Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chim Acta ; 1309: 342693, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38772660

ABSTRACT

BACKGROUND: CRISPR-Cas12a based one-step assays are widely used for nucleic acid detection, particularly for pathogen detection. However, the detection capability of the one-step assay is reduced because the Cas12a protein competes with the isothermal amplification enzymes for the target DNA and cleaves it. Therefore, the key to improving the sensitivity of the one-step assay is to address the imbalance between isothermal amplification and CRISPR detection. In previous study, we developed a Cas12a one-step assay using single-stranded DNA (ssDNA)-modified crRNA (mD-crRNA) and applied this method for the detection of pathogenic DNA. RESULTS: Here, we utilized mD-crRNA to establish a sensitive one-step assay that enables the visual detection of SARS-CoV-2 under ultraviolet light, achieving a detection limit of 5 aM without cross-reactivity. The sensitivity of mD-crRNA in the one-step assay was 100-fold higher than that of wild-type crRNA. Mechanistic studies revealed that the addition of ssDNA at the 3' end of mD-crRNA attenuates the binding affinity between the Cas12a-mD-crRNA complex and the target DNA. Consequently, this reduction in binding affinity decreases the cis-cleavage activity of Cas12a, mitigating its cleavage of the target DNA in the one-step assay. As a result, there is an augmentation in the amplification and accumulation of target DNA, thereby enhancing detection sensitivity. In the clinical testing of 40 SARS-CoV-2 RNA samples, the concordance between the results of the one-step assay and known qPCR results was 97.5 %. SIGNIFICANCE: The one-step assay using mD-crRNA proves to be highly sensitive and specificity and visually effective for the detection of SARS-CoV-2. Our study delves into the application of the mD-crRNA-mediated one-step assay in nucleic acid detection and its associated reaction mechanism. This holds great significance in addressing the inherent incompatibility issues between isothermal amplification and CRISPR detection.


Subject(s)
COVID-19 , DNA, Single-Stranded , Nucleic Acid Amplification Techniques , RNA, Viral , SARS-CoV-2 , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/genetics , Nucleic Acid Amplification Techniques/methods , Humans , RNA, Viral/analysis , RNA, Viral/genetics , COVID-19/diagnosis , COVID-19/virology , Limit of Detection , CRISPR-Cas Systems/genetics , Endodeoxyribonucleases/chemistry , Endodeoxyribonucleases/metabolism , Endodeoxyribonucleases/genetics , CRISPR-Associated Proteins/metabolism , CRISPR-Associated Proteins/genetics , Bacterial Proteins
2.
Anal Chim Acta ; 1276: 341622, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37573099

ABSTRACT

CRISPR-Cas12a RNA-guided complexes have been developed to facilitate the rapid and sensitive detection of nucleic acids. However, they are limited by the complexity of the operation, risk of carry-over contamination, and degradation of CRISPR RNA (crRNA). In this study, a Cas12a-based single-stranded DNA (ssDNA)-modified crRNA (mD-crRNA)-mediated one-step diagnostic method (CasDOS) was established to overcome these drawbacks. mD-crRNA consisted of wild-type crRNA (Wt-crRNA) with ssDNA extensions at the 3' and 5' ends. Compared to Wt-crRNA, mD-crRNA exhibited a 100-1000-fold increase in sensitivity in the one-step assay, reducing the cis-cleavage activity of Cas12a to avoid excessive cleavage of the target DNA in the early stages of the reaction, leading to increased amplification and accumulation of the target amplicons, and improved the speed and intensity of the generated fluorescence signal. The detectability of CasDOS was 16.6 aM for the constructed plasmids of Streptococcus agalactiae (GBS), human papillomavirus type 16 (HPV16), and type 18 (HPV18). In clinical trials, CasDOS achieved 100% accuracy in identifying the known genotypes of the five HPV DNA samples. Moreover, CasDOS showed complete concordance with the qPCR results for GBS detection in ten vaginal or cervical swab samples, with a turnaround time from sampling to results within 30 min. In addition, mD-crRNA remained stable after Ribonuclease R treatment, suggesting that it might be more suitable as a raw material for the CRISPR detection kit. In conclusion, we have developed a universal, rapid, and highly sensitive one-step CRISPR detection assay.


Subject(s)
Nucleic Acids , RNA , Humans , Female , DNA, Single-Stranded/genetics , CRISPR-Cas Systems , Biological Assay , Nucleic Acid Amplification Techniques
3.
Front Pediatr ; 9: 654527, 2021.
Article in English | MEDLINE | ID: mdl-34026689

ABSTRACT

Citrin deficiency caused by SLC25A13 genetic mutations is an autosomal recessive disease, and four prevalent mutations including c.851_854del, c.1638_1660dup, IVS6+5G>A, and IVS16ins3kb make up >80% of total pathogenic mutations within the Chinese population. However, suitable assays for detection of these mutations have not yet been developed for use in routine clinical practice. In the current study, a real-time PCR-based multicolor melting curve analysis (MMCA) was developed to detect the four prevalent mutations in one closed-tube reaction. The analytical and clinical performances were evaluated using artificial templates and clinical samples. All four mutations in the test samples were accurately genotyped via their labeling fluorophores and Tm values, and the standard deviations of Tm values were indicated to be <0.2°C. The limit of detection was estimated to be 500 diploid human genomes per reaction. The MMCA assay of 5,332 healthy newborns from southern China identified a total of 107 SLC25A13-mutation carriers, indicating a carrier rate of 2%. The genotypes of 107 carriers and 112 random non-carriers were validated using direct sequencing and Long-range PCR with 100% concordance. In conclusion, the assay developed in this study may potentially serve as a rapid genetic diagnostic tool for citrin deficiency.

4.
Clin Chim Acta ; 507: 187-193, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32360156

ABSTRACT

BACKGROUND: Skeletal dysplasias account for nearly 10% of fetal structural malformations detected by ultrasonography. This clinically heterogeneous group of genetic anomaly includes at least 461 genetic skeletal disorders with extreme clinical, phenotypic, and genetic heterogeneities, thus, significantly complicates accurate diagnosis. Researches have used whole exome sequencing (WES) for prenatal molecular diagnoses of skeletal dysplasias, however, data are still limited. METHODS: DNA extracted from umbilical cord blood or amniocytes from fetuses suspected of skeletal dysplasias based on ultrasound evaluations were analyzed by WES. Blood samples were taken from the parents of the positive fetuses for co-segregation analysis using Sanger sequencing. RESULT: Definitive molecular diagnosis was made in 6/8 (75%) cases, comprised of 5 de novo disease-causing changes in 3 genes (FGFR3, COL2A1, and COL1A2) and one proband with a biallelic deficiency for Lamin B Receptor(LBR),and including 3 novel variants. All fetuses had no detectable copy number variation (CNV) from sequencing results. CONCLUSIONS: Our study suggests that WES is an efficient approach for prenatal diagnosis of fetuses suspected of skeletal abnormalities and contributes to parental genetics counseling and pregnancy management.


Subject(s)
Exome Sequencing , Osteochondrodysplasias/genetics , Prenatal Diagnosis , Adult , China , Female , Fetus/abnormalities , Humans , Osteochondrodysplasias/blood , Ultrasonic Waves , Young Adult
5.
J Clin Lab Anal ; 34(2): e23054, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31625632

ABSTRACT

BACKGROUND: Centronuclear myopathy (CNM), a subtype of congenital myopathy (CM), is a group of clinical and genetically heterogeneous muscle disorders. Centronuclear myopathy is a kind of disease difficult to diagnose due to its genetic diversity. Since the discovery of the SPEG gene and disease-causing variants, only a few additional patients have been reported. METHODS: A radiograph test, ultrasonic test, and biochemical tests were applied to clinical diagnosis of CNM. We performed trio medical exome sequencing of the family and conservation analysis to identify variants. RESULTS: We report a pair of severe CNM twins with the same novel homozygous SPEG variant c. 8710A>G (p.Thr2904Ala) identified by clinical trio medical exome sequencing of the family and conservation analysis. The twins showed clinical symptoms of facial weakness, hypotonia, arthrogryposis, strephenopodia, patent ductus arteriosus, and pulmonary arterial hypertension. CONCLUSIONS: Our report expands the clinical and molecular repertoire of CNM and enriches the variant spectrum of the SPEG gene in the Chinese population and helps us further understand the pathogenesis of CNM.


Subject(s)
Muscle Proteins/genetics , Mutation , Myopathies, Structural, Congenital/genetics , Protein Serine-Threonine Kinases/genetics , Asian People/genetics , Diseases in Twins/genetics , Female , Genetic Association Studies , Homozygote , Humans , Infant, Newborn , Male , Myopathies, Structural, Congenital/etiology , Pregnancy , RNA Splicing
6.
Dis Markers ; 2019: 3815952, 2019.
Article in English | MEDLINE | ID: mdl-31976020

ABSTRACT

To identify the novel, noninvasive biomarkers to assess the outcome and prognosis of breast cancer (BC), patients with high sensitivity and specificity are greatly desired. Herein, the miRNA expression profile and matched clinical features of BC patients were extracted from The Cancer Genome Atlas (TCGA) database. The preliminary candidates were screened out by the univariate Cox regression test. Then, with the help of LASSO Cox regression analysis, the hsa-let-7b, hsa-mir-101-2, hsa-mir-135a-2, hsa-mir-22, hsa-mir-30a, hsa-mir-31, hsa-mir-3130-1, hsa-mir-320b-1, hsa-mir-3678, hsa-mir-4662a, hsa-mir-4772, hsa-mir-493, hsa-mir-556, hsa-mir-652, hsa-mir-6733, hsa-mir-874, and hsa-mir-9-3 were selected to construct the overall survival (OS) predicting signature, while the hsa-mir-130a, hsa-mir-204, hsa-mir-217, hsa-mir-223, hsa-mir-24-2, hsa-mir-29b-1, hsa-mir-363, hsa-mir-5001, hsa-mir-514a-1, hsa-mir-624, hsa-mir-639, hsa-mir-659, and hsa-mir-6892 were adopted to establish the recurrence-free survival (RFS) predicting signature. Referring to the median risk scores generated by the OS and RFS formulas, respectively, subgroup patients with high risk were strongly related to a poor OS and RFS revealed by Kaplan-Meier (K-M) plots. Meanwhile, receiver operating curve (ROC) analysis validated the accuracy and stability of these two signatures. When stratified by clinical features, such as tumor stage, age, and molecular subtypes, we found that the miRNA-based OS and RFS classifiers were still significant in predicting OS/RFS and showed the best predictive values than any other features. Besides, functional prediction analyses showed that these targeted genes of the enrolled miRNAs were enriched in cancer-associated pathways, such as MAPK/RTK, Ras, and PI3K-Akt signaling pathways. In summary, our observations demonstrate that the novel miRNA-based OS and RFS signatures are independent prognostic indicators for BC patients and worthy to be validated by further prospective studies.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Gene Expression Profiling/methods , MicroRNAs/genetics , Breast Neoplasms/mortality , Disease-Free Survival , Female , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , Kaplan-Meier Estimate , Prognosis , Prospective Studies , ROC Curve
SELECTION OF CITATIONS
SEARCH DETAIL
...