Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters











Publication year range
1.
Front Transplant ; 3: 1260125, 2024.
Article in English | MEDLINE | ID: mdl-38993774

ABSTRACT

Introduction: Transplant vasculopathy (TV) is a major complication after solid organ transplantation, distinguished by an arterial intimal thickening that obstructs the vascular lumen and leads to organ rejection. To date, TV remains largely untreatable, mainly because the processes involved in its development remain unclear. Aortic transplantation in mice, used to mimic TV, relies on highly variable experimental protocols, particularly regarding the type of anastomosis used to connect the donor aorta to the recipient. While the amount of trauma undergone by a vessel can dramatically affect the resulting pathology, the impact of the type of anastomosis on TV in mice has not been investigated in detail. Methods: In this study, we compare the cellular composition of aortic grafts from BALB/C donor mice transplanted into C57BL/6J recipient mice using two different anastomosis strategies: sleeve and cuff. Results: While both models recapitulated some aspects of human TV, there were striking differences in the cellular composition of the grafts. Indeed, aortic grafts from the cuff group displayed a larger coverage of the neointimal area by vascular smooth muscle cells compared to the sleeve group. Aortic grafts from the sleeve group contained higher amounts of T cells, while the cuff group displayed larger B-cell infiltrates. Discussion: Together, these data indicate that a seemingly minor technical difference in transplant surgery protocols can largely impact the cellular composition of the graft, and thus the mechanisms underlying TV after aortic transplantation in mice.

2.
Arterioscler Thromb Vasc Biol ; 44(3): 620-634, 2024 03.
Article in English | MEDLINE | ID: mdl-38152888

ABSTRACT

BACKGROUND: The ability to respond to mechanical forces is a basic requirement for maintaining endothelial cell (ECs) homeostasis, which is continuously subjected to low shear stress (LSS) and high shear stress (HSS). In arteries, LSS and HSS have a differential impact on EC autophagy processes. However, it is still unclear whether LSS and HSS differently tune unique autophagic machinery or trigger specific autophagic responses in ECs. METHODS: Using fluid flow system to generate forces on EC and multiscale imaging analyses on ApoE-/- mice whole arteries, we studied the cellular and molecular mechanism involved in autophagic response to LSS or HSS on the endothelium. RESULTS: We found that LSS and HSS trigger autophagy activation by mobilizing specific autophagic signaling modules. Indeed, LSS-induced autophagy in endothelium was independent of the class III PI3K (phosphoinositide 3-kinase) VPS34 (vacuolar sorting protein 34) but controlled by the α isoform of class II PI3K (phosphoinositide 3-kinase class II α [PI3KCIIα]). Accordingly, reduced PI3KCIIα expression in ApoE-/- mice (ApoE-/-PI3KCIIα+/-) led to EC dysfunctions associated with increased plaque deposition in the LSS regions. Mechanistically, we revealed that PI3KCIIα inhibits mTORC1 (mammalian target of rapamycin complex 1) activation and that rapamycin treatment in ApoE-/-PI3KCIIα+/- mice specifically rescue autophagy in arterial LSS regions. Finally, we demonstrated that absence of PI3KCIIα led to decreased endothelial primary cilium biogenesis in response to LSS and that ablation of primary cilium mimics PI3KCIIα-decreased expression in EC dysfunction, suggesting that this organelle could be the mechanosensor linking PI3KCIIα and EC homeostasis. CONCLUSIONS: Our data reveal that mechanical forces variability within the arterial system determines EC autophagic response and supports a central role of PI3KCIIα/mTORC1 axis to prevent EC dysfunction in LSS regions.


Subject(s)
Atherosclerosis , Class I Phosphatidylinositol 3-Kinases , Animals , Humans , Mice , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Atherosclerosis/genetics , Atherosclerosis/prevention & control , Atherosclerosis/metabolism , Autophagy , Cells, Cultured , Human Umbilical Vein Endothelial Cells/metabolism , Mammals , Mechanistic Target of Rapamycin Complex 1/metabolism , Stress, Mechanical , Class I Phosphatidylinositol 3-Kinases/metabolism
3.
Biochem Pharmacol ; 214: 115677, 2023 08.
Article in English | MEDLINE | ID: mdl-37419371

