Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Chin J Integr Med ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753277

ABSTRACT

OBJECTIVE: To explore the effects of Huxin formula (HXF) in curtailing atherosclerosis and its underlying mechanism. METHODS: According to random number table method, 24 specific pathogen free male ApoE-/- mice were randomly divided into model group, HXF low-dose (HXF-L) group (8.4 g/kg daily), HXF high-dose (HXF-H) group (16.8 g/kg daily), and pravastatin (8 mg/kg daily) group in Experiment I (n=6 per group). C57BL/6J mice served as the control group (n=6). ApoE-/- mice in HXF-L, HXF-H, pravastatin groups were fed a Western diet and administered continuously by gavage for 12 weeks, while C57BL/6J mice in the control group were fed conventional lab mouse chow for 12 weeks. Further, Tregs were depleted by weekly intraperitoneal injection of purified anti-mouse CD25 antibody (PC61, 250 µg per mouse) for 4 weeks in Experiment II (n=6 per group). Oil Red O and Masson staining were used to evaluate the plaque area and aortic root fibrosis. The CD4+CD25+Foxp3+Treg counts in the lymph nodes and spleen cells were detected using flow cytometric analysis. The transforming growth factor-ß1 (TGF-ß1), interleukin (IL)-10, and IL-6 serum levels were examined by MILLIPLEX® MAP technology. Quantitative real-time reverse transcription PCR (qRT-PCR) and Western blot were utilized to assess the expression of TGF-ß mRNA and protein in the aorta. The expression of CD4+T lymphocytes, macrophages and smooth muscle cells in the aortic root were detected by immunofluorescence staining. RESULTS: HXF reduced plaque area in ApoE-/- mice (P<0.01). HXF increased the Treg counts in the lymph nodes and spleen cells (P<0.05 or P<0.01). Moreover, HXF alleviated inflammatory response via elevating IL-10 and TGF-ß 1 serum levels (P<0.05), while decreasing the IL-6 serum levels in ApoE-/- mice (P>0.05). Also, HXF upregulated the expression of TGF-ß mRNA and protein in the aorta (P<0.05). Additionally, HXF attenuated CD4+T lymphocytes, macrophages and smooth muscle cells in aortic root plaque (P<0.01). Furthermore, the depletion of Tregs with CD25 antibody (PC61) curtailed the reduction in plaque area and aortic root fibrosis by HXF (P<0.01). CONCLUSION: HXF relieved atherosclerosis, probably by restraining inflammatory response, reducing inflammatory cell infiltration and attenuating aortic root fibrosis by increasing Treg counts.

2.
J Proteome Res ; 23(1): 226-237, 2024 01 05.
Article in English | MEDLINE | ID: mdl-38048169

ABSTRACT

Heart failure (HF), a complex clinical syndrome, has become a global burden on health and economics around the world. Phlegm-blood stasis syndrome, one of the Traditional Chinese Medicine (TCM) syndrome differentiation, is the core pathogenesis dynamically throughout the occurrence, development, and prognosis of HF. Biomarkers having high sensitivity and specificity are highly demanded to facilitate the accurate differentiation of HF patients with phlegm-blood stasis syndrome. In the present study, serum samples were collected from 20 healthy controls and 40 HF patients (20 with and 20 without phlegm-blood stasis syndrome). We implemented data-independent acquisition mass spectrometry (DIA-MS) for discovery and parallel reaction monitoring (PRM) for validation of biomarkers for heart failure with phlegm-blood stasis syndrome. A total of 84 different proteins were found in the HF with phlegm-blood stasis syndrome (HF-TY) group compared with healthy controls. 37 candidate proteins were selected for the PRM assay, and five validated proteins with high sensitivity and specificity, including insulin-like growth factor-binding protein 4 (IGFBP4), ß-2-microglobulin (B2M), dystroglycan (DAG1), immunoglobulin J chain (JCHAIN), and kallikrein B1 (KLKB1), were considered potential biomarkers for heart failure patients with phlegm-blood stasis syndrome. Newly identified biomarkers might provide insights into the diagnosis and treatment of HF with TCM syndrome differentiation.


Subject(s)
Heart Failure , Proteomics , Humans , Medicine, Chinese Traditional , Biomarkers , Heart Failure/diagnosis , Syndrome
3.
J Tradit Complement Med ; 13(5): 441-453, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37693100

ABSTRACT

Background and aim: Heart failure (HF) is a complex clinical syndrome that represents the end result of several pathophysiologic processes. Despite a dramatic evolution in diagnosis and management of HF, most patients eventually become resistant to therapy. Xin-Li Formula (XLF) is a Chinese medicine formula which shows great potential in the treatment of HF according to our previous studies. The present study was designed to investigate the effects of XLF on HF induced by a combination of hyperlipidemia and myocardial infarction (MI) in rats and reveal the underlying mechanism. Experimental procedure: A rat model of HF induced by hyperlipidemia and MI was established with intragastric administration of XLF and Perindopril. In vitro, CD4+ T cells from mouse spleen and LPS/ATP-stimulated THP-1 macrophages were employed. Results and conclusion: XLF was shown to have markedly protective effects on MI-induced HF with hyperlipidemia in rats, including improvement of left ventricular function, reduction of left ventricular fibrosis and infarct size. Moreover, XLF administration significantly increased the number of Foxp3+ Tregs, and inhibited mTOR phosphorylation and NLRP3 signaling pathway. In vitro, we found that XLF had induced Treg activation via the inhibition of mTOR phosphorylation in CD4+ T cells. Additionally, XLF inhibited NLRP3 inflammasome activation in LPS/ATP-stimulated THP-1 macrophages. Taken together, this study raises the exciting possibility that Xin-Li Formula may benefit HF patients due to its immunomodulatory and anti-inflammatory effects via Treg activation and NLRP3 inflammasome inhibition.

4.
Chin J Integr Med ; 29(2): 179-185, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36342592

ABSTRACT

Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) have recently been identified to be closely related to the occurrence and development of atherosclerosis (AS). A growing body of evidence has suggested Chinese medicine takes unique advantages in preventing and treating AS. In this review, the related research progress of AS and LOX-1 has been summarized. And the anti-AS effects of 10 active components of herbal medicine through LOX-1 regulation have been further reviewed. As a potential biomarker and target for intervention in AS, LOX-1 targeted therapy might provide a promising and novel approach to atherosclerotic prevention and treatment.


Subject(s)
Atherosclerosis , Humans , Scavenger Receptors, Class E/physiology , Biomarkers , Plant Extracts , Lipoproteins, LDL
5.
Cardiol Res Pract ; 2022: 6532003, 2022.
Article in English | MEDLINE | ID: mdl-35991771

ABSTRACT

Background: Considered an effective supplementary therapy, traditional Chinese medicine (TCM) has been widely applied in the treatment of coronary heart disease (CHD). In this study, we aim to investigate the effects and mechanisms of Huo-Tan-Chu-Shi decoction (HTCSD, an in-hospital TCM prescription) in the treatment of CHD with the phlegm-damp syndrome in mice by non-targeted metabolomics with liquid chromatography-mass spectrometry (LC-MS)/MS. Methods: A CHD with phlegm-damp syndrome model was established with ApoE-/- mice by subcutaneous injection with isoproterenol combined with high temperature, high humidity, and a high-fat diet, and divided into the HTCSD and Tanshi groups. C57BL/6 mice were set as the control group with an ordinary environment and diet. After administration, electrocardiogram (ECG), interventricular septum thickness (IVS) and left ventricular posterior wall thickness (LVPW), serum levels of creatine phosphokinase-Mb (CK-MB), cardiac troponin T (cTnT), lactic dehydrogenase (LDH) and oxidized low-density lipoprotein (oxLDL), and myocardial histopathological changes were recorded to assess myocardial damage. LC-MS/MS was applied to demonstrate the serum metabolic profile and explore potential mechanisms. Results: The obvious depressions of the ST segment and T wave presented in the ECG of Tanshi mice, while the depressions in ECG of HTCSD mice were significantly reduced. Compared with the control group, IVS, LVPW, and serum levels of CK-MB, cTnT, LDH, and oxLDL increased greatly in the Tanshi group, while these indicators decreased remarkably in the HTCSD group compared with those of the Tanshi group. Histopathology showed severe structural disorder, necrosis, and fibrosis of myocardial cells in Tanshi mice, which were alleviated in HTCSD mice. Metabonomics analysis showed obvious metabolic alterations among the experimental mice and revealed that the relevant metabolic pathways mainly included phospholipid metabolism, necroptosis, and autophagy. Conclusions: HTCSD has a certain therapeutic effect in mice with CHD with phlegm-damp syndrome via reducing myocardial ischemia, hypertrophy, and fibrosis. The underlying mechanisms involve the regulation of phospholipid metabolism, necroptosis, and autophagy.

6.
BMC Cardiovasc Disord ; 22(1): 133, 2022 03 30.
Article in English | MEDLINE | ID: mdl-35350989

ABSTRACT

BACKGROUND: Isoproterenol (ISO), a synthetic on selective ß-adrenergic agonist, provides a simple and non-invasive method for inducing myocardial injury with lower mortality and higher reproducibility. Phlegm-damp syndrome, as known as "Tanshi" in Chinese, is one of Traditional Chinese Medicine (TCM) syndrome differentiation, which plays an important role in the development of cardiovascular diseases. However, the underlying mechanism remains unknown. METHODS: In our present study, a myocardial injury mouse model was introduced by ISO administration combined with high temperature and high humidity and high-fat diet to simulate phlegm-damp syndrome. Nontargeted metabolomics with LC-MS/MS was adopted to reveal serum metabolism profile for elucidating the possible molecular mechanism. RESULTS: The results of our study showed that phlegm-damp syndrome promoted ISO-induced myocardial injury by aggravating left ventricular hypertrophy and fibrosis, and increasing cardiac index. Our study also confirmed the presence of specific metabolites and disturbed metabolic pathways by comparing ISO mice and Tanshi mice, mainly including glycerophospholipid metabolism, arginine-proline metabolism, and sphingolipid signaling pathway. The lysoPCs, PCs, SMs, Sphingosine, and L-Arginine were the main metabolites that showed a difference between ISO and Tanshi mice, which might be the result of the underlying mechanism in the promotion of ISO-induced myocardial injury in mice with high temperature and high humidity and high-fat diet. CONCLUSION: Our current study provides new insights into contribution of metabolism disorder in promotion of ISO-induced myocardial injury in mice with high temperature and high humidity and high-fat diet, and new targets for clinical diagnosis and pharmacologic treatment of cardiovascular disease with phlegm-damp syndrome.


Subject(s)
Diet, High-Fat , Tandem Mass Spectrometry , Animals , Chromatography, Liquid , Humans , Humidity , Isoproterenol , Mice , Reproducibility of Results , Temperature
7.
Chin J Integr Med ; 27(11): 867-873, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34532748

ABSTRACT

Inflammation and immune disorders are integral to the occurrence and progression of atherosclerosis (AS). With the role of regulatory T cells (Tregs) in immune regulation attracting attention, it has been widely accepted that Treg decrease and dysfunction are involved in AS pathogenesis. Chinese medicine (CM) has the advantages of being dual-directional, multi-targeted, and having minimal side effects in immune regulation. The anti-atherosclerosis effects of CM via Treg modulation have been revealed in clinical and animal studies. Therefore, this article reviews existing research on Tregs, the relationship between Tregs and AS, and the progress of CM for treating and prevention of atherosclerotic cardio-cerebrovascular diseases by regulating Tregs. Although the underlying mechanisms remain to be elucidated, CM treatment targeting Treg cells might provide a promising and novel future approach for prevention and treatment of AS.


Subject(s)
Atherosclerosis , T-Lymphocytes, Regulatory , Animals , Atherosclerosis/drug therapy , Inflammation , Medicine, Chinese Traditional
8.
Front Immunol ; 12: 646831, 2021.
Article in English | MEDLINE | ID: mdl-33643325

ABSTRACT

Emerging evidence has linked the gut microbiota dysbiosis to transplant rejection while memory T-cells pose a threat to long-term transplant survival. However, it's unclear if the gut microbiome alters the formation and function of alloreactive memory T-cells. Here we studied the effects of berberine, a narrow-spectrum antibiotic that is barely absorbed when orally administered, on the gut microbiota, memory T-cells, and allograft survival. In this study, C57BL/6 mice transplanted with islets or a heart from BALB/c mice were treated orally with berberine. Allograft survival was observed, while spleen, and lymph node T-cells from recipient mice were analyzed using a flow cytometer. High-throughput sequencing and qPCR were performed to analyze the gut microbiota. CD8+ T-cells from recipients were cultured with the bacteria to determine potential T-cell memory cross-reactivity to a specific pathogen. We found that berberine suppressed islet allograft rejection, reduced effector CD8+CD44highCD62Llow and central memory CD8+CD44highCD62Lhigh T-cells (TCM), altered the gut microbiota composition and specifically lowered Bacillus cereus abundance. Further, berberine promoted long-term islet allograft survival induced by conventional costimulatory blockade and induced cardiac allograft tolerance as well. Re-colonization of B. cereus upregulated CD8+ TCM cells and reversed long-term islet allograft survival induced by berberine plus the conventional costimulatory blockade. Finally, alloantigen-experienced memory CD8+ T-cells from transplanted recipients rapidly responded to B. cereus in vitro. Thus, berberine prolonged allograft survival by repressing CD8+ TCM through regulating the gut microbiota. We have provided the first evidence that donor-specific memory T-cell generation is linked to a specific microbe and uncovered a novel mechanism underlying the therapeutic effects of berberine. This study may be implicated for suppressing human transplant rejection since berberine is already used in clinic to treat intestinal infections.


Subject(s)
Berberine/pharmacology , CD8-Positive T-Lymphocytes/drug effects , Gastrointestinal Microbiome/drug effects , Graft Survival/drug effects , Immune Tolerance/drug effects , Animals , Apoptosis/drug effects , Apoptosis/immunology , Bacteria/classification , Bacteria/genetics , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , Gastrointestinal Microbiome/genetics , Gastrointestinal Microbiome/immunology , Graft Survival/immunology , Heart Transplantation/methods , Immune Tolerance/immunology , Interferon-gamma/immunology , Interferon-gamma/metabolism , Islets of Langerhans Transplantation/methods , Male , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Inbred C57BL , RNA, Ribosomal, 16S/genetics , Transplantation, Homologous
9.
Front Immunol ; 10: 652, 2019.
Article in English | MEDLINE | ID: mdl-30988670

ABSTRACT

A transplanted organ is usually rejected without any major immunosuppressive treatment because of vigorous alloimmune responsiveness. However, continuous global immunosuppression may cause severe side effects, including nephrotoxicity, tumors, and infections. Therefore, it is necessary to seek novel immunosuppressive agents, especially natural ingredients that may provide sufficient efficacy in immunosuppression with minimal side effects. Shikonin is a bioactive naphthoquinone pigment, an ingredient originally extracted from the root of Lithospermum erythrorhizon. Previous studies have shown that shikonin regulates immunity and exerts anti-inflammatory effects. In particular, it can ameliorate arthritis in animal models. However, it is unclear whether shikonin inhibits alloimmunity or allograft rejection. In this study and for the first time, we demonstrated that shikonin significantly prolonged the survival of skin allografts in wild-type mice. Shikonin increased the frequencies of CD4+Foxp3+ regulatory T cells (Tregs) post-transplantation and induced CD4+Foxp3+ Tregs in vitro as well. Importantly, depleting the Tregs abrogated the extension of skin allograft survival induced by shikonin. It also decreased the frequencies of CD8+CD44highCD62Llow effector T cells and CD11c+CD80+/CD11c+CD86+ mature DCs after transplantation. Moreover, we found that shikonin inhibited the proliferation of T cells in vitro and suppressed their mTOR signaling. It also reduced the gene expression of pro-inflammatory cytokines, including IFNγ, IL-6, TNFα, and IL-17A, while increasing the gene expression of anti-inflammatory mediators IL-10, TGF-ß1, and indoleamine-2, 3-dioxygenase (IDO) in skin allografts. Further, shikonin downregulated IDO protein expression in skin allografts and DCs in vitro. Taken together, shikonin inhibits allograft rejection via upregulating CD4+Foxp3+ Tregs. Thus, shikonin is a novel immunosuppressant that could be potentially used in clinical transplantation.


Subject(s)
Graft Survival/drug effects , Immunosuppressive Agents/pharmacology , Naphthoquinones/pharmacology , Skin Transplantation , T-Lymphocytes, Regulatory/drug effects , Allografts , Animals , Cytokines/genetics , Cytokines/immunology , Dendritic Cells/drug effects , Dendritic Cells/immunology , Forkhead Transcription Factors/immunology , Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology , Mice, Inbred BALB C , Mice, Inbred C57BL , Skin/drug effects , Skin/immunology , T-Lymphocytes, Regulatory/immunology
10.
Front Immunol ; 10: 306, 2019.
Article in English | MEDLINE | ID: mdl-30863408

ABSTRACT

A transplanted organ is always rejected in the absence of any immunosuppressive treatment due to vigorous alloimmunity. However, continuously global immunosuppression with a conventional immunosuppressant may result in severe side effects, including nephrotoxicity, tumors and infections. Tregs have been widely used to inhibit allograft rejection, especially in animal models. However, it's well accepted that administration of Tregs alone is not satisfactory in immune-competent wild-type animals. Therefore, it's imperative to promote Treg therapies under the cover of other approaches, including costimulatory blockade. In the present study, we demonstrated that administration of in vitro-expanded CD8+CD122+PD-1+ Tregs synergized with costimulatory blockade of CD40/CD154, but not B7/CD28, to prolong skin allograft survival in wild-type mice and to reduce cellular infiltration in skin allografts as well. Treg treatment and blockade of CD40/CD154, but not B7/CD28, also exhibited an additive effect on suppression of T cell proliferation in vitro and pro-inflammatory cytokine expression in skin allografts. Importantly, blocking B7/CD28, but not CD40/CD154, costimulation decreased the number of transferred CD8+CD122+PD-1+ Tregs and their expression of IL-10 in recipient mice. Furthermore, it's B7/CD28, but not CD40/CD154, costimulatory blockade that dramatically reduced IL-10 production by CD8+CD122+PD-1+ Tregs in vitro, suggesting that B7/CD28, but not CD40/CD154, costimulation is critical for their production of IL-10. Indeed, infusion of IL-10-deficient CD8+CD122+PD-1+ Tregs failed to synergize with anti-CD154 Ab treatment to further prolong allograft survival. Our data may explain why blocking B7/CD28 costimulatory pathway does not boost IL-10-dependent Treg suppression of alloimmunity. Thus, these findings could be implicated in clinical organ transplantation.


Subject(s)
Allografts/immunology , CD40 Antigens/immunology , CD40 Ligand/immunology , CD8 Antigens/immunology , Interleukin-2 Receptor beta Subunit/immunology , Programmed Cell Death 1 Receptor/immunology , T-Lymphocytes, Regulatory/immunology , Allografts/metabolism , Animals , B7 Antigens/immunology , B7 Antigens/metabolism , CD28 Antigens/immunology , CD28 Antigens/metabolism , CD40 Antigens/metabolism , CD40 Ligand/metabolism , CD8 Antigens/metabolism , Graft Survival/immunology , Interleukin-2 Receptor beta Subunit/metabolism , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor/metabolism , Skin Transplantation/methods , T-Lymphocytes, Regulatory/metabolism , Transplantation Immunology/immunology , Transplantation, Homologous
11.
Mol Med Rep ; 17(4): 5132-5142, 2018 04.
Article in English | MEDLINE | ID: mdl-29393432

ABSTRACT

Type 2 diabetic mellitus (T2DM), which is characterized by insulin resistance (IR), hyperglycemia and hyperlipidemia, is a comprehensive dysfunction of metabolism. The insulin receptor (INSR)/phosphoinositide 3­kinase (PI3K)/AKT signaling pathway is well acknowledged as a predominant pathway associated with glucose uptake; however, the effect of streptozotocin (STZ) plus a high fat and sugar diet (HFSD) on the proteins associated with this pathway requires further elucidation. In order to explore this effect, a T2DM rat model was constructed to investigate T2DM pathogenesis and potential therapeutic advantages. Rats were randomly divided into control and model groups, including normal diet (ND) and HFSD types. ND types were administered intraperitoneal (IP) injections of STZ (35 mg/kg) or a combination of STZ and alloxan monohydrate (AON) (40 mg/kg), whereas HFSD types were composed of HFSD pre­given, post­given and simul­given groups, and were modeled as follows: IP or intramuscular (IM) injection of STZ (35 mg/kg) or a combination of STZ and AON (40 mg/kg). Results indicated that, compared with controls, blood glucose, insulin, homeostatic model assessment­insulin resistance and total triglyceride were significantly elevated in groups with HFSD and modeling agents (P<0.05 or P<0.01), whereas total cholesterol and low­density lipoprotein levels were significantly elevated in groups simultaneously administered HFSD and modeling agents (P<0.05 or P<0.01), in addition to downregulation of the expression of insulin signaling pathway proteins in the liver, including INSR, PI3K, AKT1, phosphatidylinositol-5-phosphate 4­kinase type­2α (PIP5Kα) and glucose transporter (GLUT)2, and increased expression of inflammatory factors, including p38, tumor necrosis factor (TNF)α and interleukin (IL)6. Furthermore, compared with other two HFSD types including pre­given and post­given group, the simul­given group that received IM injection with STZ exhibited decreased expression levels of major insulin signal pathway proteins INSR, PI3K, AKT1, PIP5Kα, GLUT2 or GLUT4 in the liver and pancreas (P<0.05 or P<0.01), whereas the opposite was observed in the skeletal muscle. In addition, the protein expression levels of phosphorylated­p38, p38, IL6 and TNFα in the simul­given group that received IM injection with STZ were increased (P<0.05 or P<0.01), and histopathology also indicated inflammation in pancreas and liver. The present findings suggest that a low dose of STZ may partially impair the ß cells of the pancreas, whereas long­term excess intake of HFSD may increase lipid metabolites, inhibit the insulin signaling pathway and activate the mitogen­activated protein kinase p38 signaling pathway. The combined action of STZ and AON may result in insulin resistance, which ultimately results in abnormalities in glucose and lipid metabolism. The present model, analogue to T2DM onset of humans, evaluated the medical effect on metabolic dysfunction and provides an insight into the underlining mechanism of IR.


Subject(s)
Diabetes Mellitus, Type 2/etiology , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat , Dietary Sugars , Insulin/metabolism , Mitogen-Activated Protein Kinases/metabolism , Signal Transduction , Streptozocin/adverse effects , Animals , Blood Glucose/metabolism , Diabetes Mellitus, Experimental , Disease Models, Animal , Glucose/metabolism , Lipids/blood , Muscle, Skeletal/metabolism , Organ Size , Organ Specificity , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Receptor, Insulin/metabolism
12.
Oncotarget ; 8(36): 60201-60209, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28947964

ABSTRACT

Type 1 diabetes mellitus (T1DM) is an autoimmune disease mainly mediated by effector T cells that are activated by autoantigen, thereby resulting in the destruction of pancreatic islets and deficiency of insulin. Cyclosporine is widely used as an immunosuppressant that suppresses autoimmunity in clinic. However, continuous treatments with conventional immunosuppressive drugs may cause severe side effects. Therefore it is important to seek alternative medicine. Chinese medicine Ginseng and Astragalus granule (GAG) was used to successfully treat type 2 diabetes mellitus in clinic in China. Here we found that GAG ameliorated T1DM in autoimmune NOD mice by increasing the level of insulin and reducing the level of blood glucose. Treatments with both GAG and CsA further decreased the blood glucose level. Moreover, GAG increased both CD4+FoxP3+ and CD8+CD122+PD-1+ Treg numbers in both spleens and lymph nodes of NOD mice. In particular, GAG could reverse a decline in CD4+FoxP3+ Tregs resulted from CsA treatments. The percentage of effector/memory CD8+ T cells (CD44highCD62Llow) was significantly reduced by GAG, especially in the presence of low-doses of CsA. Histopathology also showed that GAG attenuated cellular infiltration and lowered CD3+ T cell numbers around and in islets. Thus, we demonstrated that GAG ameliorated autoimmune T1DM by upregulating both CD4+FoxP3+ and CD8+CD122+PD-1+ Tregs while GAG synergized with CsA to further suppress autoimmunity and T1DM by reversing the decline in CD4+FoxP3+ Tregs resulted from CsA treatments. This study may have important clinical implications for the treatment of T1DM using traditional Chinese medicine.

13.
Oncotarget ; 8(15): 24187-24195, 2017 Apr 11.
Article in English | MEDLINE | ID: mdl-28445940

ABSTRACT

Mounting evidence has shown that naturally occurring CD8+CD122+ T cells are regulatory T cells (Tregs) that suppress both autoimmunity and alloimmunity. We have previously shown that CD8+CD122+PD-1+ Tregs not only suppress allograft rejection, but also are more potent in suppression than conventional CD4+CD25+ Tregs. However, the mechanisms underlying their suppression of alloimmunity are not well understood. In an adoptive T-cell transfer model of mice lacking lymphocytes, we found that suppression of skin allograft rejection by CD8+CD122+PD-1+ Tregs was mostly dependent on their expression of Fas ligand as either lacking Fas ligand or blocking it with antibodies largely abolished their suppression of allograft rejection mediated by transferred T cells. Their suppression was also mostly reversed when effector T cells lacked Fas receptor. Indeed, these FasL+ Tregs induced T cell apoptosis in vitro in a Fas/FasL-dependent manner. However, their suppression of T cell proliferation in vitro was dependent on IL-10, but not FasL expression. Furthermore, adoptive transfer of CD8+CD122+PD-1+ Tregs significantly extended allograft survival even in wild-type mice if Tregs lacked Fas receptor or if recipients received recombinant IL-15, as these two measures synergistically expanded adoptively-transferred Tregs in recipients. Thus, this study may have important implications for Treg therapies in clinical transplantation.


Subject(s)
Apoptosis , Fas Ligand Protein/metabolism , Graft Rejection/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , fas Receptor/metabolism , Allografts , Animals , Apoptosis/immunology , Biomarkers , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cytotoxicity, Immunologic , Immunomodulation , Interleukin-2 Receptor beta Subunit/metabolism , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Mice , Mice, Knockout , Phenotype , Programmed Cell Death 1 Receptor/metabolism , Signal Transduction
14.
Phytomedicine ; 27: 15-22, 2017 Apr 15.
Article in English | MEDLINE | ID: mdl-28314475

ABSTRACT

BACKGROUND: Curcumae Longae Rhizoma is one of the commonly used traditional Chinese medicines, which has multiple biological activities such as relieving stagnation and stasis, pain alleviation, curing amenorrhea and wounds. However, its main active component-curcumin has poor absorption and very fast metabolism in body. To solve this problem, Piper nigrum was introduced for its ability to strengthen bioavailability of other compounds. PURPOSE: In most cases of TCM couplets, all ingredients were prepared and taken simultaneously, which in our opinion did not take full advantage of their interactions. Therefore, order of administration should be adjusted according to pharmacokinetic parameters of the ingredients, which the ones act as supplement can first be taken, and main therapeutic components followed when the former reached its peak. METHOD: the extract of Piper nigrum (containing at least 95% piperine) was taken by rats 6h before taking Curcumae Longae Rhizoma extract (containing at least 95% curcumin). Then, a UPLC-MS-MS method was developed to determine their content in plasma simultaneously. Determination was carried out by on a C18 column within 5min by isocratic elution using 0.2% formic acid and acetonitrile (50:50, v/v). Tandem mass detection was conducted by selective reaction monitoring (SRM) via electrospray ionization (ESI) source in positive mode. Samples were pre-treated by liquid-liquid extraction (LLE), and verapamil was used as internal standard (IS). RESULTS: For both curcumin and piperine, the proposed method had good linearity (r2=0.999) within the concentration range of 1-1000ng/ml, with good recovery, precision and stability. The lower limit of quantification (LLOQ) was 1ng/ml. As pharmacokinetic data indicated, Maximum concentration (Cmax) of curcumin increased significantly to 394.06; the time reach maximum concentration (Tmax) and elimination half-life (T1/2) were 0.5 and 0.67h, respectively; CONCLUSION: The results provide a good strategy for the investigation of TCM formula especially the couplets, as well as a fast, selective and sensitive UPLC-MS-MS method determining active components in-vivo. Furthermore, the finding of "lagged stimulation" suggested that the use of complex formula should take pharmacokinetics into much more careful consideration.


Subject(s)
Curcuma/metabolism , Curcumin/pharmacokinetics , Cytochrome P-450 Enzyme Inhibitors/pharmacokinetics , Piper nigrum/metabolism , Piperidines/pharmacokinetics , Plant Extracts/pharmacokinetics , Animals , Chromatography, High Pressure Liquid/methods , Curcuma/chemistry , Drugs, Chinese Herbal/pharmacokinetics , Male , Piper nigrum/chemistry , Rats , Rats, Sprague-Dawley , Rhizome/chemistry , Tandem Mass Spectrometry
15.
Biopharm Drug Dispos ; 38(1): 3-19, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27882569

ABSTRACT

Curcumin (CUR) is known to exert numerous health-promoting effects in pharmacological studies, but its low bioavailability hinders the development of curcumin as a feasible therapeutic agent. Piperine (PIP) has been reported to enhance the bioavailability of curcumin, but the underlying mechanism remains poorly understood. In an attempt to find the mechanism by which piperine enhances the bioavailability of curcumin, the dosage ratio (CUR: PIP) and pre-treatment with piperine were hypothesized as key factors for improving the bioavailability in this combination. Therefore, combining curcumin with piperine at various dose ratios (1:1 to 100:1) and pre-dosing with piperine (0.5-8 h prior to curcumin) were designed to investigate their contributions to the pharmacokinetic parameters of curcumin in rats and their effects on the expression of UGT and SULT isoforms. It was shown that the Cmax and AUC0-t of curcumin were slightly increased by 1.29 and 1.67 fold at a ratio of 20:1, while curcumin exposure was enhanced significantly in all the piperine pre-treated rats (0.5-8 h), peaking at 6 h (a 6.09-fold and 5.97-fold increase in Cmax and AUC0-t , p < 0.01), regardless of the unchanged t1/2 and Tmax . Also observed was a time-dependent inhibition of the hepatic expression of UGT1A6, 1A8, SULT1A1, 1A3, and the colonic expression of UGT1A6 that occurred within 6 h of piperine pre-treatment but was reversed at 8 h, which correlated with the changes in curcumin exposure. Similarly, the inhibitory effect of piperine on most of the UGTs and SULTs are time-dependent in Caco-2 and HepG2 cells. It is concluded that piperine pre-treatment time-dependently improves the bioavailability of curcumin through the reversible and selective inhibition of UGTs and SULTs. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Alkaloids/pharmacology , Arylsulfotransferase/metabolism , Benzodioxoles/pharmacology , Curcumin/pharmacokinetics , Glucuronosyltransferase/metabolism , Piperidines/pharmacology , Polyunsaturated Alkamides/pharmacology , Animals , Biological Availability , Caco-2 Cells , Colon/drug effects , Colon/metabolism , Drug Interactions , Hep G2 Cells , Humans , Liver/drug effects , Liver/metabolism , Male , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL