Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Poult Sci ; 103(5): 103550, 2024 May.
Article in English | MEDLINE | ID: mdl-38452576

ABSTRACT

The present investigation aimed to examine the impact of different dietary organic zinc nanoparticle (ZnNP) levels on gut bacteria, meat quality, growth performance, carcass traits, and blood indicators of broilers. A total of 180 unsexed one-wk broiler chicks (Cobb) were allotted to 3 experimental groups and received a basal diet supplemented with 0, 0.2, and 0.4 mg ZnNPs/Kg diet, respectively. The results showed that, after 38 d of age, the supplementary ZnNPs at a level of 0.4 mg/kg raised body weight and weight gain compared to the control and 0.2 mg ZnNPs/kg diet. The addition of ZnNPs improved the daily feed intake. Some of the carcass characteristics in ZnNPs groups excelled that of the control. ZnNPs treatments gave higher dressing % and decreased (P < 0.05) the cholesterol rates, LDL, and uric acid in the blood. In addition, it gave the best concentrations of ALT and AST. The ZnNPs groups exhibited substantially (P < 0.05) improved moisture and fat values in meat samples. The group given ZnNPs at a concentration of 0.4 mg/kg had a substantially (P < 0.05) lower count of TYMC and E. coli. In conclusion, the high level of ZnNPs (0.4 mg/kg) improved the broilers' performance and some of their carcass traits, enhancing their health and meat quality.


Subject(s)
Animal Feed , Chickens , Diet , Dietary Supplements , Gastrointestinal Microbiome , Meat , Zinc , Animals , Chickens/growth & development , Chickens/blood , Animal Feed/analysis , Dietary Supplements/analysis , Diet/veterinary , Gastrointestinal Microbiome/drug effects , Zinc/administration & dosage , Meat/analysis , Cecum/microbiology , Male , Dose-Response Relationship, Drug , Metal Nanoparticles/administration & dosage , Random Allocation , Animal Nutritional Physiological Phenomena/drug effects
2.
Environ Sci Pollut Res Int ; 31(12): 17634-17650, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37126170

ABSTRACT

The study aimed to optimize the treatment of oil refinery-contaminated wastewater through modification of the well-established activated sludge process with new nanocomposite (NC) materials to produce high-quality treated effluents for potential reuse. Refinery wastewater samples were collected from one of the major oil refineries, Alexandria, Egypt, where the operation, performance, and efficiency of the current activated sludge (AS) unit were evaluated for 6 consecutive months. Two AS bench scale PVC basins were constructed. Magnetite nanoparticles (Fe3O4 NPs) and magnetite silica (Fe3O4/silica) nanocomposite (NC) were prepared and characterized. Bioremediation trials were carried out in a sequential batch mode using Fe3O4/silica NC-modified AS and control (unmodified AS). The proposed treatment produced high-quality effluents in a very short time (2 h) despite the very high initial pollutant concentration accompanied with a reduction in the produced sludge. The highest removal of TSS, TDS, BOD, COD, and OG from raw industrial wastewater recorded 78.33, 3.6, 87.65, 85.17, and 92.92% compared to 55.3, 12.6, 50.0, 40.22, and 56.84%, respectively, achieved by the unmodified AS unit. The results confirmed that integration of the AS treatment with nanomaterial composite is highly effective, promising, and economic for the treatment of highly toxic and complicated industrial wastewater such as petroleum refinery effluents.


Subject(s)
Nanocomposites , Petroleum , Wastewater , Sewage , Silicon , Ferrosoferric Oxide , Silicon Dioxide , Waste Disposal, Fluid/methods
3.
Life (Basel) ; 12(10)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36295097