ABSTRACT

Breast cancer is the most common cancer in women. Over the past few decades, advances in cancer detection and treatment have significantly improved survival rate of breast cancer patients. However, due to the cardiovascular toxicity of cancer treatments (chemotherapy, anti-HER2 antibodies and radiotherapy), cardiovascular diseases (CVD) have become an increasingly important cause of long-term morbidity and mortality in breast cancer survivors. Endocrine therapies are prescribed to reduce the risk of recurrence and specific death in estrogen receptor-positive (ER +) early breast cancer patients, but their impact on CVD is a matter of debate. Whereas aromatase inhibitors and luteinizing hormone-releasing hormone (LHRH) analogs inhibit estrogen synthesis, tamoxifen acts as a selective estrogen receptor modulator (SERM), opposing estrogen action in the breast but mimicking their actions in other tissues, including arteries. This review aims to summarize the main clinical and experimental studies reporting the effects of tamoxifen on CVD. In addition, we will discuss how recent findings on the mechanisms of action of these therapies may contribute to a better understanding and anticipation of CVD risk in breast cancer patients.


Subject(s)
Breast Neoplasms , Cardiovascular Diseases , Female , Humans , Tamoxifen/adverse effects , Antineoplastic Agents, Hormonal/adverse effects , Chemotherapy, Adjuvant , Estrogens , Cardiovascular Diseases/chemically induced , Cardiovascular Diseases/prevention & control , Cardiovascular Diseases/drug therapy , Arteries , Selective Estrogen Receptor Modulators/adverse effects
4.
Life (Basel) ; 13(3)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36983999

ABSTRACT

Whether in real or simulated microgravity, Humans or animals, the kinetics of cardiovascular adaptation and its regulation by the autonomic nervous system (ANS) remain controversial. In this study, we used hindlimb unloading (HU) in 10 conscious mice. Blood pressure (BP), heart rate (HR), temperature, and locomotor activity were continuously monitored with radio-telemetry, during 3 days of control, 5 days of HU, and 2 days of recovery. Six additional mice were used to assess core temperature. ANS activity was indirectly determined by analyzing both heart rate variability (HRV) and baroreflex sensitivity (BRS). Our study showed that HU induced an initial bradycardia, accompanied by an increase in vagal activity markers of HRV and BRS, together with a decrease in water intake, indicating the early adaptation to fluid redistribution. During HU, BRS was reduced; temperature and BP circadian rhythms were altered, showing a loss in day/night differences, a decrease in cycle amplitude, a drop in core body temperature, and an increase in day BP suggestive of a rise in sympathetic activity. Reloading induced resting tachycardia and a decrease in BP, vagal activity, and BRS. In addition to cardiovascular deconditioning, HU induces disruption in day/night rhythmicity of locomotor activity, temperature, and BP.

5.
JCI Insight ; 8(5)2023 02 02.
Article in English | MEDLINE | ID: mdl-36729672

ABSTRACT

The main estrogen, 17ß-estradiol (E2), exerts several beneficial vascular actions through estrogen receptor α (ERα) in endothelial cells. However, the impact of other natural estrogens such as estriol (E3) and estetrol (E4) on arteries remains poorly described. In the present study, we report the effects of E3 and E4 on endothelial healing after carotid artery injuries in vivo. After endovascular injury, which preserves smooth muscle cells (SMCs), E2, E3, and E4 equally stimulated reendothelialization. By contrast, only E2 and E3 accelerated endothelial healing after perivascular injury that destroys both endothelial cells and SMCs, suggesting an important role of this latter cell type in E4's action, which was confirmed using Cre/lox mice inactivating ERα in SMCs. In addition, E4 mediated its effects independently of ERα membrane-initiated signaling, in contrast with E2. Consistently, RNA sequencing analysis revealed that transcriptomic and cellular signatures in response to E4 profoundly differed from those of E2. Thus, whereas acceleration of endothelial healing by estrogens had been viewed as entirely dependent on endothelial ERα, these results highlight the very specific pharmacological profile of the natural estrogen E4, revealing the importance of dialogue between SMCs and endothelial cells in its arterial protection.


Subject(s)
Endothelial Cells , Estrogens , Animals , Mice , Estrogens/pharmacology , Estrogen Receptor alpha/genetics , Estradiol/pharmacology , Arteries
6.
Elife ; 102021 11 29.
Article in English | MEDLINE | ID: mdl-34842136

ABSTRACT

Estrogen receptor alpha (ERα) activation by estrogens prevents atheroma through its nuclear action, whereas plasma membrane-located ERα accelerates endothelial healing. The genetic deficiency of ERα was associated with a reduction in flow-mediated dilation (FMD) in one man. Here, we evaluated ex vivo the role of ERα on FMD of resistance arteries. FMD, but not agonist (acetylcholine, insulin)-mediated dilation, was reduced in male and female mice lacking ERα (Esr1-/- mice) compared to wild-type mice and was not dependent on the presence of estrogens. In C451A-ERα mice lacking membrane ERα, not in mice lacking AF2-dependent nuclear ERα actions, FMD was reduced, and restored by antioxidant treatments. Compared to wild-type mice, isolated perfused kidneys of C451A-ERα mice revealed a decreased flow-mediated nitrate production and an increased H2O2 production. Thus, endothelial membrane ERα promotes NO bioavailability through inhibition of oxidative stress and thereby participates in FMD in a ligand-independent manner.


Subject(s)
Blood Circulation , Estrogen Receptor alpha/genetics , Hydrogen Peroxide/metabolism , Animals , Estrogen Receptor alpha/metabolism , Female , Ligands , Male , Mice
7.
Atherosclerosis ; 338: 30-38, 2021 12.
Article in English | MEDLINE | ID: mdl-34785429

ABSTRACT

Endothelial barrier integrity is required for maintaining vascular homeostasis and fluid balance between the circulation and surrounding tissues. In contrast, abnormalities of endothelial cell function and loss of the integrity of the endothelial monolayer constitute a key step in the onset of atherosclerosis. Endothelial erosion is directly responsible for thrombus formation and cardiovascular events in about one-third of the cases of acute coronary syndromes. Thus, after endothelial injury, the vascular repair process is crucial to restore endothelial junctions and rehabilitate a semipermeable barrier, preventing the development of vascular diseases. Endothelial healing can be modulated by several factors. In particular, 17ß-estradiol (E2), the main estrogen, improves endothelial healing, reduces neointimal accumulation of smooth muscle cells and atherosclerosis in several animal models. The aim of this review is to highlight how various experimental models enabled the progress in the cellular and molecular mechanisms underlying the accelerative E2 effect on arterial endothelial healing through the estrogen receptor (ER) α, the main receptor mediating the physiological effects of estrogens. We first summarize the different experimental procedures used to reproduce vascular injury. We then provide an overview of how the combination of transgenic mouse models impacting ERα signalling with pharmacological tools demonstrated the pivotal role of non-genomic actions of ERα in E2-induced endothelial repair. Finally, we describe recent advances in the action of selective estrogen receptor modulators (SERMs) on this beneficial vascular effect, which surprisingly involves different cell types and activates different ERα subfunctions compared to E2.


Subject(s)
Atherosclerosis , Estrogens , Animals , Endothelium, Vascular , Estradiol , Mice , Models, Animal
8.
Front Aging ; 2: 727380, 2021.
Article in English | MEDLINE | ID: mdl-35821994

ABSTRACT

Cardiovascular diseases remain an age-related pathology in both men and women. These pathologies are 3-fold more frequent in men than in women before menopause, although this difference progressively decreases after menopause. The vasculoprotective role of estrogens are well established before menopause, but the consequences of their abrupt decline on the cardiovascular risk at menopause remain debated. In this review, we will attempt to summarize the main clinical and experimental studies reporting the protective effects of estrogens against cardiovascular diseases, with a particular focus on atherosclerosis, and the impact of aging and estrogen deprivation on their endothelial actions. The arterial actions of estrogens, but also part of that of androgens through their aromatization into estrogens, are mediated by the estrogen receptor (ER)α and ERß. ERs belong to the nuclear receptor family and act by transcriptional regulation in the nucleus, but also exert non-genomic/extranuclear actions. Beside the decline of estrogens at menopause, abnormalities in the expression and/or function of ERs in the tissues, and particularly in arteries, could contribute to the failure of classic estrogens to protect arteries during aging. Finally, we will discuss how recent insights in the mechanisms of action of ERα could contribute to optimize the hormonal treatment of the menopause.

9.
Am J Physiol Endocrinol Metab ; 320(1): E19-E29, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33135461

ABSTRACT

Estetrol (E4), a natural estrogen synthesized by the human fetal liver, is currently evaluated in phase III clinical studies as a new menopause hormone therapy. Indeed, E4 significantly improves vasomotor and genito-urinary menopausal symptoms and prevents bone demineralization. Compared with other estrogens, E4 was found to have limited effects on coagulation factors in the liver of women allowing to expect less thrombotic events. To fully delineate its clinical potential, the aim of this study was to assess the effect of E4 on metabolic disorders. Here, we studied the pathophysiological consequences of a Western diet (42% kcal fat, 0.2% cholesterol) in ovariectomized female mice under chronic E4 treatment. We showed that E4 reduces body weight gain and improves glucose tolerance in both C57Bl/6 and LDLR-/- mice. To evaluate the role of hepatic estrogen receptor (ER) α in the preventive effect of E4 against obesity and associated disorders such as atherosclerosis and steatosis, mice harboring a hepatocyte-specific ERα deletion (LERKO) were crossed with LDLR-/- mice. Our results demonstrated that, whereas liver ERα is dispensable for the E4 beneficial actions on obesity and atheroma, it is necessary to prevent steatosis in mice. Overall, these findings suggest that E4 could prevent metabolic, hepatic, and vascular disorders occurring at menopause, extending the potential medical interest of this natural estrogen as a new hormonal treatment.NEW & NOTEWORTHY Estetrol prevents obesity, steatosis, and atherosclerosis in mice fed a Western diet. Hepatic ERα is necessary for the prevention of steatosis, but not of obesity and atherosclerosis.


Subject(s)
Diet, Western/adverse effects , Estetrol/therapeutic use , Estrogen Receptor alpha/genetics , Liver/metabolism , Obesity/prevention & control , Plaque, Atherosclerotic/prevention & control , Adipose Tissue/pathology , Animals , Estetrol/administration & dosage , Female , Glucose Tolerance Test , Hepatocytes/metabolism , Lipids/blood , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/pathology , Ovariectomy , Plaque, Atherosclerotic/pathology , Receptors, LDL/genetics
10.
Circ Res ; 127(12): 1473-1487, 2020 12 04.
Article in English | MEDLINE | ID: mdl-33012251

ABSTRACT

RATIONALE: Tamoxifen prevents the recurrence of breast cancer and is also beneficial against bone demineralization and arterial diseases. It acts as an ER (estrogen receptor) α antagonist in ER-positive breast cancers, whereas it mimics the protective action of 17ß-estradiol in other tissues such as arteries. However, the mechanisms of these tissue-specific actions remain unclear. OBJECTIVE: Here, we tested whether tamoxifen is able to accelerate endothelial healing and analyzed the underlying mechanisms. METHODS AND RESULTS: Using 3 complementary mouse models of carotid artery injury, we demonstrated that both tamoxifen and estradiol accelerated endothelial healing, but only tamoxifen required the presence of the underlying medial smooth muscle cells. Chronic treatment with 17ß-estradiol and tamoxifen elicited differential gene expression profiles in the carotid artery. The use of transgenic mouse models targeting either whole ERα in a cell-specific manner or ERα subfunctions (membrane/extranuclear versus genomic/transcriptional) demonstrated that 17ß-estradiol-induced acceleration of endothelial healing is mediated by membrane ERα in endothelial cells, while the effect of tamoxifen is mediated by the nuclear actions of ERα in smooth muscle cells. CONCLUSIONS: Whereas tamoxifen acts as an antiestrogen and ERα antagonist in breast cancer but also on the membrane ERα of endothelial cells, it accelerates endothelial healing through activation of nuclear ERα in smooth muscle cells, inviting to revisit the mechanisms of action of selective modulation of ERα.


Subject(s)
Carotid Artery Injuries/drug therapy , Endothelial Cells/drug effects , Estrogen Receptor alpha/drug effects , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , Selective Estrogen Receptor Modulators/pharmacology , Tamoxifen/pharmacology , Wound Healing/drug effects , Animals , Carotid Arteries/drug effects , Carotid Arteries/metabolism , Carotid Arteries/pathology , Carotid Artery Injuries/metabolism , Carotid Artery Injuries/pathology , Disease Models, Animal , Endothelial Cells/metabolism , Endothelial Cells/pathology , Estradiol/pharmacology , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Female , Mice, Inbred C57BL , Mice, Transgenic , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Signal Transduction , Time Factors
11.
Arterioscler Thromb Vasc Biol ; 40(9): 2143-2158, 2020 09.
Article in English | MEDLINE | ID: mdl-32640903

ABSTRACT

OBJECTIVE: ERα (estrogen receptor alpha) exerts nuclear genomic actions and also rapid membrane-initiated steroid signaling. The mutation of the cysteine 451 into alanine in vivo has recently revealed the key role of this ERα palmitoylation site on some vasculoprotective actions of 17ß-estradiol (E2) and fertility. Here, we studied the in vivo role of the arginine 260 of ERα which has also been described to be involved in its E2-induced rapid signaling with PI-3K (phosphoinositide 3-kinase) as well as G protein in cultured cell lines. Approach and Results: We generated a mouse model harboring a point mutation of the murine counterpart of this arginine into alanine (R264A-ERα). In contrast to the C451A-ERα, the R264A-ERα females are fertile with standard hormonal serum levels and normal control of hypothalamus-pituitary ovarian axis. Although R264A-ERα protein abundance was normal, the well-described membrane ERα-dependent actions of estradiol, such as the rapid dilation of mesenteric arteries and the acceleration of endothelial repair of carotid, were abrogated in R264A-ERα mice. In striking contrast, E2-regulated gene expression was highly preserved in the uterus and the aorta, revealing intact nuclear/genomic actions in response to E2. Consistently, 2 recognized nuclear ERα-dependent actions of E2, namely atheroma prevention and flow-mediated arterial remodeling were totally preserved. CONCLUSIONS: These data underline the exquisite role of arginine 264 of ERα for endothelial membrane-initiated steroid signaling effects of E2 but not for nuclear/genomic actions. This provides the first model of fertile mouse with no overt endocrine abnormalities with specific loss-of-function of rapid ERα signaling in vascular functions.


Subject(s)
Carotid Artery Injuries/drug therapy , Endothelium, Vascular/drug effects , Estradiol/pharmacology , Estrogen Receptor alpha/agonists , Estrogen Replacement Therapy , Estrogens/pharmacology , Fertility/drug effects , Mesenteric Arteries/drug effects , Point Mutation , Animals , Atherosclerosis/metabolism , Atherosclerosis/pathology , Atherosclerosis/prevention & control , Carotid Artery Injuries/metabolism , Carotid Artery Injuries/pathology , Carotid Artery Injuries/physiopathology , Cell Proliferation/drug effects , Endothelium, Vascular/injuries , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Enzyme Activation , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Estrous Cycle/drug effects , Female , Male , Mesenteric Arteries/metabolism , Mesenteric Arteries/physiopathology , Mice, Inbred C57BL , Nitric Oxide Synthase Type III/metabolism , Ovariectomy , Re-Epithelialization/drug effects , Signal Transduction , Time Factors , Uterus/drug effects , Uterus/metabolism , Vascular Remodeling/drug effects , Vasodilation/drug effects
12.
Int J Mol Sci ; 21(9)2020 May 04.
Article in English | MEDLINE | ID: mdl-32375307

ABSTRACT

The lower incidence of cardiovascular diseases in pre-menopausal women compared to men is well-known documented. This protection has been largely attributed to the protective effect of estrogens, which exert many beneficial effects against arterial diseases, including vasodilatation, acceleration of healing in response to arterial injury, arterial collateral growth and atheroprotection. More recently, with the visualization of the lymphatic vessels, the impact of estrogens on lymphedema and lymphatic diseases started to be elucidated. These estrogenic effects are mediated not only by the classic nuclear/genomic actions via the specific estrogen receptor (ER) α and ß, but also by rapid extra-nuclear membrane-initiated steroid signaling (MISS). The ERs are expressed by endothelial, lymphatic and smooth muscle cells in the different vessels. In this review, we will summarize the complex vascular effects of estrogens and selective estrogen receptor modulators (SERMs) that have been described using different transgenic mouse models with selective loss of ERα function and numerous animal models of vascular and lymphatic diseases.


Subject(s)
Arteries/metabolism , Lymphatic Vessels/metabolism , Receptors, Estrogen/metabolism , Vascular Diseases/etiology , Vascular Diseases/metabolism , Animals , Arteries/pathology , Biomarkers , Disease Susceptibility , Endothelium/metabolism , Estrogen Receptor alpha/metabolism , Estrogens/metabolism , Humans , Lymphatic Vessels/pathology , Sex Factors , Vascular Diseases/pathology
13.
Hepatol Commun ; 3(7): 908-924, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31304450

ABSTRACT

Hepatocyte estrogen receptor α (ERα) was recently recognized as a relevant molecular target for nonalcoholic fatty liver disease (NAFLD) prevention. The present study defined to what extent hepatocyte ERα could be involved in preserving metabolic homeostasis in response to a full (17ß-estradiol [E2]) or selective (selective estrogen receptor modulator [SERM]) activation. Ovariectomized mice harboring a hepatocyte-specific ERα deletion (LERKO mice) and their wild-type (WT) littermates were fed a high-fat diet (HFD) and concomitantly treated with E2, tamoxifen (TAM; the most used SERM), or vehicle. As expected, both E2 and TAM prevented all HFD-induced metabolic disorders in WT mice, and their protective effects against steatosis were abolished in LERKO mice. However, while E2 still prevented obesity and glucose intolerance in LERKO mice, hepatocyte ERα deletion also abrogated TAM-mediated control of food intake as well as its beneficial actions on adiposity, insulin sensitivity, and glucose homeostasis, suggesting a whole-body protective role for liver-derived circulating factors. Moreover, unlike E2, TAM induced a rise in plasma concentration of the anorectic hepatokine growth differentiation factor 15 (Gdf15) through a transcriptional mechanism dependent on hepatocyte ERα activation. Accordingly, ERα was associated with specific binding sites in the Gdf15 regulatory region in hepatocytes from TAM-treated mice but not under E2 treatment due to specific epigenetic modifications. Finally, all the protective effects of TAM were abolished in HFD-fed GDF15-knockout mice. Conclusion: We identified the selective modulation of hepatocyte ERα as a pharmacologic strategy to induce sufficient anorectic hepatokine Gdf15 to prevent experimental obesity, type 2 diabetes, and NAFLD.

14.
J Am Heart Assoc ; 7(13)2018 06 29.
Article in English | MEDLINE | ID: mdl-29959137

ABSTRACT

BACKGROUND: Although estrogen receptor α (ERα) acts primarily as a transcription factor, it can also elicit membrane-initiated steroid signaling. Pharmacological tools and transgenic mouse models previously highlighted the key role of ERα membrane-initiated steroid signaling in 2 actions of estrogens in the endothelium: increase in NO production and acceleration of reendothelialization. METHODS AND RESULTS: Using mice with ERα mutated at cysteine 451 (ERaC451A), recognized as the key palmitoylation site required for ERα plasma membrane location, and mice with disruption of nuclear actions because of inactivation of activation function 2 (ERaAF20 = ERaAF2°), we sought to fully characterize the respective roles of nuclear versus membrane-initiated steroid signaling in the arterial protection conferred by ERα. ERaC451A mice were fully responsive to estrogens to prevent atheroma and angiotensin II-induced hypertension as well as to allow flow-mediated arteriolar remodeling. By contrast, ERαAF20 mice were unresponsive to estrogens for these beneficial vascular effects. Accordingly, selective activation of nuclear ERα with estetrol was able to prevent hypertension and to restore flow-mediated arteriolar remodeling. CONCLUSIONS: Altogether, these results reveal an unexpected prominent role of nuclear ERα in the vasculoprotective action of estrogens with major implications in medicine, particularly for selective nuclear ERα agonist, such as estetrol, which is currently under development as a new oral contraceptive and for hormone replacement therapy in menopausal women.


Subject(s)
Aortic Diseases/prevention & control , Arteries/metabolism , Atherosclerosis/prevention & control , Cell Membrane/metabolism , Cell Nucleus/metabolism , Estrogen Receptor alpha/metabolism , Hypertension/prevention & control , Animals , Aortic Diseases/genetics , Aortic Diseases/metabolism , Aortic Diseases/pathology , Arteries/drug effects , Arteries/pathology , Arteries/physiopathology , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Blood Pressure , Cell Membrane/drug effects , Cell Nucleus/drug effects , Disease Models, Animal , Estetrol/pharmacology , Estradiol/pharmacology , Estrogen Receptor alpha/agonists , Estrogen Receptor alpha/genetics , Estrogens/pharmacology , Female , Hypertension/genetics , Hypertension/metabolism , Hypertension/physiopathology , Mice, Inbred C57BL , Mice, Knockout , Plaque, Atherosclerotic , Receptors, LDL/genetics , Receptors, LDL/metabolism , Signal Transduction , Vascular Remodeling
SELECTION OF CITATIONS
SEARCH DETAIL