Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(3)2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36768474

ABSTRACT

Ca2+-triggered coelenterazine-binding protein (CBP) is a natural form of the luciferase substrate involved in the Renilla bioluminescence reaction. It is a stable complex of coelenterazine and apoprotein that, unlike coelenterazine, is soluble and stable in an aquatic environment and yields a significantly higher bioluminescent signal. This makes CBP a convenient substrate for luciferase-based in vitro assay. In search of a similar substrate form for the luciferase NanoLuc, a furimazine-apoCBP complex was prepared and verified against furimazine, coelenterazine, and CBP. Furimazine-apoCBP is relatively stable in solution and in a frozen or lyophilized state, but as distinct from CBP, its bioluminescence reaction with NanoLuc is independent of Ca2+. NanoLuc turned out to utilize all the four substrates under consideration. The pairs of CBP-NanoLuc and coelenterazine-NanoLuc generate bioluminescence with close efficiency. As for furimazine-apoCBP-NanoLuc pair, the efficiency with which it generates bioluminescence is almost twice lower than that of the furimazine-NanoLuc. The integral signal of the CBP-NanoLuc pair is only 22% lower than that of furimazine-NanoLuc. Thus, along with furimazine as the most effective NanoLuc substrate, CBP can also be recommended as a substrate for in vitro analytical application in view of its water solubility, stability, and Ca2+-triggering "character".


Subject(s)
Carrier Proteins , Luminescent Measurements , Animals , Carrier Proteins/metabolism , Luciferases/metabolism , Renilla , Calcium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL