Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
1.
Sci Adv ; 10(28): eado4262, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38985881

ABSTRACT

Little is known about iron kinetics in early infancy. We administered stable iron isotopes to pregnant women and used maternal-fetal iron transfer to enrich newborn body iron. Dilution of enriched body iron by dietary iron with natural isotopic composition was used to assess iron kinetics from birth to 6 months. In breastfed (BF, n = 8), formula-fed (FF, n = 7), or mixed feeding (MF, n = 8) infants, median (interquartile range) iron intake was 0.27, 11.19 (10.46-15.55), and 4.13 (2.33-6.95) mg/day; iron absorbed was 0.128 (0.095-0.180), 0.457 (0.374-0.617), and 0.391 (0.283-0.473) mg/day (BF versus FF, P < 0.01); and total iron gains were 0.027 (-0.002-0.055), 0.349 (0.260-0.498), and 0.276 (0.175-0.368) mg/day (BF versus FF, P < 0.001; BF versus MF, P < 0.05). Isotope dilution can quantify long-term iron absorption and describe the trajectory of iron depletion during early infancy.


Subject(s)
Breast Feeding , Infant Formula , Iron Isotopes , Iron , Humans , Female , Infant , Infant, Newborn , Iron/metabolism , Iron/analysis , Infant Formula/chemistry , Infant Formula/analysis , Male , Pregnancy , Adult
2.
Br J Haematol ; 204(5): 2057-2065, 2024 May.
Article in English | MEDLINE | ID: mdl-38302093

ABSTRACT

Increased iron loss may reduce the effectiveness of iron supplementation. The objective of this study was to determine if daily oral iron supplementation increases iron loss, measured using a stable isotope of iron (58Fe). We enrolled and dewormed 24 iron-depleted Kenyan children, 24-27 months of age, whose body iron was enriched and equilibrated with 58Fe given at least 1 year earlier. Over 3 months of supplementation (6 mg iron/kg body weight [BW]/day), mean (±SD) iron absorption was 1.10 (±0.28) mg/day. During supplementation, 0.55 (±0.36) mg iron/day was lost, equal to half of the amount of absorbed iron. Supplementation did not increase faecal haem/porphyrin or biomarkers of enterocyte damage and gut or systemic inflammation. Using individual patient data, we examined iron dose, absorption and loss among all available long-term iron isotopic studies of supplementation. Expressed in terms of body weight, daily iron loss was correlated significantly with iron absorption (Pearson's r = 0.66 [95% confidence interval 0.48-0.78]) but not with iron dose (r = 0.16 [95% CI -0.10-0.40]). The results of this study indicate that iron loss is increased with daily oral iron supplementation and may blunt the efficacy of iron supplements in children. This study was registered at ClinicalTrials.gov as NCT04721964.


Subject(s)
Dietary Supplements , Iron Isotopes , Iron , Humans , Female , Male , Child, Preschool , Kenya , Iron/metabolism , Iron/administration & dosage , Anemia, Iron-Deficiency/drug therapy , Infant
3.
Med Sci Sports Exerc ; 56(1): 118-127, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38098150

ABSTRACT

PURPOSE: We examined iron absorption and its regulation during two common scenarios experienced by endurance athletes. Our aims were to: (i) compare the effects of preexercise versus postexercise iron intake on iron absorption; and (ii) compare the impact of training at altitude (1800 m) on iron absorption preexercise. METHODS: Male runners (n = 18) completed three exercise trials over a 5-wk period, each preceded by 24 h of standardized low-iron diets. First, athletes completed two 60-min treadmill running trials at 65% V̇O2max at near sea-level (580 m). In a randomized order, preexercise and postexercise test meals labeled with 4 mg of 57Fe or 58Fe were consumed 30 min before or 30 min after exercise. Then, the same exercise trial was performed after living and training at altitude (~1800 m) for 7 d, with the labeled test meal consumed 30 min preexercise. We collected venous blood samples preexercise and postexercise for markers of iron status and regulation, and 14 d later to measure erythrocyte isotope incorporation. RESULTS: No differences in fractional iron absorption were evident when test meals were consumed preexercise (7.3% [4.4, 12.1]) or postexercise (6.2% [3.1, 12.5]) (n = 18; P = 0.058). Iron absorption preexercise was greater at altitude (18.4% [10.6, 32.0]) than at near sea-level (n = 17; P < 0.001) and hepcidin concentrations at altitude were lower at rest and 3 h postexercise compared with near sea level (P < 0.001). CONCLUSIONS: In an acute setting, preexercise and postexercise iron absorption is comparable if consumed within 30 min of exercise. Preexercise iron absorption increases 2.6-fold at altitude compared with near sea-level, likely due to the homeostatic response to provide iron for enhanced erythropoiesis and maintain iron stores.


Subject(s)
Iron , Running , Humans , Male , Iron/metabolism , Running/physiology , Exercise/physiology , Erythrocytes/metabolism , Athletes
4.
Foods ; 12(18)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37761222

ABSTRACT

Direct iodization in fish sauce, soy sauce, and seasoning sauces plays a crucial role in optimizing the iodine intake of Thailand's people. However, determining the iodine content to ensure that these sauces meet the standard of Thailand's Food and Drug Administration (FDA) is challenging. In this study, all local laboratories equipped with inductively coupled plasma-mass spectrometry (ICP-MS) and with experience in iodine analysis by any analytical method were invited to participate in a hands-on training workshop and two rounds of interlaboratory comparison. The aim was to improve laboratory performance and assess the potential for iodine monitoring for mandatory direct-iodized sauces. All target laboratories participated in this study. The hands-on training workshop harmonized the analytical method and increased the capacity of participating laboratories. Most laboratories (7/8) achieved satisfactory performance for six test samples based on interlaboratory comparison. Samples were extracted by tetramethylammonium hydroxide (TMAH), with the presence of 6% 2-propanol, 0.01% triton X-100, internal standard, and iodine determination in direct-iodized sauces by ICP-MS. The reproducibility standard deviation (SL), after the removal of outlier results for iodine content, was 7-22% iodine at a level of 0.03-4.81 mg/L. Moreover, the Thai FDA's judgment range for official control activities should expand the range of 2-3 mg per 1 L (ppm) by at least 22%.

5.
J Nutr ; 153(10): 2893-2900, 2023 10.
Article in English | MEDLINE | ID: mdl-37648112

ABSTRACT

BACKGROUND: Zinc-biofortified potatoes have considerable potential to reduce zinc deficiency because of their low levels of phytate, an inhibitor of zinc absorption, and their high consumption, especially in the Andean region of Peru. OBJECTIVES: The purpose of this study was to measure fractional and total zinc absorption from a test meal of biofortified compared with regular potatoes. METHODS: We undertook a single-blinded randomized crossover study (using 67Zn and 70Zn stable isotopes) in which 37 women consumed 500-g biofortified or regular potatoes twice a day. Urine samples were collected to determine fractional and total zinc absorption. RESULTS: The zinc content of the biofortified potato and regular potato was 0.48 (standard deviation [SD]: 0.02) and 0.32 (SD: 0.03) mg/100 g fresh weight, respectively. Mean fractional zinc absorption (FZA) from the biofortified potatoes was lower than from the regular potatoes, 20.8% (SD: 5.4%) and 25.5% (SD: 7.0%), respectively (P < 0.01). However, total zinc absorbed was significantly higher (0.49; SD: 0.13 and 0.40; SD: 0.11 mg/500 g, P < 0.01, respectively). CONCLUSIONS: The results of this study demonstrate that biofortified potatoes provide more absorbable zinc than regular potatoes. Zinc-biofortified potatoes could contribute toward reducing zinc deficiency in populations where potatoes are a staple food. This trial was registered at clinicaltrials.gov as NCT05154500.


Subject(s)
Malnutrition , Solanum tuberosum , Humans , Female , Zinc , Peru , Cross-Over Studies , Food, Fortified , Isotopes
6.
J Nutr ; 153(6): 1710-1717, 2023 06.
Article in English | MEDLINE | ID: mdl-37059395

ABSTRACT

BACKGROUND: Yellow-fleshed potatoes biofortified with iron have been developed through conventional breeding, but the bioavailability of iron is unknown. OBJECTIVES: Our objective was to measure iron absorption from an iron-biofortified yellow-fleshed potato clone in comparison with a nonbiofortified yellow-fleshed potato variety. METHODS: We conducted a single-blinded, randomized, crossover, multiple-meal intervention study. Women (n = 28; mean ± SD plasma ferritin 21.3 ± 3.3 µg/L) consumed 10 meals (460 g) of both potatoes, each meal extrinsically labeled with either 58Fe sulfate (biofortified) or 57Fe sulfate (nonfortified), on consecutive days. Iron absorption was estimated from iron isotopic composition in erythrocytes 14 d after administration of the final meal. RESULTS: Mean ± SD iron, phytic acid, and ascorbic acid concentrations in iron-biofortified and the nonfortified potato meals (mg/per 100 mg) were 0.63 ± 0.01 and 0.31 ± 0.01, 39.34 ± 3.04 and 3.10 ± 1.72, and 7.65 ± 0.34 and 3.74 ± 0.39, respectively (P < 0.01), whereas chlorogenic acid concentrations were 15.14 ± 1.72 and 22.52 ± 3.98, respectively (P < 0.05). Geometric mean (95% CI) fractional iron absorption from the iron-biofortified clone and the nonbiofortified variety were 12.1% (10.3%-14.2%) and 16.6% (14.0%-19.6%), respectively (P < 0.001). Total iron absorption from the iron-biofortified clone and the nonbiofortified variety were 0.35 mg (0.30-0.41 mg) and 0.24 mg (0.20-0.28 mg) per 460 g meal, respectively (P < 0.001). CONCLUSIONS: TIA from iron-biofortified potato meals was 45.8% higher than that from nonbiofortified potato meals, suggesting that iron biofortification of potatoes through conventional breeding is a promising approach to improve iron intake in iron-deficient women. The study was registered at www. CLINICALTRIALS: gov as Identifier number NCT05154500.


Subject(s)
Iron , Solanum tuberosum , Humans , Female , Iron Isotopes , Peru , Food, Fortified , Sulfates , Biological Availability
7.
J Nutr ; 153(3): 636-644, 2023 03.
Article in English | MEDLINE | ID: mdl-36931746

ABSTRACT

BACKGROUND: Co-extrusion of ferric pyrophosphate (FePP) with solubilizers, citric acid/trisodium citrate (CA/TSC), or ethylenediaminetetraacetic acid (EDTA) sharply increases iron absorption. Whether this can protect against the inhibition of iron absorption by phytic acid (PA) is unclear. Sodium pyrophosphate (NaPP) may be a new enhancer of iron absorption from FePP. OBJECTIVES: Our objectives were to 1) investigate the ligand coordination of iron, zinc, and solubilizers in extruded rice and test associations with iron solubility and absorption, 2) assess whether co-extrusion of FePP + CA/TSC rice can protect against inhibition of iron absorption by PA; 3) determine the effect of zinc oxide (ZnO) compared with zinc sulfate (ZnSO4), and 4) quantify iron absorption from FePP + NaPP rice. METHODS: We produced labeled 57FePP rice cofortified with ZnSO4 and EDTA, CA/TSC or NaPP, and FePP + EDTA rice with ZnO. We used electron paramagnetic resonance (EPR) to characterize iron-ligand complexes. We measured in vitro iron solubility and fractional iron absorption (FIA) in young women (n = 21, age: 22 ± 2 y, BMI: 21.3 ± 1.5 kg/m2 geometric mean plasma ferritin, 28.5 µg/L) compared with ferrous sulfate (58FeSO4). FIA was compared by linear mixed-effect model analysis. RESULTS: The addition of zinc and solubilizers created new iron coordination complexes of Fe(III) species with a weak ligand field at a high-spin state that correlated with solubility (r2 = 0.50, P = 0.02) and absorption (r2 = 0.72, P = 0.02). Phytic acid reduced FIA from FePP + CA/TSC rice by 50% (P < 0.001), to the same extent as FeSO4. FIA from FePP + EDTA + ZnO and FePP + EDTA + ZnSO4 rice did not significantly differ. Mean FIAs from FePP + EDTA + ZnSO4, FePP + CA/TSC + ZnSO4, and FePP + NaPP + ZnSO4 rice were 9% to 11% and did not significantly differ from each other or from FeSO4. CONCLUSION: Rice extrusion of FePP with solubilizers resulted in bioavailable iron coordination complexes. In the case of FePP + CA/TSC, PA exerted similar inhibition of FIA as with FeSO4. FePP + NaPP could be a further viable solubilizing agent for rice fortification. This study was registered at clinicaltrials.gov as NCT03703739.


Subject(s)
Coordination Complexes , Oryza , Zinc Oxide , Female , Humans , Young Adult , Adult , Zinc Compounds , Ferric Compounds , Biological Availability , Solubility , Edetic Acid , Phytic Acid , Ligands , Iron , Ferrous Compounds , Zinc , Food, Fortified
8.
Am J Clin Nutr ; 116(4): 1135-1145, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36100966

ABSTRACT

BACKGROUND: Edible insects have a low ecological footprint and could serve as an alternative dietary iron source. However, chitin, a major component of insects, avidly binds iron and might inhibit iron absorption. OBJECTIVES: We aimed to measure fractional iron absorption (FIA) from Tenebrio molitor-based test meals with and without dechitinization, and to assess the effect of native and low chitin T. molitor on FIA from iron-fortified maize porridge. METHODS: We measured iron absorption in young females with low iron stores (n = 21) from 1) labeled (54FeSO4) fortified maize porridge (maize alone); 2) intrinsically labeled (57Fe added during rearing) T. molitor larvae with native chitin content (NC) added to maize alone; and 3) dechitinized intrinsically labeled (57Fe) T. molitor larvae with low chitin content (LC) added to maize alone. We determined FIA using erythrocyte isotope incorporation and measured in vitro iron dialyzability from the 3 meals. RESULTS: NC and LC T. molitor had similar mean ± SD iron content (12.0 ± 0.1 mg/100 g). Geometric mean (95% CI) FIAs from the 3 test meals were 1) maize alone: 5.8% (3.2%, 10.8%); 2) maize + NC T. molitor: 5.3% (2.5%, 11.3%) and 4.1% (1.9%, 8.7%); and 3) maize + LC T. molitor: 4.6% (2.0%, 10.3%) and 4.0% (1.8%, 9.2%), for extrinsic and intrinsic labels, respectively. FIA from NC and LC T. molitor did not significantly differ, and both were lower (P < 0.005) than FIA from the labeled maize porridge in the 3 meals, which did not significantly differ. The slopes of the relations between FIA and serum ferritin in the different meals and from the intrinsic and extrinsic labels did not significantly differ. CONCLUSIONS: T. molitor biomass does not strongly affect iron absorption when added to maize porridge. Our data suggest T. molitor iron is absorbed from the common nonheme iron pool. Native T. molitor is high in iron which is moderately well absorbed, suggesting it could be a valuable dietary iron source.This trial was registered at clinicaltrials.gov as NCT04510831.


Subject(s)
Iron, Dietary , Tenebrio , Animals , Chitin/metabolism , Female , Ferritins , Flour , Humans , Iron , Iron, Dietary/metabolism , Isotopes/metabolism , Larva/metabolism , Meals , Zea mays/metabolism
9.
Am J Clin Nutr ; 116(4): 1146-1156, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36026477

ABSTRACT

BACKGROUND: Edible insects are a novel source of animal protein. Moreover, edible insects contain iron concentrations similar to meat, potentially making them a valuable iron source for human consumers. Yet, it is unknown to what extent iron from insects is absorbed in humans. OBJECTIVES: In this exploratory study, we assessed fractional iron absorption from house crickets (Acheta domesticus) consumed with refined (low-phytate, noninhibiting) or nonrefined (high-phytate, inhibiting) meals. METHODS: Intrinsically [57Fe]-labeled and control crickets were reared. Six iron-balanced experimental meals were randomly administered crossover to 20 iron-depleted females (serum ferritin <25 µg/L; 18-30 y old), in 2 time-blocks of 3 consecutive days, 2 wk apart. Three meals consisted of refined maize flour porridge with either [57Fe]-labeled crickets, [58Fe]SO4 (reference meal), or unlabeled crickets plus [54Fe]SO4. The other 3 meals consisted of nonrefined maize flour porridge with the same respective additions. Blood samples were drawn to assess the 14-d isotope enrichment in erythrocytes, and meal-specific fractional iron absorption was calculated. In vitro digestion was used to explore possible explanations for unexpected findings. RESULTS: Mean fractional iron absorption from 57Fe-labeled house crickets with refined maize porridge (3.06%) and from refined maize porridge with unlabeled crickets (4.92%) was lower than from the reference meal (14.2%), with respective mean differences of -11.1% (95% CI: -12.6%, -9.68%) and -9.29% (95% CI: -10.8%, -7.77%). Iron absorption from all meals based on unrefined maize porridge was low (<3%), and did not differ for the 2 meals with crickets compared with the reference meal. In vitro digestion showed that chitin, chitosan, and calcium limited iron bioaccessibility to a large extent. CONCLUSIONS: Iron absorption from house crickets and fortified maize porridge with crickets is low, which may be explained by the presence of chitin and other inhibitors in the cricket biomass.This trial was registered at https://www.trialregister.nl as NL6821.


Subject(s)
Chitosan , Gryllidae , Animals , Calcium , Female , Ferritins , Food, Fortified , Humans , Intestinal Absorption , Iron , Isotopes , Phytic Acid , Zea mays
10.
Nutrients ; 14(8)2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35458201

ABSTRACT

Ferrous ammonium phosphate (FAP) is an iron salt that has been developed for the fortification of food matrices sensitive to color and flavor changes. The objective of the study was to measure iron absorption from FAP in young children and compare it to a previous evaluation of FAP in young women. A double-blind randomized crossover study with two parallel arms was used to evaluate the iron absorption from FAP added to reconstituted milk powder in comparison to that from ferrous sulfate (FeSO4) and ferric pyrophosphate (FePP). Iron absorption was measured in 39 children aged 3- to 6-years-old using erythrocyte incorporation of stable Fe isotopes (57Fe, 58Fe). The geometric mean iron absorption in iron replete children from FAP, FeSO4 and FePP from milk was 8.3%, 7.6% and 2.1%, respectively. Iron absorption from FAP and FeSO4 fortified milk was not significantly different (p = 0.199); however, it was significantly higher than from FePP fortified milk (p < 0.001). Iron bioavailability from FAP and FePP relative to FeSO4 (relative bioavailability (RBV)) was 110% and 33%, respectively. The RBV of FAP (110%) in iron replete children was higher than previously reported RBV (71%) in mainly iron deficient women. The difference in iron status between the children and women in the respective studies may explain the different RBV values and is discussed.


Subject(s)
Food, Fortified , Milk , Animals , Biological Availability , Child , Child, Preschool , Cross-Over Studies , Diphosphates , Female , Ferrous Compounds , Humans , Intestinal Absorption , Iron , Iron Isotopes , Iron, Dietary , Isotopes , Phosphates
11.
Eur J Nutr ; 61(6): 2967-2977, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35320401

ABSTRACT

OBJECTIVES: We developed a natural polyphenol supplement that strongly chelates iron in vitro and assessed its effect on non-heme iron absorption in patients with hereditary hemochromatosis (HH). METHODS: We performed in vitro iron digestion experiments to determine iron precipitation by 12 polyphenol-rich dietary sources, and formulated a polyphenol supplement (PPS) containing black tea powder, cocoa powder and grape juice extract. In a multi-center, single-blind, placebo-controlled cross-over study, we assessed the effect of the PPS on iron absorption from an extrinsically labelled test meal and test drink in patients (n = 14) with HH homozygous for the p.C282Y variant in the HFE gene. We measured fractional iron absorption (FIA) as stable iron isotope incorporation into erythrocytes. RESULTS: Black tea powder, cocoa powder and grape juice extract most effectively precipitated iron in vitro. A PPS mixture of these three extracts precipitated ~ 80% of iron when 2 g was added to a 500 g iron solution containing 20 µg Fe/g. In the iron absorption study, the PPS reduced FIA by ~ 40%: FIA from the meal consumed with the PPS was lower (3.01% (1.60, 5.64)) than with placebo (5.21% (3.92, 6.92)) (p = 0.026)), and FIA from the test drink with the PPS was lower (10.3% (7.29 14.6)) than with placebo (16.9% (12.8 22.2)) (p = 0.002). CONCLUSION: Our results indicate that when taken with meals, this natural PPS can decrease dietary iron absorption, and might thereby reduce body iron accumulation and the frequency of phlebotomy in patients with HH. TRIAL REGISTRY: clinicaltrials.gov (registration date: 9.6.2019, NCT03990181).


Subject(s)
Hemochromatosis , Adult , Cross-Over Studies , Hemochromatosis/drug therapy , Hemochromatosis/genetics , Hemochromatosis/metabolism , Hemochromatosis Protein , Histocompatibility Antigens Class I/genetics , Humans , Iron , Iron, Dietary , Polyphenols/pharmacology , Powders , Single-Blind Method , Tea
12.
J Nutr ; 152(4): 1015-1021, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35015879

ABSTRACT

BACKGROUND: Prebiotic galacto-oligosaccharides (GOS) increase iron absorption from fortification-level iron doses given as ferrous fumarate (FeFum) in women and children. Whether GOS or other fibers, such as prebiotic fructo-oligosaccharides (FOS) and acacia gum, increase iron absorption from higher supplemental doses of FeFum is unclear. OBJECTIVES: In iron-depleted [serum ferritin (SF) <25 µg/L] women, we tested if oral coadministration of 15 g GOS, FOS, or acacia gum increased iron absorption from a 100 mg Fe supplement given as FeFum. METHODS: In a randomized, single-blind, crossover study, 30 women (median age: 26.2 y; median SF: 12.9 µg/L) consumed a 100 mg Fe tablet labeled with 4 mg 57Fe or 58Fe, given with either 1) 15 g GOS; 2) 15 g FOS; 3) 15 g acacia gum; or 4) 6.1 g lactose and 1.5 g sucrose (control; matching the amounts of sucrose and lactose present in the GOS powder providing 15 g GOS), dissolved in water. The primary outcome, fractional iron absorption (FIA), was assessed by erythrocyte isotopic incorporation 14 d after administration. Data were analyzed using a linear mixed-effect model. We also tested, in vitro, iron solubility at different pH and dialyzability from the different supplement combinations administered in vivo. RESULTS: FIA from FeFum given with GOS and FOS was significantly higher (+45% and +51%, respectively; P < 0.001 for both) than control; median [IQR] total iron absorption was 34.6 mg [28.4-49.1 mg], 36.1 mg [29.0-46.2 mg], and 23.9 mg [20.5-34.0 mg], respectively. Acacia gum did not significantly affect FIA from FeFum (P = 0.688). In vitro, iron dialyzability of FeFum + GOS was 46% higher than that of FeFum alone (P = 0.003). CONCLUSIONS: In iron-depleted women, both GOS and FOS coadministration with FeFum increased iron absorption by ∼50% from a 100 mg oral iron dose, resulting in an additional 10-12 mg of absorbed iron. Thus, GOS and FOS may be promising new enhancers of supplemental iron absorption.This trial was registered at clinicaltrials.gov as NCT04194255.


Subject(s)
Gum Arabic , Iron , Adult , Child , Cross-Over Studies , Female , Ferrous Compounds , Humans , Oligosaccharides , Prebiotics , Single-Blind Method
13.
J Nutr ; 152(4): 1015-1021, 2022 04.
Article in English | MEDLINE | ID: mdl-36967158

ABSTRACT

BACKGROUND: Prebiotic galacto-oligosaccharides (GOS) increase iron absorption from fortification-level iron doses given as ferrous fumarate (FeFum) in women and children. Whether GOS or other fibers, such as prebiotic fructo-oligosaccharides (FOS) and acacia gum, increase iron absorption from higher supplemental doses of FeFum is unclear. OBJECTIVES: In iron-depleted [serum ferritin (SF) <25 µg/L] women, we tested if oral coadministration of 15 g GOS, FOS, or acacia gum increased iron absorption from a 100 mg Fe supplement given as FeFum. METHODS: In a randomized, single-blind, crossover study, 30 women (median age: 26.2 y; median SF: 12.9 µg/L) consumed a 100 mg Fe tablet labeled with 4 mg 57Fe or 58Fe, given with either 1) 15 g GOS; 2) 15 g FOS; 3) 15 g acacia gum; or 4) 6.1 g lactose and 1.5 g sucrose (control; matching the amounts of sucrose and lactose present in the GOS powder providing 15 g GOS), dissolved in water. The primary outcome, fractional iron absorption (FIA), was assessed by erythrocyte isotopic incorporation 14 d after administration. Data were analyzed using a linear mixed-effect model. We also tested, in vitro, iron solubility at different pH and dialyzability from the different supplement combinations administered in vivo. RESULTS: FIA from FeFum given with GOS and FOS was significantly higher (+45% and +51%, respectively; P < 0.001 for both) than control; median [IQR] total iron absorption was 34.6 mg [28.4-49.1 mg], 36.1 mg [29.0-46.2 mg], and 23.9 mg [20.5-34.0 mg], respectively. Acacia gum did not significantly affect FIA from FeFum (P = 0.688). In vitro, iron dialyzability of FeFum + GOS was 46% higher than that of FeFum alone (P = 0.003). CONCLUSIONS: In iron-depleted women, both GOS and FOS coadministration with FeFum increased iron absorption by ∼50% from a 100 mg oral iron dose, resulting in an additional 10-12 mg of absorbed iron. Thus, GOS and FOS may be promising new enhancers of supplemental iron absorption. This trial was registered at clinicaltrials.gov as NCT04194255.


Subject(s)
Iron , Prebiotics , Child , Humans , Female , Adult , Cross-Over Studies , Lactose , Single-Blind Method , Oligosaccharides
14.
J Nutr ; 152(5): 1220-1227, 2022 05 05.
Article in English | MEDLINE | ID: mdl-34967894

ABSTRACT

BACKGROUND: Hot extrusion is widely used to produce iron-fortified rice, but heating may increase resistant starch and thereby decrease iron bioavailability. Cold-extruded iron-fortified rice may have higher bioavailability but has higher iron losses during cooking. Thus, warm extrusion could have nutritional benefits, but this has not been tested. Whether the addition of citric acid (CA) and trisodium citrate (TSC) counteracts any detrimental effect of high-extrusion temperature on iron bioavailability is unclear. OBJECTIVES: Our aim was to assess the effects of varying processing temperatures on the starch microstructure of extruded iron-fortified rice and resulting iron solubility and iron bioavailability. METHODS: We produced extruded iron-fortified rice grains at cold, warm, and hot temperatures (40°C, 70°C, and 90°C), with and without CA/TSC at a molar ratio of iron to CA/TSC of 1:0.3:5.5. We characterized starch microstructure using small- and wide-angle X-ray scattering and differential scanning calorimetry, assessed color over 6 mo, and measured in vitro iron solubility. In standardized rice and vegetable test meals consumed by young women (n = 22; mean age: 23 y; geometric mean plasma ferritin: 29.3 µg/L), we measured iron absorption from the fortified rice grains intrinsically labeled with 57ferric pyrophosphate (57FePP), compared with ferrous sulfate (58FeSO4) solution added extrinsically to the meals. RESULTS: Warm and hot extrusion altered starch morphology from native type A to type V and increased retrograded starch. However, extrusion temperature did not significantly affect iron solubility or iron bioavailability. The geometric mean fractional iron absorption of iron from fortified rice extruded with CA/TSC (8.2%; 95% CI: 7.9%, 11.0%) was more than twice that from extruded rice without CA/TSC (3.0%; 95% CI: 2.7%, 3.4%; P < 0.001). CONCLUSIONS: Higher extrusion temperatures did not affect iron bioavailability from extruded rice in young women, but co-extrusion of CA/TSC with FePP sharply increased iron absorption independently from extrusion temperature. This trial is registered at www.clinicaltrials.gov as NCT03703726.


Subject(s)
Iron , Oryza , Adult , Biological Availability , Female , Food, Fortified , Hot Temperature , Humans , Isotopes , Oryza/chemistry , Starch , Temperature , Young Adult
15.
J Nutr ; 152(3): 826-834, 2022 03 03.
Article in English | MEDLINE | ID: mdl-34958374

ABSTRACT

BACKGROUND: Compared with infant cereals based on refined grains, an infant cereal containing whole grains (WGs) and pulses with adequate amounts of ascorbic acid to protect against absorption inhibitors could be a healthier source of well-absorbed iron. However, iron absorption from such cereals is uncertain. OBJECTIVE: We measured iron bioavailability from ferrous fumarate (Fefum) added to commercial infant cereals containing 1) refined wheat flour (reference meal), 2) WG wheat and lentil flour (WG-wheat-lentil), 3) WG wheat and chickpea flour (WG-wheat-chickpeas), and 4) WG oat flour (WG-oat) and from ferrous bisglycinate (FeBG) added to the same oat-based cereal (WG-oat-FeBG). METHODS: In a prospective, single-blinded randomized crossover study, 6- to 14-mo-old Malawian children (n = 30) consumed 25-g servings of all 5 test meals containing 2.25 mg stable isotope-labeled iron and 13.5 mg ascorbic acid. Fractional iron absorption (FIA) was assessed by erythrocyte incorporation of isotopes after 14 d. Comparisons were made using linear mixed models. RESULTS: Seventy percent of the children were anemic and 67% were iron deficient. Geometric mean FIA percentages (-SD, +SD) from the cereals were as follows: 1) refined wheat, 12.1 (4.8, 30.6); 2) WG-wheat-lentil, 15.8 (6.6, 37.6); 3) WG-wheat-chickpeas, 12.8 (5.5, 29.8); and 4) WG-oat, 9.2 (3.9, 21.5) and 7.4 (2.9, 18.9) from WG-oat-FeBG. Meal predicted FIA (P ≤ 0.001), whereas in pairwise comparisons, only WG-oat-FeBG was significantly different compared with the refined wheat meal (P = 0.02). In addition, FIAs from WG-wheat-lentil and WG-wheat-chickpeas were significantly higher than from WG-oat (P = 0.002 and P = 0.04, respectively) and WG-oat-FeBG (P < 0.001 and P = 0.004, respectively). CONCLUSION: In Malawian children, when given with ascorbic acid at a molar ratio of 2:1, iron bioavailability from Fefum-fortified infant cereals containing WG wheat and pulses is ≈13-15%, whereas that from FeBG- and Fefum-fortified infant cereals based on WG oats is ≈7-9%.


Subject(s)
Edible Grain , Iron , Ascorbic Acid , Biological Availability , Child , Cross-Over Studies , Ferrous Compounds , Flour , Food, Fortified , Humans , Infant , Isotopes , Prospective Studies , Triticum , Whole Grains
16.
Am J Clin Nutr ; 115(4): 1166-1179, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34910118

ABSTRACT

BACKGROUND: Inflammation during pregnancy may aggravate iron deficiency (ID) by increasing serum hepcidin and reducing iron absorption. This could restrict iron transfer to the fetus, increasing risk of infant ID and its adverse effects. OBJECTIVES: We aimed to assess whether iron bioavailability and/or iron transfer to the fetus is impaired in overweight/obese (OW) pregnant women with adiposity-related inflammation, compared with normal-weight (NW) pregnant women. METHODS: In this prospective study, we followed NW (n = 43) and OW (n = 40) pregnant women who were receiving iron supplements from the 14th week of gestation to term and followed their infants to age 6 mo. We administered 57Fe and 58Fe in test meals mid-second and mid-third trimester, and measured tracer kinetics throughout pregnancy and infancy. RESULTS: In total, 38 NW and 36 OW women completed the study to pregnancy week 36, whereas 30 NW and 27 OW mother-infant pairs completed the study to 6 mo postpartum. Both groups had comparable iron status, hemoglobin, and serum hepcidin throughout pregnancy. Compared with the NW, the OW pregnant women had 1) 43% lower fractional iron absorption (FIA) in the third trimester (P = 0.033) with median [IQR] FIA of 23.9% [11.4%-35.7%] and 13.5% [10.8%-19.5%], respectively; and 2) 17% lower maternal-fetal iron transfer from the first tracer (P = 0.051) with median [IQR] maternal-fetal iron transfer of 4.8% [4.2%-5.4%] and 4.0% [3.6%-4.6%], respectively. Compared with the infants born to NW women, infants born to OW women had lower body iron stores (BIS) with median [IQR] 7.7 [6.3-8.8] and 6.6 [4.6-9.2] mg/kg body weight at age 6 mo, respectively (P = 0.024). Prepregnancy BMI was a negative predictor of maternal-fetal iron transfer (ß = -0.339, SE = 0.144, P = 0.025) and infant BIS (ß = -0.237, SE = 0.026, P = 0.001). CONCLUSIONS: Compared with NW, OW pregnant women failed to upregulate iron absorption in late pregnancy, transferred less iron to their fetus, and their infants had lower BIS. These impairments were associated with inflammation independently of serum hepcidin.This trial was registered at clinicaltrials.gov as NCT02747316.


Subject(s)
Iron , Overweight , Child , Female , Fetus , Humans , Infant , Kinetics , Pregnancy , Prospective Studies
17.
Am J Clin Nutr ; 115(3): 949-957, 2022 03 04.
Article in English | MEDLINE | ID: mdl-34726703

ABSTRACT

BACKGROUND: Prebiotic galacto-oligosaccharides (GOS) are novel enhancers of iron absorption from ferrous fumarate (FeFum). However, the mechanism(s) of this effect, and whether it occurs in the proximal or distal gut, are uncertain. OBJECTIVES: We studied: 1) in vitro, the effect of GOS on iron solubility and dialyzability from FeFum; 2) in volunteers, the absorption kinetics of FeFum given with and without GOS using stable isotope appearance curves (SIAC). METHODS: We measured iron solubility at various pH and dialyzability from FeFum with and without GOS. In crossover design, iron-depleted women [n = 11; median serum ferritin (SF) 15.2; IQR: 12.6-21.2 µg/L] received 2 14-mg iron doses as labeled (57Fe,58Fe) FeFum 14 d apart with and without 15 g GOS in randomly assigned order. Multiple blood samples were collected over a time period of 24 h and 14 d later to determine SIAC and fractional iron absorption (FIA), respectively. SIAC data were fitted using nonlinear mixed effects modeling to a 1-compartment model with first-order absorption, and AUC and time of peak serum isotope concentration (tmax) were calculated. RESULTS: Iron dialyzability was 75% higher with GOS (P < 0.001) and iron solubility was more than doubled at pH 4 and 6 with GOS [both P < 0.001]. Mean ± SD AUC (5830.9 ± 4717.3 µg/min with GOS, 4454.0 ± 3260.7 µg/min for control), and median (IQR) FIA (20.3% (8.6%-38.7%) with GOS, and 15.6% (10.6%-24.8% f)or control) were not different with compared to without GOS (P = 0.064; P = 0.080). Mean ±SD tmax was not altered with GOS (3.08 ± 0.47 h with GOS; 2.80 ±0.50 h for control; P = 0.096). Iron bioavailability significantly increased with decreasing SF and this effect was significantly enhanced by GOS (P = 0.037, interaction of GOS with SF). CONCLUSIONS: GOS increases iron solubility from FeFum at physiological pH characteristic of the proximal duodenum. The absorption kinetics in vivo are consistent with effects on iron absorption in the proximal, rather than distal, parts of the gut. There was no overall effect of GOS on FIA in vivo, but the interaction of GOS and SF on FIA might benefit iron-deficient women, an effect potentially mediated by the higher solubility shown in vitro. This study was registered at clinicaltrials.gov as NCT03996421.


Subject(s)
Iron , Isotopes , Female , Ferrous Compounds , Humans , Kinetics , Oligosaccharides
18.
EClinicalMedicine ; 39: 101052, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34401687

ABSTRACT

BACKGROUND: Plasma ferritin is a widely used indicator to detect iron deficiency, but the threshold ferritin that defines iron deficiency remains uncertain. Our aim was to define the ferritin concentration at which the body begins to upregulate iron absorption from the diet; this could provide a functionally-defined threshold of incipient iron deficiency. We hypothesized this threshold ferritin concentration would correspond to the threshold hepcidin concentration at which iron absorption begins to increase. METHODS: We performed a pooled analysis of our stable iron isotope studies (n = 1058) conducted from 2006 to 2019 in healthy women (age 18-50 years; mean±SD ferritin 33.7 ± 27.1 µg/L) that measured iron absorption from labeled test meals providing physiological amounts of iron. To fit relationships between iron absorption, ferritin and hepcidin, we used generalized additive modeling, and to identify thresholds, we estimated the first derivatives of the fitted trend to assess inflection points in these relationships. FINDINGS: Hepcidin increased linearly with increasing ferritin over the entire range of ferritin values. Iron absorption began to increase below a threshold hepcidin value of 3.09 (95%CI: 2.80, 3.38) nmol/l, above which iron absorption remained stable. Iron absorption began to increase below a threshold ferritin value of 51.1 (95%CI: 49.1, 53.1) µg/l, above which iron absorption remained stable. The latter two findings were internally consistent in that, in the relationship between hepcidin and ferritin, a hepcidin of ~3 nmol/l corresponded to a ferritin of ~51 µg/l. INTERPRETATION: Based on physiological upregulation of iron absorption, a threshold ferritin of <50 µg/L, corresponding to a threshold hepcidin of <3 nmol/l, indicates incipient iron deficiency in young women.

19.
Am J Clin Nutr ; 114(3): 986-996, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34113969

ABSTRACT

BACKGROUND: Prevention of iron deficiency in African children is a public health priority. Current WHO/FAO estimations of iron requirements are derived from factorial estimates based on healthy, iron-sufficient "model" children using data derived mainly from adults. OBJECTIVES: In this study, we aimed to quantify iron absorption, loss, and balance in apparently healthy 5- to 7-y-old children living in rural Africa. METHODS: We directly measured long-term iron absorption and iron loss in a 2-y observational study in Malawian children (n = 48) using a novel stable iron isotope method. RESULTS: Of the 36 children with height-for-age and weight-for-age z scores ≥-2, 13 (36%) were iron deficient (soluble transferrin receptor >8.3 mg/L) and 23 were iron sufficient. Iron-deficient children weighed more than iron-sufficient children [mean difference (95% CI): +2.1 (1.4, 2.7) kg; P = 0.01]. Mean iron losses did not differ significantly between iron-deficient and iron-sufficient children and were comparable to WHO/FAO median estimates of 19 µg/(d × kg). In iron-sufficient children, median (95% CI) dietary iron absorption was 32 (28, 34) µg/(d × kg), comparable to WHO/FAO-estimated median requirements of 32 µg/(d × kg). In iron-deficient children, absorption of 28 (25, 30) µg/(d × kg) was not increased to correct their iron deficit, likely because of a lack of bioavailable dietary iron. Twelve children (25%) were undernourished (underweight, stunted, or both). CONCLUSIONS: Our results suggest that WHO/FAO iron requirements are adequate for healthy iron-sufficient children in this rural area of Malawi, but iron-deficient children require additional bioavailable iron to correct their iron deficit.


Subject(s)
Anemia, Iron-Deficiency/epidemiology , Iron Isotopes , Iron/administration & dosage , Anemia, Iron-Deficiency/diagnosis , Child , Child, Preschool , Female , Humans , Iron/metabolism , Malawi , Male , Nutritional Requirements
20.
Blood ; 138(15): 1293-1303, 2021 10 14.
Article in English | MEDLINE | ID: mdl-33876222

ABSTRACT

Anemia of inflammation is a hallmark of tuberculosis. Factors controlling iron metabolism during anemia of inflammation and its resolution are uncertain. Whether iron supplements should be given during antituberculosis treatment to support hemoglobin (Hb) recovery is unclear. Before and during treatment of tuberculosis, we assessed iron kinetics, as well as changes in inflammation and iron metabolism indices. In a 26-week prospective study, Tanzanian adults with tuberculosis (N = 18) were studied before treatment and then every 2 weeks during treatment; oral and intravenous iron tracers were administered before treatment and after intensive phase (8/12 weeks) and complete treatment (24 weeks). No iron supplements were given. Before treatment, hepcidin and erythroferrone (ERFE) were greatly elevated, erythrocyte iron utilization was high (∼80%), and iron absorption was negligible (<1%). During treatment, hepcidin and interleukin-6 levels decreased ∼70% after only 2 weeks (P< .001); in contrast, ERFE did not significantly decrease until 8 weeks (P< .05). ERFE and interleukin-6 were the main opposing determinants of hepcidin (P< .05), and greater ERFE was associated with reticulocytosis and Hb repletion (P< .01). Dilution of baseline tracer concentration was 2.6-fold higher during intensive phase treatment (P< .01), indicating enhanced erythropoiesis. After treatment completion, iron absorption increased ∼20-fold (P< .001), and Hb increased ∼25% (P< .001). In tuberculosis-associated anemia of inflammation, our findings suggest that elevated ERFE is unable to suppress hepcidin, and iron absorption is negligible. During treatment, as inflammation resolves, ERFE may remain elevated, contributing to hepcidin suppression and Hb repletion. Iron is well absorbed only after tuberculosis treatment, and supplementation should be reserved for patients remaining anemic after treatment. This trial was registered at www.clinicaltrials.gov as #NCT02176772.


Subject(s)
Anemia/metabolism , Inflammation/metabolism , Iron/metabolism , Tuberculosis/metabolism , Adult , Anemia/complications , Disease Management , Female , Hepcidins/metabolism , Homeostasis , Humans , Inflammation/complications , Male , Peptide Hormones/metabolism , Prospective Studies , Tuberculosis/complications , Tuberculosis/therapy , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL