Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 4883, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849395

ABSTRACT

The human methyltransferase and transcriptional coactivator MLL4 and its paralog MLL3 are frequently mutated in cancer. MLL4 and MLL3 monomethylate histone H3K4 and contain a set of uncharacterized PHD fingers. Here, we report a novel function of the PHD2 and PHD3 (PHD2/3) fingers of MLL4 and MLL3 that bind to ASXL2, a component of the Polycomb repressive H2AK119 deubiquitinase (PR-DUB) complex. The structure of MLL4 PHD2/3 in complex with the MLL-binding helix (MBH) of ASXL2 and mutational analyses reveal the molecular mechanism which is conserved in homologous ASXL1 and ASXL3. The native interaction of the Trithorax MLL3/4 complexes with the PR-DUB complex in vivo depends solely on MBH of ASXL1/2, coupling the two histone modifying activities. ChIP-seq analysis in embryonic stem cells demonstrates that MBH of ASXL1/2 is required for the deubiquitinase BAP1 recruitment to MLL4-bound active enhancers. Our findings suggest an ASXL1/2-dependent functional link between the MLL3/4 and PR-DUB complexes.


Subject(s)
DNA-Binding Proteins , Histone-Lysine N-Methyltransferase , Protein Binding , Repressor Proteins , Tumor Suppressor Proteins , Ubiquitin Thiolesterase , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Humans , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Repressor Proteins/metabolism , Repressor Proteins/genetics , Animals , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Mice , Enhancer Elements, Genetic , HEK293 Cells , PHD Zinc Fingers , Histones/metabolism
2.
Structure ; 32(6): 706-714.e3, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38579707

ABSTRACT

Human mixed lineage leukemia 4 (MLL4), also known as KMT2D, regulates cell type specific transcriptional programs through enhancer activation. Along with the catalytic methyltransferase domain, MLL4 contains seven less characterized plant homeodomain (PHD) fingers. Here, we report that the sixth PHD finger of MLL4 (MLL4PHD6) binds to the hydrophobic motif of ten-eleven translocation 3 (TET3), a dioxygenase that converts methylated cytosine into oxidized derivatives. The solution NMR structure of the TET3-MLL4PHD6 complex and binding assays show that, like histone H4 tail, TET3 occupies the hydrophobic site of MLL4PHD6, and that this interaction is conserved in the seventh PHD finger of homologous MLL3 (MLL3PHD7). Analysis of genomic localization of endogenous MLL4 and ectopically expressed TET3 in mouse embryonic stem cells reveals a high degree overlap on active enhancers and suggests a potential functional relationship of MLL4 and TET3.


Subject(s)
DNA-Binding Proteins , Dioxygenases , Histone-Lysine N-Methyltransferase , Protein Binding , Humans , Dioxygenases/metabolism , Dioxygenases/chemistry , Dioxygenases/genetics , Animals , Mice , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/chemistry , Histone-Lysine N-Methyltransferase/genetics , Binding Sites , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/chemistry , Proto-Oncogene Proteins/genetics , Models, Molecular , Myeloid-Lymphoid Leukemia Protein/metabolism , Myeloid-Lymphoid Leukemia Protein/chemistry , Myeloid-Lymphoid Leukemia Protein/genetics
3.
J Mol Biol ; 436(7): 168212, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-37481158

ABSTRACT

The human methyltransferase MLL4 plays a critical role in embryogenesis and development, and aberrant activity of MLL4 is linked to neurodegenerative and developmental disorders and cancer. MLL4 contains the catalytic SET domain that catalyzes mono methylation of lysine 4 of histone H3 (H3K4me1) and seven plant homeodomain (PHD) fingers, six of which have not been structurally and functionally characterized. Here, we demonstrate that the triple PHD finger cassette of MLL4, harboring its fourth, fifth and sixth PHD fingers (MLL4PHD456) forms an integrated module, maintains the binding selectivity of the PHD6 finger toward acetylated lysine 16 of histone H4 (H4K16ac), and is capable of binding to DNA. Our findings highlight functional correlation between H4K16ac and H3K4me1, two major histone modifications that are recognized and written, respectively, by MLL4.


Subject(s)
Histone-Lysine N-Methyltransferase , Histones , PHD Zinc Fingers , Humans , Histone-Lysine N-Methyltransferase/chemistry , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Lysine/metabolism , Protein Binding
4.
J Am Chem Soc ; 145(46): 25478-25485, 2023 11 22.
Article in English | MEDLINE | ID: mdl-37943892

ABSTRACT

The fundamental repeat unit of chromatin, the nucleosome, consists of approximately 147 base pairs of double-stranded DNA and a histone protein octamer containing two copies each of histones H2A, H2B, H3, and H4. Each histone possesses a dynamically disordered N-terminal tail domain, and it is well-established that the tails of histones H3 and H4 play key roles in chromatin compaction and regulation. Here we investigate the conformational ensemble and interactions of the H4 tail in nucleosomes by means of solution NMR measurements of paramagnetic relaxation enhancements (PREs) in recombinant samples reconstituted with 15N-enriched H4 and nitroxide spin-label tagged H3. The experimental PREs, which report on the proximities of individual H4 tail residues to the different H3 spin-label sites, are interpreted by using microsecond time-scale molecular dynamics simulations of the nucleosome core particle. Collectively, these data enable improved localization of histone H4 tails in nucleosomes and support the notion that H4 tails engage in a fuzzy complex interaction with nucleosomal DNA.


Subject(s)
Histones , Nucleosomes , Histones/chemistry , Chromatin , DNA/chemistry , Nucleic Acid Conformation , Magnetic Resonance Spectroscopy
5.
Biochim Biophys Acta Gene Regul Mech ; 1865(7): 194859, 2022 10.
Article in English | MEDLINE | ID: mdl-35985635

ABSTRACT

Viruses use diverse tactics to hijack host cellular machineries to evade innate immune responses and maintain their life cycles. Being critical transcriptional regulators, human BET proteins are prominent targets of a growing number of viruses. The BET proteins associate with chromatin through the interaction of their bromodomains with acetylated histones, whereas the carboxy-terminal domains of these proteins contain docking sites for various human co-transcriptional regulators. The same docking sites however can be occupied by viral proteins that exploit the BET proteins to anchor their genome components to chromatin in the infected host cell. In this review we highlight the pathological functions of the BET proteins upon viral infection, focusing on the mechanisms underlying their direct interactions with viral proteins, such as the envelope protein from SARS-CoV-2.


Subject(s)
COVID-19 , Histones , Chromatin , Histones/metabolism , Humans , Nuclear Proteins/metabolism , SARS-CoV-2 , Transcription Factors/metabolism , Viral Proteins/genetics
6.
Structure ; 30(9): 1224-1232.e5, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35716662

ABSTRACT

Emerging new variants of SARS-CoV-2 and inevitable acquired drug resistance call for the continued search of new pharmacological targets to fight the potentially fatal infection. Here, we describe the mechanisms by which the E protein of SARS-CoV-2 hijacks the human transcriptional regulator BRD4. We found that SARS-CoV-2 E is acetylated in vivo and co-immunoprecipitates with BRD4 in human cells. Bromodomains (BDs) of BRD4 bind to the C-terminus of the E protein, acetylated by human acetyltransferase p300, whereas the ET domain of BRD4 recognizes the unmodified motif of the E protein. Inhibitors of BRD4 BDs, JQ1 or OTX015, decrease SARS-CoV-2 infectivity in lung bronchial epithelial cells, indicating that the acetyllysine binding function of BDs is necessary for the virus fitness and that BRD4 represents a potential anti-COVID-19 target. Our findings provide insight into molecular mechanisms that contribute to SARS-CoV-2 pathogenesis and shed light on a new strategy to block SARS-CoV-2 infection.


Subject(s)
COVID-19 , Cell Cycle Proteins/metabolism , Coronavirus Envelope Proteins/metabolism , SARS-CoV-2/physiology , Transcription Factors/metabolism , COVID-19/virology , Humans , Nuclear Proteins/metabolism , Protein Binding , Protein Domains
7.
iScience ; 25(7): 104563, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35754730

ABSTRACT

p300 is a human acetyltransferase that associates with chromatin and mediates vital cellular processes. We now report the cryo-electron microscopy structures of the p300 catalytic core in complex with the nucleosome core particle (NCP). In the most resolved structure, the HAT domain and bromodomain of p300 contact nucleosomal DNA at superhelical locations 2 and 3, and the catalytic site of the HAT domain are positioned near the N-terminal tail of histone H4. Mutations of the p300-DNA interfacial residues of p300 substantially decrease binding to NCP. Three additional classes of p300-NCP complexes show different modes of the p300-NCP complex formation. Our data provide structural details critical to our understanding of the mechanism by which p300 acetylates multiple sites on the nucleosome.

8.
Front Mol Biosci ; 9: 1106588, 2022.
Article in English | MEDLINE | ID: mdl-36660422

ABSTRACT

Chromatin, a dynamic protein-DNA complex that regulates eukaryotic genome accessibility and essential functions, is composed of nucleosomes connected by linker DNA with each nucleosome consisting of DNA wrapped around an octamer of histones H2A, H2B, H3 and H4. Magic angle spinning solid-state nuclear magnetic resonance (NMR) spectroscopy can yield unique insights into histone structure and dynamics in condensed nucleosomes and nucleosome arrays representative of chromatin at physiological concentrations. Recently we used J-coupling-based solid-state NMR methods to investigate with residue-specific resolution the conformational dynamics of histone H3 N-terminal tails in 16-mer nucleosome arrays containing 15, 30 or 60 bp DNA linkers. Here, we probe the H3 core domain in the 16-mer arrays as a function of DNA linker length via dipolar coupling-based 1H-detected solid-state NMR techniques. Specifically, we established nearly complete assignments of backbone chemical shifts for H3 core residues in arrays with 15-60 bp DNA linkers reconstituted with 2H,13C,15N-labeled H3. Overall, these chemical shifts were similar irrespective of the DNA linker length indicating no major changes in H3 core conformation. Notably, however, multiple residues at the H3-nucleosomal DNA interface in arrays with 15 bp DNA linkers exhibited relatively pronounced differences in chemical shifts and line broadening compared to arrays with 30 and 60 bp linkers. These findings are consistent with increased heterogeneity in nucleosome packing and structural strain within arrays containing short DNA linkers that likely leads to side-chains of these interfacial residues experiencing alternate conformations or shifts in their rotamer populations relative to arrays with the longer DNA linkers.

9.
STAR Protoc ; 3(4): 101853, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36595918

ABSTRACT

The SARS-CoV-2 envelope (E) protein hijacks human BRD4 (bromodomain and extra-terminal domain protein 4). Here, we describe a protocol to characterize the interaction of the acetylated E protein with BRD4 in vivo. We detail steps to use NMR spectroscopy to map the binding interface and include steps to monitor the effect of BRD4 inhibitors in SARS-CoV-2-infected human lung bronchial epithelial cells. This approach could be applied to study interactions involving other viral and human proteins. For complete details on the use and execution of this protocol, please refer to Vann et al. (2022).1.


Subject(s)
COVID-19 , Nuclear Proteins , Humans , Nuclear Proteins/metabolism , SARS-CoV-2/metabolism , Cell Cycle Proteins , Transcription Factors/metabolism , Viral Proteins
10.
Nat Commun ; 12(1): 4130, 2021 07 05.
Article in English | MEDLINE | ID: mdl-34226546

ABSTRACT

Chromosomal translocations of the AF10 (or MLLT10) gene are frequently found in acute leukemias. Here, we show that the PZP domain of AF10 (AF10PZP), which is consistently impaired or deleted in leukemogenic AF10 translocations, plays a critical role in blocking malignant transformation. Incorporation of functional AF10PZP into the leukemogenic CALM-AF10 fusion prevents the transforming activity of the fusion in bone marrow-derived hematopoietic stem and progenitor cells in vitro and in vivo and abrogates CALM-AF10-mediated leukemogenesis in vivo. Crystallographic, biochemical and mutagenesis studies reveal that AF10PZP binds to the nucleosome core particle through multivalent contacts with the histone H3 tail and DNA and associates with chromatin in cells, colocalizing with active methylation marks and discriminating against the repressive H3K27me3 mark. AF10PZP promotes nuclear localization of CALM-AF10 and is required for association with chromatin. Our data indicate that the disruption of AF10PZP function in the CALM-AF10 fusion directly leads to transformation, whereas the inclusion of AF10PZP downregulates Hoxa genes and reverses cellular transformation. Our findings highlight the molecular mechanism by which AF10 targets chromatin and suggest a model for the AF10PZP-dependent CALM-AF10-mediated leukemogenesis.


