Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 38
1.
Cancer Res ; 84(11): 1834-1855, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38831751

Cancer cells exhibit metabolic plasticity to meet oncogene-driven dependencies while coping with nutrient availability. A better understanding of how systemic metabolism impacts the accumulation of metabolites that reprogram the tumor microenvironment (TME) and drive cancer could facilitate development of precision nutrition approaches. Using the Hi-MYC prostate cancer mouse model, we demonstrated that an obesogenic high-fat diet (HFD) rich in saturated fats accelerates the development of c-MYC-driven invasive prostate cancer through metabolic rewiring. Although c-MYC modulated key metabolic pathways, interaction with an obesogenic HFD was necessary to induce glycolysis and lactate accumulation in tumors. These metabolic changes were associated with augmented infiltration of CD206+ and PD-L1+ tumor-associated macrophages (TAM) and FOXP3+ regulatory T cells, as well as with the activation of transcriptional programs linked to disease progression and therapy resistance. Lactate itself also stimulated neoangiogenesis and prostate cancer cell migration, which were significantly reduced following treatment with the lactate dehydrogenase inhibitor FX11. In patients with prostate cancer, high saturated fat intake and increased body mass index were associated with tumor glycolytic features that promote the infiltration of M2-like TAMs. Finally, upregulation of lactate dehydrogenase, indicative of a lactagenic phenotype, was associated with a shorter time to biochemical recurrence in independent clinical cohorts. This work identifies cooperation between genetic drivers and systemic metabolism to hijack the TME and promote prostate cancer progression through oncometabolite accumulation. This sets the stage for the assessment of lactate as a prognostic biomarker and supports strategies of dietary intervention and direct lactagenesis blockade in treating advanced prostate cancer. SIGNIFICANCE: Lactate accumulation driven by high-fat diet and MYC reprograms the tumor microenvironment and promotes prostate cancer progression, supporting the potential of lactate as a biomarker and therapeutic target in prostate cancer. See related commentary by Frigo, p. 1742.


Diet, High-Fat , Lactic Acid , Obesity , Prostatic Neoplasms , Proto-Oncogene Proteins c-myc , Tumor Microenvironment , Male , Animals , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Diet, High-Fat/adverse effects , Mice , Humans , Lactic Acid/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Obesity/metabolism , Obesity/pathology , Cell Line, Tumor , Mice, Inbred C57BL , Tumor-Associated Macrophages/metabolism
2.
Sci Signal ; 17(831): eadh1922, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38593154

Androgen deprivation therapy (ADT) is the primary treatment for prostate cancer; however, resistance to ADT invariably develops, leading to castration-resistant prostate cancer (CRPC). Prostate cancer progression is marked by increased de novo synthesis of fatty acids due to overexpression of fatty acid synthase (FASN), making this enzyme a therapeutic target for prostate cancer. Inhibition of FASN results in increased intracellular amounts of ceramides and sphingomyelin, leading to DNA damage through the formation of DNA double-strand breaks and cell death. We found that combining a FASNi with the poly-ADP ribose polymerase (PARP) inhibitor olaparib, which induces cell death by blocking DNA damage repair, resulted in a more pronounced reduction in cell growth than that caused by either drug alone. Human CRPC organoids treated with a combination of PARP and FASNi were smaller, had decreased cell proliferation, and showed increased apoptosis and necrosis. Together, these data indicate that targeting FASN increases the therapeutic efficacy of PARP inhibitors by impairing DNA damage repair, suggesting that combination therapies should be explored for CRPC.


Poly(ADP-ribose) Polymerase Inhibitors , Prostatic Neoplasms, Castration-Resistant , Humans , Male , Androgen Antagonists , Cell Death/genetics , Cell Line, Tumor , DNA Damage , Lipids , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism
3.
Bioinform Adv ; 3(1): vbad053, 2023.
Article En | MEDLINE | ID: mdl-37424942

Summary: Computational analysis and interpretation of metabolomic profiling data remains a major challenge in translational research. Exploring metabolic biomarkers and dysregulated metabolic pathways associated with a patient phenotype could offer new opportunities for targeted therapeutic intervention. Metabolite clustering based on structural similarity has the potential to uncover common underpinnings of biological processes. To address this need, we have developed the MetChem package. MetChem is a quick and simple tool that allows to classify metabolites in structurally related modules, thus revealing their functional information. Availabilityand implementation: MetChem is freely available from the R archive CRAN (http://cran.r-project.org). The software is distributed under the GNU General Public License (version 3 or later).