ABSTRACT

Staphylococcus aureus (S. aureus) is a Gram-positive bacteria considered one of the leading causes of community and hospital-acquired illnesses or public health concerns. Antibiotic resistance in this microorganism is one of the greatest issues in global health care. The use of metal nanoparticles and their oxides is one of the potential approaches to combating bacteria resistance to antibiotics. The antibacterial properties of ZnO NPs against enterotoxigenic S. aureus were studied. ZnO NPs were tested in vitro by agar diffusion test. They resulted in 26 and 22 mm zones of inhibition for a size of 20 nm and a concentration of 20 mM against 105 and 107 CFU/mL S. aureus, respectively. The MIC of ZnO NPs of various sizes, 20 and 50 nm, with 105 CFU/mL was 2.5 and 5 mM, respectively. MIC with 107 CFU/mL was five mM for 20 and 50 nm ZnO NPs. Further, the highest growth reduction percentage, 98.99% in the counts of S. aureus was achieved by ZnO NPs of size 20 nm and concentration of 10 mM. Moreover, the obtained ELISA results indicated a significantly decreased concentration of enterotoxin A with all concentrations and sizes of ZnO NPs. PCR analysis showed a significant effect on sea gene in response to ZnO NPs treatments leading to loss of the gene, unlike the unaffected nuc gene. Moreover, morphological changes and cell shape distortion were detected by scanning electron microscope for bacterial cells treated with ZnO NPs.

4.
Environ Sci Pollut Res Int ; 29(8): 10894-10907, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35000164

ABSTRACT

Consumers demand clean-label food products, necessitating the search for new, natural antimicrobials to meet this demand while ensuring food safety. This review aimed at investigating the antimicrobial properties of black pepper (Piper guineense) against foodborne microorganisms. The existence of foodborne illness, food spoilage, food waste, the resulting negative economic impact of these issues, and consumer interests have all pushed the food industry to find alternative, safe, and natural antimicrobials to be used in foods and beverages. Consumers have also influenced the demand for novel antimicrobials due to the perceived association of current synthetic preservatives with diseases and adverse effects on children. They also have a desire for clean-label products. These combined concerns have prompted researchers at investigating plant extracts as potential sources for antimicrobials. Plants possess many antimicrobial properties; therefore, evaluating these plant extracts as a natural source of antimicrobials can lead to a preventative control method in reducing foodborne illness and food spoilage, inclusively meeting consumer needs. In most regions, P. guineense is commonly utilized due to its potent and effective medicinal properties against foodborne microorganisms.


Subject(s)
Anti-Infective Agents , Piper nigrum , Piper , Refuse Disposal , Anti-Infective Agents/pharmacology , Child , Food , Humans
5.
Saudi J Biol Sci ; 28(12): 6782-6794, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34866977

ABSTRACT

The current study was performed to develop a simple, safe, and cost-effective technique for the biosynthesis of selenium nanoparticles (SeNPs) from lactic acid bacteria (LAB) isolated from human breast milk with antifungal activity against animal pathogenic fungi. The LAB was selected based on their speed of transforming sodium selenite (Na2SeO3) to SeNPs. Out of the four identified LAB isolates, only one strain produced dark red color within 32 h of incubation, indicating that this isolate was the fastest in transforming Na2SeO3 to SeNPs; and was chosen for the biosynthesis of LAB-SeNPs. The superior isolate was further identified as Lactobacillus paracasei HM1 (MW390875) based on matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and phylogenetic tree analysis of 16S rRNA sequence alignments. The optimum experimental conditions for the biosynthesis of SeNPs by L. paracasei HM1 were found to be pH (6.0), temperature (35˚C), Na2SeO3 (4.0 mM), reaction time (32 h), and agitation speed (160 rpm). The ultraviolet absorbance of L. paracasei-SeNPs was detected at 300 nm, and the transmission electron microscopy (TEM) captured a diameter range between 3.0 and 50.0 nm. The energy-dispersive X-ray spectroscopy (EDX) and the Fourier-transform infrared spectroscopy (FTIR) provided a clear image of the active groups associated with the stability of L. paracasei-SeNPs. The size of L. paracasei-SeNPs using dynamic light scattering technique was 56.91 ± 1.8 nm, and zeta potential value was -20.1 ± 0.6 mV in one peak. The data also revealed that L. paracasei-SeNPs effectively inhibited the growth of Candida and Fusarium species, and this was further confirmed by scanning electron microscopy (SEM). The current study concluded that the SeNPs obtained from L. paracasei HM1 could be used to prepare biological antifungal formulations effective against major animal pathogenic fungi. The antifungal activity of the biologically synthesized SeNPs using L. paracasei HM1 outperforms the chemically produced SeNPs. In vivo studies showing the antagonistic effect of SeNPs on pathogenic fungi are underway to demonstrate the potential of a therapeutic agent to treat animals against major infectious fungal diseases.

6.
Front Med (Lausanne) ; 8: 812857, 2021.
Article in English | MEDLINE | ID: mdl-35198572

ABSTRACT

BACKGROUND: Tuberculosis (TB) is a major infectious disease, where incomplete information about host genetics and immune responses is hindering the development of transformative therapies. This study characterized the immune cell landscape and blood transcriptomic profile of patients with pulmonary TB (PTB) to identify the potential therapeutic biomarkers. METHODS: The blood transcriptome profile of patients with PTB and controls were used for fractionating immune cell populations with the CIBERSORT algorithm and then to identify differentially expressed genes (DEGs) with R/Bioconductor packages. Later, systems biology investigations (such as semantic similarity, gene correlation, and graph theory parameters) were implemented to prioritize druggable genes contributing to the immune cell alterations in patients with TB. Finally, real time-PCR (RT-PCR) was used to confirm gene expression levels. RESULTS: Patients with PTB had higher levels of four immune subpopulations like CD8+ T cells (P = 1.9 × 10-8), natural killer (NK) cells resting (P = 6.3 × 10-5), monocytes (P = 6.4 × 10-6), and neutrophils (P = 1.6 × 10-7). The functional enrichment of 624 DEGs identified in the blood transcriptome of patients with PTB revealed major dysregulation of T cell-related ontologies and pathways (q ≤ 0.05). Of the 96 DEGs shared between transcriptome and immune cell types, 39 overlapped with TB meta-profiling genetic signatures, and their semantic similarity analysis with the remaining 57 genes, yielded 45 new candidate TB markers. This study identified 9 CD8+ T cell-associated genes (ITK, CD2, CD6, CD247, ZAP70, CD3D, SH2D1A, CD3E, and IL7R) as potential therapeutic targets of PTB by combining computational druggability and co-expression (r2 ≥ |0.7|) approaches. CONCLUSION: The changes in immune cell proportion and the downregulation of T cell-related genes may provide new insights in developing therapeutic compounds against chronic TB.

7.
Int J Biol Macromol ; 164: 2726-2744, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32841671

ABSTRACT

In this era, there is a global concern in the use of bioactive molecules such as chitosan in the field of antimicrobial and antioxidant benefits. Because of its biodegradability, biological compatibility, antimicrobial, antioxidants activity, and high safety, chitosan could be used in a large number of applications. It could exist in many forms, such as fibers, gels, films, sponges, nanoparticles, and beads. The different biological activities of chitosan and its products are extensively investigated to broaden the application fields in several areas. Chitosan's natural properties depend strongly on water and other solvent solubility. Consequently, the chitosan oligosaccharides with a low polymerization degree are getting significant attention in the pharmaceutical and medical applications because they have lower viscosity and higher water solubility than chitosan. The objective of this review article is to put the antioxidant and antimicrobial properties of chitosan and its derivatives under the spotlight. The impacts of chitosan on physicochemical parameters like molecular weight and deacetylation degree on its bioactivities are also identified. Additionally, other applications of chitosan and its derivatives, including wound healing products, wastewater treatment, and cosmetics, have also been highlighted.


Subject(s)
Anti-Infective Agents/pharmacology , Antioxidants/pharmacology , Chitosan/pharmacology , Acetylation , Animals , Anti-Infective Agents/chemistry , Antioxidants/chemistry , Carbohydrate Sequence , Chitosan/chemistry , Humans , Molecular Weight , Nanoparticles , Wastewater/microbiology , Water Purification , Wound Healing/drug effects
8.
Bioinformation ; 15(4): 233-239, 2019.
Article in English | MEDLINE | ID: mdl-31285639

ABSTRACT

Dengue, West Nile and Zika virus belongs to the family flaviviridae and genus flavivirus. It is of interest to design and develop inhibitors with improved activity against these diseases. We used the helicases target to screen for potential inhibitors against these viruses using molecular docking analysis. NS3 helicases of flavivirus family of viruses such as Dengue, West Nile and Zika are prime targets for drug development. The computer aided molecular docking analysis of netropsin and novobiocin with the viral protein targets HABD, MTD and RCD is reported for further consideration.

SELECTION OF CITATIONS
SEARCH DETAIL
...