Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39149836

ABSTRACT

Chromium and arsenic are two of the most problematic water pollutants due to their high toxicity and prevalence in various water streams. While adsorption and ion-exchange processes have been applied for the efficient removal of numerous toxic contaminants, including heavy metals, from water, these technologies display relatively low overall performances and stabilities for the remediation of chromium and arsenic oxyanions. This work presents the use of polyol-functionalized porous aromatic framework (PAF) adsorbent materials that use chelation, ion-exchange, redox activity, and hydrogen-bonding interactions for the highly selective capture of chromium and arsenic from water. The chromium and arsenic binding mechanisms within these materials are probed using an array of characterization techniques, including X-ray absorption and X-ray photoelectron spectroscopies. Adsorption studies reveal that the functionalized porous aromatic frameworks (PAFs) achieve selective, near-instantaneous (reaching equilibrium capacity within 10 s), and high-capacity (2.5 mmol/g) binding performances owing to their targeted chemistries, high porosities, and high functional group loadings. Cycling tests further demonstrate that the top-performing PAF material can be recycled using mild acid and base washes without any measurable performance loss over at least ten adsorption-desorption cycles. Finally, we establish chemical design principles enabling the selective removal of chromium, arsenic, and boron from water. To achieve this, we show that PAFs appended with analogous binding groups exhibit differences in adsorption behavior, revealing the importance of binding group length and chemical identity.

2.
Opt Express ; 28(19): 28226-28233, 2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32988098

ABSTRACT

Refractometry is a ubiquitous technique for process control and substance identification in the chemical and biomedical fields. Herein, we present an all-dielectric, wafer-scalable, and compact Fabry-Pérot microcavity (FPMC) device for refractive index (RI) sensing. The FPMC consists of a highly porous SiO2 microcavity capped with a thin, quasi-periodically patterned TiO2 hole array partial reflector that enables rapid, nanoliter-scale analyte transport to and from the sensor. Liquid (alcohols) or condensed-vapor (water from human breath) infiltration resulted in spectral redshifts up to 100 nm, highly apparent visible color change, rapid recovery (< 20 s), and RI sensitivity of up to 680 nm/RIU. The sensor can also be used in spectral or single-wavelength detection modes. Effective-medium and finite-difference time-domain optical simulations identified that Fano-resonant scattering modes induced by the quasi-periodic TiO2 outcoupling layer effectively filter higher-order Fabry-Pérot cavity modes and thereby confer an easily identifiable red-to-green color transition during analyte infiltration.

SELECTION OF CITATIONS
SEARCH DETAIL