4.
Cancers (Basel) ; 15(13)2023 Jul 03.
Article En | MEDLINE | ID: mdl-37444583

Advanced prostate cancer represents the fifth leading cause of cancer death in men worldwide. Although androgen-receptor signaling is the major driver of the disease, evidence is accumulating that disease progression is supported by substantial metabolic changes. Alterations in de novo lipogenesis and fatty acid catabolism are consistently reported during prostate cancer development and progression in association with androgen-receptor signaling. Therefore, the term "lipogenic phenotype" is frequently used to describe the complex metabolic rewiring that occurs in prostate cancer. However, a new scenario has emerged in which lactate may play a major role. Alterations in oncogenes/tumor suppressors, androgen signaling, hypoxic conditions, and cells in the tumor microenvironment can promote aerobic glycolysis in prostate cancer cells and the release of lactate in the tumor microenvironment, favoring immune evasion and metastasis. As prostate cancer is composed of metabolically heterogenous cells, glycolytic prostate cancer cells or cancer-associated fibroblasts can also secrete lactate and create "symbiotic" interactions with oxidative prostate cancer cells via lactate shuttling to sustain disease progression. Here, we discuss the multifaceted role of lactate in prostate cancer progression, taking into account the influence of the systemic metabolic and gut microbiota. We call special attention to the clinical opportunities of imaging lactate accumulation for patient stratification and targeting lactate metabolism.

5.
Mol Cancer Res ; 21(3): 253-260, 2023 03 01.
Article En | MEDLINE | ID: mdl-36511902

Prostate cancer has a heterogeneous prognosis. Most previous studies have focused on the identification of prognostic biomarkers in the prostate cancer tumor. However, it is increasingly recognized that the tumor microenvironment contributes to prostate cancer aggressiveness and progression. We therefore examined whole transcriptome expression of the prostate stroma and associations with aggressive and lethal prostate cancer. We performed RNA sequencing (Illumina TruSeq Exome Capture) of 272 tumor-adjacent and 120 benign-adjacent macrodissected prostate stromal samples from 293 men with prostate cancer from the Health Professionals Follow-up Study and Physicians' Health Study. We performed differential expression analysis comparing gene expression and pathways by Gleason score and lethal outcome. We also tested a previously developed stromal gene signature of Gleason score in these datasets. Comparing high- with low-Gleason score cancers, 26 genes (P < 0.001) and 12 pathways (FDR < 0.20) were significantly differentially expressed in tumor-adjacent stroma, including pathways related to stroma composition remodeling and DNA repair, with 73 genes and 65 pathways significant in benign-adjacent stroma. Comparing lethal with nonlethal prostate cancer, 11 genes were differentially expressed in tumor-adjacent and 15 genes in benign-adjacent stroma, and pathways involved in inflammatory response were differentially enriched in both tumor and benign-adjacent stroma. In addition, our previously identified Gleason stromal gene signature was validated to be associated with Gleason score in these data. Implications: Our study uncovers stroma-specific genes and pathways that are differentially enriched with high Gleason score and lethal prostate cancer, demonstrating that the molecular investigation of the tumor microenvironment can provide additional information about prostate cancer prognosis.


Prostate , Prostatic Neoplasms , Male , Humans , Prostate/pathology , Transcriptome , Follow-Up Studies , Prostatic Neoplasms/pathology , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Neoplasm Grading , Tumor Microenvironment/genetics
6.
Nat Commun ; 13(1): 2559, 2022 05 13.
Article En | MEDLINE | ID: mdl-35562350

c-MYC (MYC) is a major driver of prostate cancer tumorigenesis and progression. Although MYC is overexpressed in both early and metastatic disease and associated with poor survival, its impact on prostate transcriptional reprogramming remains elusive. We demonstrate that MYC overexpression significantly diminishes the androgen receptor (AR) transcriptional program (the set of genes directly targeted by the AR protein) in luminal prostate cells without altering AR expression. Analyses of clinical specimens reveal that concurrent low AR and high MYC transcriptional programs accelerate prostate cancer progression toward a metastatic, castration-resistant disease. Data integration of single-cell transcriptomics together with ChIP-seq uncover an increase in RNA polymerase II (Pol II) promoter-proximal pausing at AR-dependent genes following MYC overexpression without an accompanying deactivation of AR-bound enhancers. Altogether, our findings suggest that MYC overexpression antagonizes the canonical AR transcriptional program and contributes to prostate tumor initiation and progression by disrupting transcriptional pause release at AR-regulated genes.


Prostatic Neoplasms , Receptors, Androgen , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic , Genes, myc , Humans , Male , Prostate/pathology , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins c-myc , Receptors, Androgen/genetics , Receptors, Androgen/metabolism
7.
Front Oncol ; 11: 719865, 2021.
Article En | MEDLINE | ID: mdl-34386430

Advanced prostate cancer (PCa) represents the fifth cause of cancer death worldwide. Although survival has improved with second-generation androgen signaling and Parp inhibitors, the benefits are not long-lasting, and new therapeutic approaches are sorely needed. Lipids and their metabolism have recently reached the spotlight with accumulating evidence for their role as promoters of PCa development, progression, and metastasis. As a result, interest in targeting enzymes/transporters involved in lipid metabolism is rapidly growing. Moreover, the use of lipogenic signatures to predict prognosis and resistance to therapy has been recently explored with promising results. Despite the well-known association between obesity with PCa lethality, the underlying mechanistic role of diet/obesity-derived metabolites has only lately been unveiled. Furthermore, the role of lipids as energy source, building blocks, and signaling molecules in cancer cells has now been revisited and expanded in the context of the tumor microenvironment (TME), which is heavily influenced by the external environment and nutrient availability. Here, we describe how lipids, their enzymes, transporters, and modulators can promote PCa development and progression, and we emphasize the role of lipids in shaping TME. In a therapeutic perspective, we describe the ongoing efforts in targeting lipogenic hubs. Finally, we highlight studies supporting dietary modulation in the adjuvant setting with the purpose of achieving greater efficacy of the standard of care and of synthetic lethality. PCa progression is "a matter of fats", and the more we understand about the role of lipids as key players in this process, the better we can develop approaches to counteract their tumor promoter activity while preserving their beneficial properties.

8.
Cancer Res ; 81(7): 1704-1718, 2021 04 01.
Article En | MEDLINE | ID: mdl-33547161

The androgen receptor (AR) is the key oncogenic driver of prostate cancer, and despite implementation of novel AR targeting therapies, outcomes for metastatic disease remain dismal. There is an urgent need to better understand androgen-regulated cellular processes to more effectively target the AR dependence of prostate cancer cells through new therapeutic vulnerabilities. Transcriptomic studies have consistently identified lipid metabolism as a hallmark of enhanced AR signaling in prostate cancer, yet the relationship between AR and the lipidome remains undefined. Using mass spectrometry-based lipidomics, this study reveals increased fatty acyl chain length in phospholipids from prostate cancer cells and patient-derived explants as one of the most striking androgen-regulated changes to lipid metabolism. Potent and direct AR-mediated induction of ELOVL fatty acid elongase 5 (ELOVL5), an enzyme that catalyzes fatty acid elongation, was demonstrated in prostate cancer cells, xenografts, and clinical tumors. Assessment of mRNA and protein in large-scale data sets revealed ELOVL5 as the predominant ELOVL expressed and upregulated in prostate cancer compared with nonmalignant prostate. ELOVL5 depletion markedly altered mitochondrial morphology and function, leading to excess generation of reactive oxygen species and resulting in suppression of prostate cancer cell proliferation, 3D growth, and in vivo tumor growth and metastasis. Supplementation with the monounsaturated fatty acid cis-vaccenic acid, a direct product of ELOVL5 elongation, reversed the oxidative stress and associated cell proliferation and migration effects of ELOVL5 knockdown. Collectively, these results identify lipid elongation as a protumorigenic metabolic pathway in prostate cancer that is androgen-regulated, critical for metastasis, and targetable via ELOVL5. SIGNIFICANCE: This study identifies phospholipid elongation as a new metabolic target of androgen action that is critical for prostate tumor metastasis.


Fatty Acid Elongases/antagonists & inhibitors , Prostatic Neoplasms/drug therapy , RNA, Small Interfering/therapeutic use , Animals , Cell Movement/drug effects , Cell Movement/genetics , Cell Proliferation/drug effects , Cell Proliferation/genetics , Fatty Acid Elongases/genetics , Fatty Acid Elongases/physiology , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Gene Knockdown Techniques , Humans , Lipid Metabolism/genetics , Male , Mice , Mice, Inbred NOD , Mice, SCID , Molecular Targeted Therapy/methods , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , RNA, Small Interfering/pharmacology , Receptors, Androgen/physiology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
9.
Cancer Drug Resist ; 4(1): 143-162, 2021.
Article En | MEDLINE | ID: mdl-35582011

Prostate cancer (PCa) is the second leading cause of cancer-related death in the US. Androgen receptor (AR) signaling is the driver of both PCa development and progression and, thus, the major target of current in-use therapies. However, despite the survival benefit of second-generation inhibitors of AR signaling in the metastatic setting, resistance mechanisms inevitably occur. Thus, novel strategies are required to circumvent resistance occurrence and thereby to improve PCa survival. Among the key cellular processes that are regulated by androgens, metabolic reprogramming stands out because of its intricate links with cancer cell biology. In this review, we discuss how cancer metabolism and lipid metabolism in particular are regulated by androgens and contribute to the acquisition of resistance to endocrine therapy. We describe the interplay between genetic alterations, metabolic vulnerabilities and castration resistance. Since PCa cells adapt their metabolism to excess nutrient supply to promote cancer progression, we review our current knowledge on the association between diet/obesity and resistance to anti-androgen therapies. We briefly describe the metabolic symbiosis between PCa cells and tumor microenvironment and how this crosstalk might contribute to PCa progression. We discuss how tackling PCa metabolic vulnerabilities represents a potential approach of synthetic lethality to endocrine therapies. Finally, we describe how the continuous advances in analytical technologies and metabolic imaging have led to the identification of potential new prognostic and predictive biomarkers, and non-invasive approaches to monitor therapy response.

10.
Small GTPases ; 12(4): 265-272, 2021 07.
Article En | MEDLINE | ID: mdl-33043786

Fatty acid synthase (FASN) is commonly overexpressed in prostate cancer and associated with tumour progression. FASN is responsible for de novo synthesis of the fatty acid palmitate; the building block for protein palmitoylation. A functional role for FASN in regulating cell proliferation is widely accepted. We recently reported that FASN activity can also mediate prostate cancer HGF-mediated cell motility. Moreover, we found that modulation of FASN expression specifically impacts on the palmitoylation of RhoU. Findings we will describe here. We now report that loss of FASN expression also impairs HGF-mediated cell dissociation responses. Taken together our results provide compelling evidence that FASN activity directly promotes cell migration and supports FASN as a potential therapeutic target in metastatic prostate cancer.


Biomarkers, Tumor/metabolism , Cell Movement , Fatty Acid Synthase, Type I/metabolism , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Hepatocyte Growth Factor/pharmacology , Prostatic Neoplasms/pathology , Apoptosis , Biomarkers, Tumor/genetics , Cell Proliferation , Fatty Acid Synthase, Type I/genetics , Humans , Male , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/enzymology , Tumor Cells, Cultured
11.
Mol Cancer Res ; 19(3): 475-484, 2021 03.
Article En | MEDLINE | ID: mdl-33168599

Gleason score, a measure of prostate tumor differentiation, is the strongest predictor of lethal prostate cancer at the time of diagnosis. Metabolomic profiling of tumor and of patient serum could identify biomarkers of aggressive disease and lead to the development of a less-invasive assay to perform active surveillance monitoring. Metabolomic profiling of prostate tissue and serum samples was performed. Metabolite levels and metabolite sets were compared across Gleason scores. Machine learning algorithms were trained and tuned to predict transformation or differentiation status from metabolite data. A total of 135 metabolites were significantly different (P adjusted < 0.05) in tumor versus normal tissue, and pathway analysis identified one sugar metabolism pathway (P adjusted = 0.03). Machine learning identified profiles that predicted tumor versus normal tissue (AUC of 0.82 ± 0.08). In tumor tissue, 25 metabolites were associated with Gleason score (unadjusted P < 0.05), 4 increased in high grade while the remainder were enriched in low grade. While pyroglutamine and 1,5-anhydroglucitol were correlated (0.73 and 0.72, respectively) between tissue and serum from the same patient, no metabolites were consistently associated with Gleason score in serum. Previously reported as well as novel metabolites with differing abundance were identified across tumor tissue. However, a "metabolite signature" for Gleason score was not obtained. This may be due to study design and analytic challenges that future studies should consider. IMPLICATIONS: Metabolic profiling can distinguish benign and neoplastic tissues. A novel unsupervised machine learning method can be utilized to achieve this distinction.


Machine Learning/standards , Metabolomics/methods , Prostatic Neoplasms/genetics , Female , Humans , Male , Neoplasm Grading
12.
J Pathol ; 253(3): 292-303, 2021 03.
Article En | MEDLINE | ID: mdl-33166087

Loss of the tumor suppressor gene Pten in murine prostate recapitulates human carcinogenesis and causes stromal proliferation surrounding murine prostate intraepithelial neoplasia (mPIN), which is reactive to microinvasion. In turn, invasion has been shown to be regulated in part by de novo fatty acid synthesis in prostate cancer. We therefore investigated the effects of genetic ablation of Fasn on invasive potential in prostate-specific Pten knockout mice. Combined genetic ablation of Fasn and Pten reduced the weight and volume of all the prostate lobes when compared to single knockouts. The stromal reaction to microinvasion and the cell proliferation that typically occurs in Pten knockout were largely abolished by Fasn knockout. To verify that Fasn knockout indeed results in decreased invasive potential, we show that genetic ablation and pharmacologic inhibition of FASN in prostate cancer cells significantly inhibit cellular motility and invasion. Finally, combined loss of PTEN with FASN overexpression was associated with lethality as assessed in 660 prostate cancer patients with 14.2 years of median follow-up. Taken together, these findings show that de novo lipogenesis contributes to the aggressive phenotype induced by Pten loss in murine prostate and targeting Fasn may reduce the invasive potential of prostate cancer driven by Pten loss. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Fatty Acid Synthase, Type I/genetics , PTEN Phosphohydrolase/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Adult , Aged , Aged, 80 and over , Animals , Cell Movement/genetics , Fatty Acid Synthase, Type I/metabolism , Humans , Lipogenesis/physiology , Male , Mice , Mice, Knockout , Middle Aged , Neoplasm Invasiveness/genetics , Prostatic Neoplasms/pathology
13.
Oncogene ; 39(18): 3666-3679, 2020 04.
Article En | MEDLINE | ID: mdl-32139877

Fatty acid synthase (FASN) is commonly overexpressed in prostate cancer and associated with tumour progression. FASN is responsible for de novo synthesis of the fatty acid palmitate; the building block for protein palmitoylation. Recent work has suggested that alongside its established role in promoting cell proliferation FASN may also promote invasion. We now find depletion of FASN expression increases prostate cancer cell adhesiveness, impairs HGF-mediated cell migration and reduces 3D invasion. These changes in motility suggest that FASN can mediate actin cytoskeletal remodelling; a process known to be downstream of Rho family GTPases. Here, we demonstrate that modulation of FASN expression specifically impacts on the palmitoylation of the atypical GTPase RhoU. Impaired RhoU activity in FASN depleted cells leads to reduced adhesion turnover downstream of paxillin serine phosphorylation, which is rescued by addition of exogenous palmitate. Moreover, canonical Cdc42 expression is dependent on the palmitoylation status of RhoU. Thus we uncover a novel relationship between FASN, RhoU and Cdc42 that directly influences cell migration potential. These results provide compelling evidence that FASN activity directly promotes cell migration and supports FASN as a potential therapeutic target in metastatic prostate cancer.


Fatty Acid Synthase, Type I/genetics , Lipogenesis/genetics , Prostatic Neoplasms/genetics , cdc42 GTP-Binding Protein/genetics , rho GTP-Binding Proteins/genetics , Cell Adhesion/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Male , Phosphorylation/genetics , Prostate/metabolism , Prostate/pathology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Signal Transduction/genetics
14.
Nat Commun ; 10(1): 4358, 2019 09 25.
Article En | MEDLINE | ID: mdl-31554818

Systemic metabolic alterations associated with increased consumption of saturated fat and obesity are linked with increased risk of prostate cancer progression and mortality, but the molecular underpinnings of this association are poorly understood. Here, we demonstrate in a murine prostate cancer model, that high-fat diet (HFD) enhances the MYC transcriptional program through metabolic alterations that favour histone H4K20 hypomethylation at the promoter regions of MYC regulated genes, leading to increased cellular proliferation and tumour burden. Saturated fat intake (SFI) is also associated with an enhanced MYC transcriptional signature in prostate cancer patients. The SFI-induced MYC signature independently predicts prostate cancer progression and death. Finally, switching from a high-fat to a low-fat diet, attenuates the MYC transcriptional program in mice. Our findings suggest that in primary prostate cancer, dietary SFI contributes to tumour progression by mimicking MYC over expression, setting the stage for therapeutic approaches involving changes to the diet.


Diet, High-Fat/adverse effects , Gene Expression Regulation, Neoplastic/drug effects , Metabolome/drug effects , Prostatic Neoplasms/genetics , Proto-Oncogene Proteins c-myc/genetics , Aged , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Disease Progression , Humans , Male , Mice, Transgenic , Middle Aged , Prostatic Neoplasms/etiology , Prostatic Neoplasms/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Tumor Burden/drug effects , Tumor Burden/genetics
15.
Mol Cell Oncol ; 6(3): 1595308, 2019.
Article En | MEDLINE | ID: mdl-31131311

Reprogrammed lipid metabolism and persistent androgen receptor signaling commonly mark aggressive prostate cancer. We describe that targeting de-novo lipogenesis deprives prostate cancer cells of substrates and fuel, while inhibiting androgen receptor signaling. Our study uncovers the interplay between lipogenesis and androgen receptor and proposes novel combinatorial therapeutic approaches.

16.
Mol Cancer Res ; 17(5): 1155-1165, 2019 05.
Article En | MEDLINE | ID: mdl-30745465

Diagnosis of prostate cancer is based on histologic evaluation of tumor architecture using a system known as the "Gleason score." This diagnostic paradigm, while the standard of care, is time-consuming, shows intraobserver variability, and provides no information about the altered metabolic pathways, which result in altered tissue architecture. Characterization of the molecular composition of prostate cancer and how it changes with respect to the Gleason score (GS) could enable a more objective and faster diagnosis. It may also aid in our understanding of disease onset and progression. In this work, we present mass spectrometry imaging for identification and mapping of lipids and metabolites in prostate tissue from patients with known prostate cancer with GS from 6 to 9. A gradient of changes in the intensity of various lipids was observed, which correlated with increasing GS. Interestingly, these changes were identified in both regions of high tumor cell density, and in regions of tissue that appeared histologically benign, possibly suggestive of precancerous metabolomic changes. A total of 31 lipids, including several phosphatidylcholines, phosphatidic acids, phosphatidylserines, phosphatidylinositols, and cardiolipins were detected with higher intensity in GS (4+3) compared with GS (3+4), suggesting they may be markers of prostate cancer aggression. Results obtained through mass spectrometry imaging studies were subsequently correlated with a fast, ambient mass spectrometry method for potential use as a clinical tool to support image-guided prostate biopsy. IMPLICATIONS: In this study, we suggest that metabolomic differences between prostate cancers with different Gleason scores can be detected by mass spectrometry imaging.


Biomarkers, Tumor/metabolism , Metabolomics/methods , Prostatic Neoplasms/pathology , Disease Progression , Humans , Image-Guided Biopsy , Lipidomics/methods , Male , Mass Spectrometry , Neoplasm Grading , Prostatectomy , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/surgery
17.
Mol Cancer Res ; 17(2): 446-456, 2019 02.
Article En | MEDLINE | ID: mdl-30333152

Among prostate cancers containing Gleason pattern 4, cribriform morphology is associated with unfavorable clinicopathologic factors, but its genetic features and association with long-term outcomes are incompletely understood. In this study, genetic, transcriptional, and epigenetic features of invasive cribriform carcinoma (ICC) tumors were compared with non-cribriform Gleason 4 (NC4) in The Cancer Genome Atlas (TCGA) cohort. ICC (n = 164) had distinctive molecular features when compared with NC4 (n = 102). These include: (i) increased somatic copy number variations (SCNV), specifically deletions at 6q, 8p and 10q, which encompassed PTEN and MAP3K7 losses and gains at 3q; (ii) increased SPOP mut and ATMmut ; (iii) enrichment for mTORC1 and MYC pathways by gene expression; and (iv) increased methylation of selected genes. In addition, when compared with the metastatic prostate cancer, ICC clustered more closely to metastatic prostate cancer than NC4. Validation in clinical cohorts and genomically annotated murine models confirmed the association with SPOPmut (n = 38) and PTENloss (n = 818). The association of ICC with lethal disease was evaluated in the Health Professionals Follow-up Study (HPFS) and Physicians' Health Study (PHS) prospective prostate cancer cohorts (median follow-up, 13.4 years; n = 818). Patients with ICC were more likely to develop lethal cancer [HR, 1.62; 95% confidence interval (CI), 1.05-2.49], independent from Gleason score (GS). IMPLICATIONS: ICC has a distinct molecular phenotype that resembles metastatic prostate cancer and is associated with progression to lethal disease.


Adenocarcinoma/genetics , Epigenomics/methods , Prostatic Neoplasms/genetics , Adenocarcinoma/pathology , Animals , Humans , Male , Mice , Prostatic Neoplasms/pathology
18.
Proc Natl Acad Sci U S A ; 116(2): 631-640, 2019 01 08.
Article En | MEDLINE | ID: mdl-30578319

A hallmark of prostate cancer progression is dysregulation of lipid metabolism via overexpression of fatty acid synthase (FASN), a key enzyme in de novo fatty acid synthesis. Metastatic castration-resistant prostate cancer (mCRPC) develops resistance to inhibitors of androgen receptor (AR) signaling through a variety of mechanisms, including the emergence of the constitutively active AR variant V7 (AR-V7). Here, we developed an FASN inhibitor (IPI-9119) and demonstrated that selective FASN inhibition antagonizes CRPC growth through metabolic reprogramming and results in reduced protein expression and transcriptional activity of both full-length AR (AR-FL) and AR-V7. Activation of the reticulum endoplasmic stress response resulting in reduced protein synthesis was involved in IPI-9119-mediated inhibition of the AR pathway. In vivo, IPI-9119 reduced growth of AR-V7-driven CRPC xenografts and human mCRPC-derived organoids and enhanced the efficacy of enzalutamide in CRPC cells. In human mCRPC, both FASN and AR-FL were detected in 87% of metastases. AR-V7 was found in 39% of bone metastases and consistently coexpressed with FASN. In patients treated with enzalutamide and/or abiraterone FASN/AR-V7 double-positive metastases were found in 77% of cases. These findings provide a compelling rationale for the use of FASN inhibitors in mCRPCs, including those overexpressing AR-V7.


Lipogenesis , Neoplasm Proteins/metabolism , Prostatic Neoplasms, Castration-Resistant/metabolism , Receptors, Androgen/metabolism , Signal Transduction , Animals , Cell Line, Tumor , Enzyme Inhibitors/pharmacology , Fatty Acid Synthase, Type I/antagonists & inhibitors , Fatty Acid Synthase, Type I/genetics , Fatty Acid Synthase, Type I/metabolism , Humans , Male , Mice , Neoplasm Metastasis , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Receptors, Androgen/genetics , Xenograft Model Antitumor Assays
19.
J Nucl Med ; 59(10): 1538-1543, 2018 10.
Article En | MEDLINE | ID: mdl-29853654

Tremendous efforts are currently dedicated to the development of novel therapies targeting the androgen receptor (AR), the major driver of prostate cancer disease and its progression to castration resistance. The ability to noninvasively interrogate AR expression over time in murine models of prostate cancer would permit longitudinal preclinical analysis of novel compounds that could not otherwise be accomplished ex vivo. Although PET imaging with 16ß-18F-fluoro-5α-dihydrotestosterone (18F-FDHT) has successfully quantified AR levels clinically, no rodent model of 18F-FDHT imaging has been reported so far. One difference between humans and rodents is the absence in the latter of the sex hormone-binding globulin (SHBG), a glycoprotein that binds to testosterone in the bloodstream, Here, we explore the role of SHBG in developing a working model of rodent AR imaging. Methods: Three human prostate cancer cell lines and xenografts (LNCaP, 22Rv1, and PC3) were used to examine the uptake of free 18F-FDHT and SHBG-bound 18F-FDHT. Both ligands were examined for stability and competitive binding to AR over time in vitro before in vivo studies. PET/CT imaging was used to dynamically measure the uptake of both tracers over 4 h, whereas specificity was determined by competitive binding with the AR antagonist enzalutamide. Results: AR levels correlated with the uptake of both 18F-FDHT and SHBG-18F-FDHT in prostate cancer cell lines. Interestingly, whereas both free and SHBG-bound 18F-FDHT had a similar cellular accumulation at 1 and 2.5 h, SHBG-18F-FDHT accumulated at significantly higher levels after 4 h-evidence that receptor-mediated uptake of SHBG accounted for later time-point differences. This observation was also seen in 22Rv1 tumor-bearing mice, in which SHBG-18F-FDHT exhibited a significantly increased uptake (average tumor-to-background ratio [TBR], 1.62 ± 0.62) in comparison to unbound 18F-FDHT (TBR, 0.81 ± 0.08) at 4 h. Furthermore, the specificity of the SHBG-18F-FDHT accumulation at 4 h was demonstrated by a reduced tumor uptake after AR blockade with enzalutamide (TBR, 1.07 ± 0.13). Conclusion: Prebinding of 18F-FDHT to SHBG allows accurate and quantitative PET imaging of AR levels in murine models of prostate cancer. This procedure may permit the use of PET imaging to study the longitudinal effects of AR-targeting therapies, accelerating novel-drug development.


Cell Transformation, Neoplastic , Dihydrotestosterone/analogs & derivatives , Fluorine Radioisotopes , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Sex Hormone-Binding Globulin/metabolism , Animals , Biological Transport , Cell Line, Tumor , Dihydrotestosterone/metabolism , Humans , Male , Mice , Positron Emission Tomography Computed Tomography , Prostatic Neoplasms/diagnostic imaging , Protein Binding
20.
Cancer Epidemiol Biomarkers Prev ; 27(2): 201-207, 2018 02.
Article En | MEDLINE | ID: mdl-29141848

Background: The proto-oncogene MYC is implicated in prostate cancer progression. Whether MYC tumor expression at the protein or mRNA level is associated with poorer prognosis has not been well studied.Methods: We conducted a cohort study including 634 men from the Physicians' Health Study and Health Professionals Follow-up Study treated with radical prostatectomy for prostate cancer in 1983-2004 and followed up for a median of 13.7 years. MYC protein expression was evaluated using IHC, and we used Cox regression to calculate HRs and 95% confidence intervals (CIs) of its association with lethal prostate cancer (distant metastases/prostate cancer-related death). We assessed the association between MYC mRNA expression and lethal prostate cancer in a case-control study, including 113 lethal cases and 291 indolent controls.Results: MYC nuclear protein expression was present in 97% of tumors. MYC protein expression was positively correlated with tumor proliferation rate (r = 0.37; P < 0.001) and negatively correlated with apoptotic count (r = -0.17; P < 0.001). There were no significant associations between MYC protein expression and stage, grade, or PSA level at diagnosis. The multivariable HR for lethal prostate cancer among men in the top versus bottom quartile of MYC protein expression was 1.09 (95% CI, 0.50-2.35). There was no significant association between MYC mRNA expression and lethal prostate cancer.Conclusions: Neither MYC protein overexpression nor MYC mRNA overexpression are strong prognostic markers in men treated with radical prostatectomy for prostate cancer.Impact: This is the largest study to examine the prognostic role of MYC protein and mRNA expression in prostate cancer. Cancer Epidemiol Biomarkers Prev; 27(2); 201-7. ©2017 AACR.


Prostatic Neoplasms/metabolism , Proto-Oncogene Proteins c-myc/metabolism , RNA, Messenger/metabolism , Adult , Aged , Biomarkers, Tumor/genetics , Follow-Up Studies , Genes, myc , Humans , Male , Middle Aged , Prospective Studies , Prostatectomy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/mortality , Prostatic Neoplasms/surgery , Proto-Oncogene Mas , Proto-Oncogene Proteins c-myc/genetics
...