Subject(s)
Acute Disease , Leukemia, Myeloid, Acute/genetics , Transcription Factors/chemistry , Transcription Factors/genetics , Transcription Factors/metabolism , Translocation, Genetic/genetics , Animals , Carcinogenesis/genetics , Cell Transformation, Neoplastic/genetics , Chromatin , HEK293 Cells , Histones/metabolism , Humans , Leukemia, Myeloid, Acute/metabolism , Methylation , Mice , Models, Molecular , Monomeric Clathrin Assembly Proteins/genetics , Monomeric Clathrin Assembly Proteins/metabolism , Nucleosomes , Protein Conformation
11.
Nat Commun ; 12(1): 4618, 2021 07 29.
Article in English | MEDLINE | ID: mdl-34326347

ABSTRACT

The transcriptional co-activator and acetyltransferase p300 is required for fundamental cellular processes, including differentiation and growth. Here, we report that p300 forms phase separated condensates in the cell nucleus. The phase separation ability of p300 is regulated by autoacetylation and relies on its catalytic core components, including the histone acetyltransferase (HAT) domain, the autoinhibition loop, and bromodomain. p300 condensates sequester chromatin components, such as histone H3 tail and DNA, and are amplified through binding of p300 to the nucleosome. The catalytic HAT activity of p300 is decreased due to occlusion of the active site in the phase separated droplets, a large portion of which co-localizes with chromatin regions enriched in H3K27me3. Our findings suggest a model in which p300 condensates can act as a storage pool of the protein with reduced HAT activity, allowing p300 to be compartmentalized and concentrated at poised or repressed chromatin regions.


Subject(s)
Cell Nucleus/metabolism , Chromatin/metabolism , E1A-Associated p300 Protein/metabolism , Histone Acetyltransferases/metabolism , Histones/metabolism , Transcription Factors/metabolism , Acetylation , Cells, Cultured , E1A-Associated p300 Protein/chemistry , Humans , Protein Domains
12.
J Phys Chem Lett ; 12(26): 6174-6181, 2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34184895

ABSTRACT

Chromatin is a supramolecular DNA-protein complex that compacts eukaryotic genomes and regulates their accessibility and functions. Dynamically disordered histone H3 N-terminal tails are among key chromatin regulatory components. Here, we used high-resolution-magic-angle-spinning NMR measurements of backbone amide 15N spin relaxation rates to investigate, with residue-specific detail, the dynamics and interactions of H3 tails in recombinant 13C,15N-enriched nucleosome arrays containing 15, 30, or 60 bp linker DNA between the nucleosome repeats. These measurements were compared to analogous data available for mononucleosomes devoid of linker DNA or containing two 20 bp DNA overhangs. The H3 tail dynamics in nucleosome arrays were found to be considerably attenuated compared with nucleosomes with or without linker DNA due to transient electrostatic interactions with the linker DNA segments and the structured chromatin environment. Remarkably, however, the H3 tail dynamics were not modulated by the specific linker DNA length within the 15-60 bp range investigated here.


Subject(s)
Chromatin/chemistry , Histones/chemistry , Chromatin/metabolism , DNA/metabolism , Histones/metabolism , Magnetic Resonance Spectroscopy , Models, Molecular , Protein Conformation , Static Electricity
13.
Angew Chem Int Ed Engl ; 60(12): 6480-6487, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33522067

ABSTRACT

The interaction of positively charged N-terminal histone tails with nucleosomal DNA plays an important role in chromatin assembly and regulation, modulating their susceptibility to post-translational modifications and recognition by chromatin-binding proteins. Here, we report residue-specific 15 N NMR relaxation rates for histone H4 tails in reconstituted nucleosomes. These data indicate that H4 tails are strongly dynamically disordered, albeit with reduced conformational flexibility compared to a free peptide with the same sequence. Remarkably, the NMR observables were successfully reproduced in a 2-µs MD trajectory of the nucleosome. This is an important step toward resolving an apparent inconsistency where prior simulations were generally at odds with experimental evidence on conformational dynamics of histone tails. Our findings indicate that histone H4 tails engage in a fuzzy interaction with nucleosomal DNA, underpinned by a variable pattern of short-lived salt bridges and hydrogen bonds, which persists at low ionic strength (0-100 mM NaCl).


Subject(s)
DNA/chemistry , Histones/chemistry , Nucleosomes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...