twenty-eight participants completed prelearning and postlearning quizzes and provided feedback on SKIN@GoPRIME. Results: Users of SKIN@GoPRIME demonstrated a significant 1.71-point mean score improvement (P = .0018). The group that watched the online dermatoscopy lecture had a higher 2.36-point mean score improvement (P = .00021). Both family medicine and internal medicine physicians demonstrated a significant mean score increase of 1.29 (P = .049) and 2.14 (P = .023), respectively, after using SKIN@GoPRIME. Based on feedback, 83% believed that SKIN@GoPRIME can be used to acquire the applied competencies required for their job scope. Discussion and Conclusion: SKIN@GoPRIME, a novel learning tool via gamification effectively delivers dermatoscopy education, although it is not shown to be more effective than lectures. Larger studies are required to further validate the effectiveness of gamified learning techniques in dermatoscopy education. Future studies should involve the optimization of SKIN@GoPRIME to more effectively deliver dermatoscopy education.

18.
Food Res Int ; 190: 114555, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945560

ABSTRACT

Cronobacter sakazakii, an opportunity foodborne pathogen, could contaminate a broad range of food materials and cause life-threatening symptoms in infants. The bacterial envelope structure contribute to bacterial environment tolerance, biofilm formation and virulence in various in Gram-negative bacteria. DsbA and PepP are two important genes related to the biogenesis and stability of bacterial envelope. In this study, the DsbA and PepP were deleted in C. sakazakii to evaluate their contribution to stress tolerance and virulence of the pathogen. The bacterial environment resistance assays showed DsbA and PepP are essential in controlling C. sakazakii resistance to heat and desiccation in different mediums, as well as acid, osmotic, oxidation and bile salt stresses. DsbA and PepP also played an important role in regulating biofilm formation and motility. Furthermore, DsbA and PepP deletion weaken C. sakazakii adhesion and invasion in Caco-2, intracellular survival and replication in RAW 264.7. qRT-PCR results showed that DsbA and PepP of C. sakazakii played roles in regulating the expression of several genes associated with environment stress tolerance, biofilm formation, bacterial motility and cellular invasion. These findings indicate that DsbA and PepP played an important regulatory role in the environment resisitance, biofilm formation and virulence of C. sakazakii, which enrich understanding of genetic determinants of adaptability and virulence of the pathogen.


Subject(s)
Biofilms , Cronobacter sakazakii , Virulence Factors , Cronobacter sakazakii/genetics , Cronobacter sakazakii/pathogenicity , Virulence Factors/genetics , Biofilms/growth & development , Humans , Mice , Virulence/genetics , Caco-2 Cells , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Animals , RAW 264.7 Cells , Bacterial Adhesion/genetics , Stress, Physiological/genetics , Gene Expression Regulation, Bacterial , Food Microbiology
19.
Geroscience ; 46(5): 5365-5385, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38837026

ABSTRACT

Telomere length is a putative biomarker of aging and is associated with multiple age-related diseases. There are limited data on the landscape of rare genetic variations in telomere length. Here, we systematically characterize the rare variant associations with leukocyte telomere length (LTL) through exome-wide association study (ExWAS) among 390,231 individuals in the UK Biobank. We identified 18 robust rare-variant genes for LTL, most of which estimated effects on LTL were significant (> 0.2 standard deviation per allele). The biological functions of the rare-variant genes were associated with telomere maintenance and capping and several genes were specifically expressed in the testis. Three novel genes (ASXL1, CFAP58, and TET2) associated with LTL were identified. Phenotypic association analyses indicated significant associations of ASXL1 and TET2 with cancers, age-related diseases, blood assays, and cardiovascular traits. Survival analyses suggested that carriers of ASXL1 or TET2 variants were at increased risk for cancers; diseases of the circulatory, respiratory, and genitourinary systems; and all-cause and cause-specific deaths. The CFAP58 carriers were at elevated risk of deaths due to cancers. Collectively, the present whole exome sequencing study provides novel insights into the genetic landscape of LTL, identifying novel genes associated with LTL and their implications on human health and facilitating a better understanding of aging, thus pinpointing the genetic relevance of LTL with clonal hematopoiesis, biomedical traits, and health-related outcomes.


Subject(s)
Exome Sequencing , Repressor Proteins , Humans , Male , Repressor Proteins/genetics , Female , Dioxygenases/genetics , Proto-Oncogene Proteins/genetics , DNA-Binding Proteins/genetics , Aging/genetics , Middle Aged , Aged , Genome-Wide Association Study , Telomere Homeostasis/genetics , Leukocytes/metabolism , Telomere/genetics , Neoplasms/genetics , Exome/genetics
20.
Proc Natl Acad Sci U S A ; 121(25): e2305260121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38857398

ABSTRACT

Human Cep57 is a coiled-coil scaffold at the pericentriolar matrix (PCM), controlling centriole duplication and centrosome maturation for faithful cell division. Genetic truncation mutations of Cep57 are associated with the mosaic-variegated aneuploidy (MVA) syndrome. During interphase, Cep57 forms a complex with Cep63 and Cep152, serving as regulators for centrosome maturation. However, the molecular interplay of Cep57 with these essential scaffolding proteins remains unclear. Here, we demonstrate that Cep57 undergoes liquid-liquid phase separation (LLPS) driven by three critical domains (NTD, CTD, and polybasic LMN). In vitro Cep57 condensates catalyze microtubule nucleation via the LMN motif-mediated tubulin concentration. In cells, the LMN motif is required for centrosomal microtubule aster formation. Moreover, Cep63 restricts Cep57 assembly, expansion, and microtubule polymerization activity. Overexpression of competitive constructs for multivalent interactions, including an MVA mutation, leads to excessive centrosome duplication. In Cep57-depleted cells, self-assembly mutants failed to rescue centriole disengagement and PCM disorganization. Thus, Cep57's multivalent interactions are pivotal for maintaining the accurate structural and functional integrity of human centrosomes.


Subject(s)
Centrosome , Microtubule-Associated Proteins , Microtubules , Humans , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Centrioles/metabolism , Centrioles/genetics , Centrosome/metabolism , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Microtubules/metabolism , Mutation , Nuclear Proteins , Protein Binding , Tubulin/metabolism , Tubulin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL