Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
BMC Med ; 22(1): 254, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902659

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disease characterized by Aß plaques and neurofibrillary tangles. Chronic inflammation and synaptic dysfunction lead to disease progression and cognitive decline. Small extracellular vesicles (sEVs) are implicated in AD progression by facilitating the spread of pathological proteins and inflammatory cytokines. This study investigates synaptic dysfunction and neuroinflammation protein markers in plasma-derived sEVs (PsEVs), their association with Amyloid-ß and tau pathologies, and their correlation with AD progression. METHODS: A total of 90 [AD = 35, mild cognitive impairment (MCI) = 25, and healthy age-matched controls (AMC) = 30] participants were recruited. PsEVs were isolated using a chemical precipitation method, and their morphology was characterized by transmission electron microscopy. Using nanoparticle tracking analysis, the size and concentration of PsEVs were determined. Antibody-based validation of PsEVs was done using CD63, CD81, TSG101, and L1CAM antibodies. Synaptic dysfunction and neuroinflammation were evaluated with synaptophysin, TNF-α, IL-1ß, and GFAP antibodies. AD-specific markers, amyloid-ß (1-42), and p-Tau were examined within PsEVs using Western blot and ELISA. RESULTS: Our findings reveal higher concentrations of PsEVs in AD and MCI compared to AMC (p < 0.0001). Amyloid-ß (1-42) expression within PsEVs is significantly elevated in MCI and AD compared to AMC. We could also differentiate between the amyloid-ß (1-42) expression in AD and MCI. Similarly, PsEVs-derived p-Tau exhibited elevated expression in MCI compared with AMC, which is further increased in AD. Synaptophysin exhibited downregulated expression in PsEVs from MCI to AD (p = 0.047) compared to AMC, whereas IL-1ß, TNF-α, and GFAP showed increased expression in MCI and AD compared to AMC. The correlation between the neuropsychological tests and PsEVs-derived proteins (which included markers for synaptic integrity, neuroinflammation, and disease pathology) was also performed in our study. The increased number of PsEVs correlates with disease pathological markers, synaptic dysfunction, and neuroinflammation. CONCLUSIONS: Elevated PsEVs, upregulated amyloid-ß (1-42), and p-Tau expression show high diagnostic accuracy in AD. The downregulated synaptophysin expression and upregulated neuroinflammatory markers in AD and MCI patients suggest potential synaptic degeneration and neuroinflammation. These findings support the potential of PsEV-associated biomarkers for AD diagnosis and highlight synaptic dysfunction and neuroinflammation in disease progression.


Subject(s)
Alzheimer Disease , Extracellular Vesicles , Humans , Alzheimer Disease/pathology , Extracellular Vesicles/metabolism , Male , Aged , Female , Case-Control Studies , Amyloid beta-Peptides/metabolism , Aged, 80 and over , Neuroinflammatory Diseases , Biomarkers/blood , Synapses/pathology , Cognitive Dysfunction , Middle Aged , tau Proteins/metabolism
2.
Sci Rep ; 14(1): 9347, 2024 04 23.
Article in English | MEDLINE | ID: mdl-38654096

ABSTRACT

Breast cancer, a leading cause of female mortality due to delayed detection owing to asymptomatic nature and limited early diagnostic tools, was investigated using a multi-modal approach. Plasma-derived small EVs from breast cancer patients (BrCa, n = 74) and healthy controls (HC, n = 30) were analyzed. Small EVs (n = 104), isolated through chemical precipitation, underwent characterization via transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). Validation involved antibody-based tests (TSG101, CD9, CD81, CD63). Infrared spectra of small EVs were obtained, revealing significant differences in lipid acyl chains, particularly in the C-H stretching of CH3. The study focused on the lipid region (3050-2900 cm-1), identifying peaks (3015 cm-1, 2960 cm-1, 2929 cm-1) as distinctive lipid characteristics. Spectroscopic lipid-to-lipid ratios [(I3015/I2929), (I2960/I2929)] emerged as prominent breast cancer markers. Exploration of protein, nucleic acid, and carbohydrate ratios indicated variations in alpha helices, asymmetric C-H stretching vibrations, and C-O stretching at 1033 cm-1. Principal component analysis (PCA) successfully differentiated BrCa and HC small EVs, and heatmap analysis and receiver operating characteristic (ROC) curve evaluations underscored the discriminatory power of lipid ratios. Notably, (I2960/I2929) exhibited 100% sensitivity and specificity, highlighting its potential as a robust BrCa sEV marker for breast cancer detection.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Extracellular Vesicles , Lipids , Spectrophotometry, Infrared , Humans , Breast Neoplasms/diagnosis , Female , Extracellular Vesicles/metabolism , Extracellular Vesicles/chemistry , Lipids/chemistry , Lipids/analysis , Spectrophotometry, Infrared/methods , Middle Aged , Adult , Aged
SELECTION OF CITATIONS
SEARCH DETAIL