Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
J Phys Condens Matter ; 30(1): 015806, 2018 01 10.
Article in English | MEDLINE | ID: mdl-29205170

ABSTRACT

We report an unusual angular-dependent exchange bias effect in ferromagnet/antiferromagnet bilayers, where both ferromagnet and antiferromagnet are epitaxially grown. Numerical model calculations predict an approximately 45° period for the sign switching of the exchange-bias field, depending on the ratio between magnetocrystalline anisotropy and exchange-coupling constant. The switching of the sign is indicative of a competition between a fourfold magnetocrystalline anisotropy of the ferromagnet and a unidirectional anisotropy field of the exchange coupling. This predicted unusual angular-dependent exchange bias and its magnetization switching process are confirmed by measurements on fully epitaxial Co3FeN/MnN bilayers by longitudinal and transverse magneto-optic Kerr effect magnetometry. These results provide a deeper understanding of the exchange coupling phenomena in fully epitaxial bilayers with tailored materials and open up a complex switching energy landscape engineering by anisotropies.

2.
Sci Rep ; 7(1): 15064, 2017 11 08.
Article in English | MEDLINE | ID: mdl-29118451

ABSTRACT

Exciting a ferromagnetic material with an ultrashort IR laser pulse is known to induce spin dynamics by heating the spin system and by ultrafast spin diffusion processes. Here, we report on measurements of spin-profiles and spin diffusion properties in the vicinity of domain walls in the interface region between a metallic Al layer and a ferromagnetic Co/Pd thin film upon IR excitation. We followed the ultrafast temporal evolution by means of an ultrafast resonant magnetic scattering experiment in surface scattering geometry, which enables us to exploit the evolution of the domain network within a 1/e distance of 3 nm to 5 nm from the Al/FM film interface. We observe a magnetization-reversal close to the domain wall boundaries that becomes more pronounced closer to the Al/FM film interface. This magnetization-reversal is driven by the different transport properties of majority and minority carriers through a magnetically disordered domain network. Its finite lateral extension has allowed us to measure the ultrafast spin-diffusion coefficients and ultrafast spin velocities for majority and minority carriers upon IR excitation.

3.
Struct Dyn ; 4(5): 055101, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28713843

ABSTRACT

We report the results of resonant magnetic XUV reflectivity experiments performed at the XUV free-electron laser FERMI. Circularly polarized XUV light with the photon energy tuned to the Fe M2,3 edge is used to measure resonant magnetic reflectivities and the corresponding Q-resolved asymmetry of a Permalloy/Ta/Permalloy trilayer film. The asymmetry exhibits ultrafast changes on 240 fs time scales upon pumping with ultrashort IR laser pulses. Depending on the value of the wavevector transfer Qz , we observe both decreasing and increasing values of the asymmetry parameter, which is attributed to ultrafast changes in the vertical spin and charge density profiles of the trilayer film.

4.
Phys Rev Lett ; 116(25): 257202, 2016 Jun 24.
Article in English | MEDLINE | ID: mdl-27391747

ABSTRACT

Using femtosecond time-resolved resonant magnetic x-ray diffraction at the Ho L_{3} absorption edge, we investigate the demagnetization dynamics in antiferromagnetically ordered metallic Ho after femtosecond optical excitation. Tuning the x-ray energy to the electric dipole (E1, 2p→5d) or quadrupole (E2, 2p→4f) transition allows us to selectively and independently study the spin dynamics of the itinerant 5d and localized 4f electronic subsystems via the suppression of the magnetic (2 1 3-τ) satellite peak. We find demagnetization time scales very similar to ferromagnetic 4f systems, suggesting that the loss of magnetic order occurs via a similar spin-flip process in both cases. The simultaneous demagnetization of both subsystems demonstrates strong intra-atomic 4f-5d exchange coupling. In addition, an ultrafast lattice contraction due to the release of magneto-striction leads to a transient shift of the magnetic satellite peak.

5.
Rev Sci Instrum ; 86(6): 063902, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26133845

ABSTRACT

We report on significant developments of a high vacuum reflectometer (diffractometer) and spectrometer for soft x-ray synchrotron experiments which allows conducting a wide range of static and dynamic experiments. Although the chamber named ALICE was designed for the analysis of magnetic hetero- and nanostructures via resonant magnetic x-ray scattering, the instrument is not limited to this technique. The versatility of the instrument was testified by a series of pilot experiments. Static measurements involve the possibility to use scattering and spectroscopy synchrotron based techniques (photon-in photon-out, photon-in electron-out, and coherent scattering). Dynamic experiments require either laser or magnetic field pulses to excite the spin system followed by x-ray probe in the time domain from nano- to femtosecond delay times. In this temporal range, the demagnetization/remagnetization dynamics and magnetization precession in a number of magnetic materials (metals, alloys, and magnetic multilayers) can be probed in an element specific manner. We demonstrate here the capabilities of the system to host a variety of experiments, featuring ALICE as one of the most versatile and demanded instruments at the Helmholtz Center in Berlin-BESSY II synchrotron center in Berlin, Germany.

6.
J Phys Condens Matter ; 27(13): 136001, 2015 Apr 10.
Article in English | MEDLINE | ID: mdl-25765283

ABSTRACT

We prepared monolayers of iron oxide nanoparticles via self-assembly on a bare silicon wafer and on a vanadium film sputter deposited onto a plane sapphire substrate. The magnetic configuration of nanoparticles in such a dense assembly was investigated by polarized neutron reflectivity. A theoretical model fit shows that the magnetic moments of nanoparticles form quasi domain-like configurations at remanence. This is attributed to the dipolar coupling amongst the nanoparticles.

7.
Nanotechnology ; 25(20): 205602, 2014 May 23.
Article in English | MEDLINE | ID: mdl-24785547

ABSTRACT

We report on the fabrication and characterization of iron oxide nanoparticle thin film superlattices. The formation into different film morphologies is controlled by tuning the particle plus solvent-to-substrate interaction. It turns out that the wetting vs dewetting properties of the solvent before the self-assembly process during solvent evaporation plays a major role in determining the resulting film morphology. In addition to layerwise growth three-dimensional mesocrystalline growth is also evidenced. The understanding of the mechanisms ruling nanoparticle self-assembly represents an important step towards the fabrication of novel materials with tailored optical, magnetic or electrical transport properties.

8.
J Phys Condens Matter ; 25(26): 266001, 2013 Jul 03.
Article in English | MEDLINE | ID: mdl-23751818

ABSTRACT

We investigated magnetic phase transitions, magnetic anisotropy, and magnetic domains in Pd1-xFex alloys with different Fe concentrations x = 2.2-7.2%. The Curie temperature depends linearly on the Fe concentration in the regime studied. The magnetization is dominantly in-plane with a small out-of-plane remanent contribution. Resonant magnetic small angle scattering with circularly polarized x-rays tuned to the L3 resonance edge of Fe revealed a small angle scattering ring corresponding to magnetic domain fluctuations on a length scale of 100 nm. These fluctuations are isotropically distributed in the film plane and appear to have an out-of-plane component. On increasing the transverse coherence of the incident beam, the scattering ring decomposes in a speckle pattern, indicative of magnetic correlations on a length scale smaller than the x-ray coherence length of about 4 µm.


Subject(s)
Alloys/chemistry , Iron/chemistry , Magnetics , Palladium/chemistry , Anisotropy , Phase Transition , Scattering, Small Angle , Temperature , X-Rays
9.
Rev Sci Instrum ; 84(2): 025112, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23464256

ABSTRACT

A new neutron reflectometer SuperADAM has recently been built and commissioned at the Institut Laue-Langevin, Grenoble, France. It replaces the previous neutron reflectometer ADAM. The new instrument uses a solid state polarizer/wavelength filter providing a highly polarized (up to 98.6%) monochromatic neutron flux of 8 × 10(4) n cm(-2) s(-1) with monochromatization Δλ∕λ = 0.7% and angular divergence Δα = 0.2 mrad. The instrument includes both single and position sensitive detectors. The position sensitive detector allows simultaneous measurement of specular reflection and off-specular scattering. Polarization analysis for both specular reflection and off-specular scattering is achieved using either mirror analyzers or a (3)He spin filter cell. High efficiency detectors, low background, and high flux provides a dynamic range of up to seven decades in reflectivity. Detailed specifications and the instrument capabilities are illustrated with examples of recently collected data in the fields of thin film magnetism and thin polymer films.


Subject(s)
Neutron Diffraction/instrumentation , Diffusion , Equipment Design
10.
Nat Commun ; 3: 715, 2012 Mar 06.
Article in English | MEDLINE | ID: mdl-22395606

ABSTRACT

The exchange bias effect refers to the shift of the hysteresis loop of a ferromagnet in direct contact to an antiferromagnet. For applications in spintronics a robust and tunable exchange bias is required. Here we show experimental evidence for a perpendicular exchange bias in a prototypical ferrimagnetic spin valve consisting of DyCo(5)/Ta/Fe(76)Gd(24), where the DyCo(5) alloy has the role of a hard ferrimagnet and Fe(76)Gd(24) is a soft ferrimagnet. Taking advantage of the tunability of the exchange coupling between the ferrimagnetic layers by means of thickness variation of an interlayer spacer, we demonstrate that perpendicular unidirectional anisotropy can be induced with desirable absolute values at room temperature, without making use of a field-cooling procedure. Moreover, the shift of the hysteresis loop can be reversed with relatively low magnetic fields of several hundred Oersteds. This flexibility in controlling a robust perpendicular exchange bias at room temperature may be of crucial importance for applications.

11.
Nanotechnology ; 23(5): 055707, 2012 Feb 10.
Article in English | MEDLINE | ID: mdl-22236964

ABSTRACT

We have investigated the structure and magnetism of self-assembled, 20 nm diameter iron oxide nanoparticles covered by an oleic acid shell for scrutinizing their structural and magnetic correlations. The nanoparticles were spin-coated on an Si substrate as a single monolayer and as a stack of 5 ML forming a multilayer. X-ray scattering (reflectivity and grazing incidence small-angle scattering) confirms high in-plane hexagonal correlation and a good layering property of the nanoparticles. Using polarized neutron reflectivity we have also determined the long range magnetic correlations parallel and perpendicular to the layers in addition to the structural ones. In a field of 5 kOe we determine a magnetization value of about 80% of the saturation value. At remanence the global magnetization is close to zero. However, polarized neutron reflectivity reveals the existence of regions in which magnetic moments of nanoparticles are well aligned, while losing order over longer distances. These findings confirm that in the nanoparticle assembly the magnetic dipole-dipole interaction is rather strong, dominating the collective magnetic properties at room temperature.


Subject(s)
Magnetite Nanoparticles/chemistry , Electromagnetic Fields , Magnetite Nanoparticles/ultrastructure , Magnetometry , Microscopy, Electron, Scanning , Neutrons , Oleic Acid , Particle Size , Scattering, Small Angle , X-Rays
12.
Nanotechnology ; 22(28): 285608, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21654034

ABSTRACT

The deliberate control over the spatial arrangement of nanostructures is the desired goal for many applications such as, for example, in data storage, plasmonics or sensor arrays. Here we present a novel method to assist the self-assembly process of magnetic nanoparticles. The method makes use of nanostructured aluminum templates obtained after anodization of aluminum discs and the subsequent growth and removal of the newly formed alumina layer, resulting in a regular honeycomb-type array of hexagonally shaped valleys. The iron oxide nanoparticles, 20 nm in diameter, are spin-coated onto the surface of honeycomb nanostructured Al templates. Depending on the size, each hexagon site can host up to 30 nanoparticles. These nanoparticles form clusters of different arrangements within the valleys, such as collars, chains and hexagonally closed islands. Ultimately, it is possible to isolate individual nanoparticles. The strengths of the magnetic interaction between particles in a cluster are probed using the memory effect known from the coupled state in superspin glass systems.

13.
J Phys Condens Matter ; 23(12): 126003, 2011 Mar 30.
Article in English | MEDLINE | ID: mdl-21378441

ABSTRACT

We report about a combined structural and magnetometric characterization of self-assembled magnetic nanoparticle arrays. Monodisperse iron oxide nanoparticles with a diameter of 20 nm were synthesized by thermal decomposition. The nanoparticle suspension was spin-coated on Si substrates to achieve self-organized arrays of particles and subsequently annealed at various conditions. The samples were characterized by x-ray diffraction, and bright and dark field high resolution transmission electron microscopy. The structural analysis is compared to magnetization measurements obtained by superconducting quantum interference device magnetometry. We can identify either multi-phase Fe(x)O/γ-Fe(2)O(3) or multi-phase Fe(x)O/Fe(3)O(4) nanoparticles. The Fe(x)O/γ-Fe(2)O(3) system shows a pronounced exchange bias effect which explains the peculiar magnetization data found for this system.


Subject(s)
Ferric Compounds/analysis , Magnetics , Nanoparticles/analysis , Electric Conductivity , Ferric Compounds/chemical synthesis , Ferric Compounds/chemistry , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Particle Size , Suspensions/analysis , Suspensions/chemistry
14.
Phys Rev Lett ; 106(7): 077402, 2011 Feb 18.
Article in English | MEDLINE | ID: mdl-21405541

ABSTRACT

We report the direct observation of slow fluctuations of helical antiferromagnetic domains in an ultrathin holmium film using coherent resonant magnetic x-ray scattering. We observe a gradual increase of the fluctuations in the speckle pattern with increasing temperature, while at the same time a static contribution to the speckle pattern remains. This finding indicates that domain-wall fluctuations occur over a large range of time scales. We ascribe this nonergodic behavior to the strong dependence of the fluctuation rate on the local thickness of the film.

15.
Phys Rev Lett ; 102(8): 087003, 2009 Feb 27.
Article in English | MEDLINE | ID: mdl-19257778

ABSTRACT

We have studied the nuclear magnetic resonance (NMR) of 51V nuclei in the superconductor/ferromagnet thin film heterostructures Pd_{1-x}Fe_{x}/V/Pd_{1-x}Fe_{x} and Ni/V/Ni in the normal and superconducting state. Whereas the position and shape of the NMR line in the normal state for the trilayers is identical to that observed in a single V layer, in the superconducting state the line shape definitely changes, developing a systematic distortion of the high-field wing of the resonance line. We consider this as the first experimental evidence for the penetration of ferromagnetism into the superconducting layer, a phenomenon which has been theoretically predicted recently and dubbed the spin screening effect.

16.
J Phys Condens Matter ; 21(9): 095701, 2009 Mar 04.
Article in English | MEDLINE | ID: mdl-21817404

ABSTRACT

Point contact Andreev reflection (PCAR) spectroscopy is a common technique for determining the spin polarization of a ferromagnetic sample. The polarization is extracted by measuring the bias dependence of the conductance of a metallic/superconducting point contact. Under ideal conditions, the conductance is dominated by Andreev reflection and the Blonder-Tinkham-Klapwijk (BTK) model can be used to extract a value for the polarization. However, PCAR spectra often exhibit unwanted features in the conductance that cannot be appropriately modelled with the BTK theory. In this paper we isolate some of these unwanted features and show that any further extraction of the spin polarization from these non-ideal spectra proves unreliable. Understanding the origin of these features provides an objective criterion for rejection of PCAR spectra unsuitable for fitting with the modified BTK model.

17.
J Phys Condens Matter ; 21(33): 336004, 2009 Aug 19.
Article in English | MEDLINE | ID: mdl-21828616

ABSTRACT

We show that the magnetic state in rather thick Cr films can be finely tuned via hydrogen uptake into adjacent vanadium layers at rather low hydrogen pressures. By changing the hydrogen concentration and, hence, the electronic structure in the V layers, it is possible to affect the global properties of spin-density waves (SDWs) in Cr layers, including the SDW period and the Néel temperature. We provide direct experimental evidence that hydrogen uptake into V layers can be used to switch between incommensurate and commensurate SDW states in a reproducible way.

18.
Phys Rev Lett ; 101(9): 097206, 2008 Aug 29.
Article in English | MEDLINE | ID: mdl-18851655

ABSTRACT

Employing magnetometry measurements, we have studied Co3O4 nanowires focusing on the core-shell behavior. We find two magnetic contributions, i.e., a regular antiferromagnetic and an additional irreversible one. The first contribution can be attributed to the antiferromagnetically ordered wire cores. The nature of the second one can be identified using thermoremanent and isothermoremanent magnetizaton curves as magnetic fingerprints of the irreversible magnetization. We conclude that the nanowire shell behaves like a two-dimensional diluted antiferromagnet in a field.

19.
Rev Sci Instrum ; 78(12): 121301, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18163713

ABSTRACT

Experimental and theoretical aspects of obtaining the magnetic information carried by laser beams diffracted from an array of micro- or nanosized magnetic objects are reviewed. We report on the fundamentals of vector magneto-optic Kerr effect (MOKE), Bragg-MOKE, and second-order effects in the Kerr signal in longitudinal Kerr geometry as well as on an experimental setup used for vector and Bragg-MOKE experiments. The vector and Bragg-MOKE technique in combination with micromagnetic simulation is a reliable tool for measuring the complete magnetization vector and for characterizing the reversal mechanism of lateral magnetic nanostructures. We discuss the Bragg-MOKE effect for three standard domain configurations during the magnetization reversal process and present the expected behavior of the magnetic hysteresis loops.

20.
Phys Rev Lett ; 95(9): 097003, 2005 Aug 26.
Article in English | MEDLINE | ID: mdl-16197239

ABSTRACT

We studied superconducting V layers deposited on an antiferromagnetically coupled [Fe(2)V(11)](20) superlattice. The parallel upper critical magnetic field exhibits an anomalous T dependence up to the ferromagnetic saturation field of the superlattice, indicating that the superconducting transition temperature T(S) decreases when rotating the relative sublattice magnetization directions of the superlattice from antiparallel to parallel. This proves that the pair breaking effect of a Fe2 layer is reduced if at a distance of 1.5 nm a second Fe2 layer with antiparallel spin orientation exists.

SELECTION OF CITATIONS
SEARCH DETAIL
...