Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
Add more filters










Publication year range
1.
J Food Sci ; 89(6): 3858-3870, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38725370

ABSTRACT

Bisphenol A (BPA) is an endocrine disruptor with reproductive toxicity. Further, 1,25-dihydroxyvitamin D3 (VD3) plays an important role in male reproduction by binding vitamin D receptor (VDR) and mediating the pleiotropic biological actions that include spermatogenesis. However, whether VD3/VDR regulates the effect of BPA on Leydig cells (LCs) injury remains unknown. This study aimed to explore the effects of VD on BPA-induced cytotoxicity in mouse LCs. Hereby, LCs treated with BPA, VD3, or both were subjected to the assays of cell apoptosis, proliferation, autophagy, and levels of target proteins. This study unveiled that cell viability was dose-dependently reduced after exposure to BPA. BPA treatment significantly inhibited LC proliferation, induced apoptosis, and also downregulated VDR expression. By jointly analyzing transcriptome data and Comparative Toxicogenomics Database (CTD) data, autophagy signaling pathways related to testicular development and male reproduction were screened out. Therefore, the autophagy phenomenon of cells was further detected. The results showed that BPA treatment could activate cell autophagy, Vdr-/- inhibits cell autophagy, and active VD3 does not have a significant effect on the autophagy of normal LCs. After VD3 and BPA were used in combination, the autophagy of cells was further enhanced, and VD3 could alleviate BPA-induced damage of LCs. In conclusion, this study found that supplementing VD3 could eliminate the inhibition of BPA on VDR expression, further enhance LCs autophagy effect, and alleviate the inhibition of LCs proliferation and induction of apoptosis by BPA, playing a protective role in cells. The research results will provide valuable strategies to alleviate BPA-induced reproductive toxicity.


Subject(s)
Apoptosis , Autophagy , Benzhydryl Compounds , Cell Proliferation , Cell Survival , Endocrine Disruptors , Leydig Cells , Phenols , Receptors, Calcitriol , Animals , Benzhydryl Compounds/toxicity , Male , Mice , Receptors, Calcitriol/metabolism , Receptors, Calcitriol/genetics , Apoptosis/drug effects , Leydig Cells/drug effects , Leydig Cells/metabolism , Autophagy/drug effects , Endocrine Disruptors/toxicity , Cell Proliferation/drug effects , Cell Survival/drug effects , Calcitriol/pharmacology , Testis/drug effects , Testis/metabolism
2.
Food Chem X ; 22: 101478, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38813459

ABSTRACT

Microbial composition plays an important role in the quality and flavor of bacon. The aims of this study were to detect bacterial community succession using high-throughput sequencing (HTS) and volatile flavor compound changes using gas chromatography-ion mobility spectrometry (GC-IMS) during the production of Zhenba bacon. The results showed that a total of 70 volatile compounds were detected. Among them, ketones, hydrocarbons, aldehydes, esters and alcohols were the main substances in the curing and smoking stages. In addition, the fungal abundance was greater than the bacterial abundance, and there was obvious succession of the microbial community with changes in fermentation time and processing technology. The main functional bacterial genera in the curing and smoking stages were Staphylococcus, Psychrobacter and Latilactobacillus, and the main fungal genera were Fusarium and Debaryomyces. Through correlation analysis, we found that pyrrole, 2-pentanol, methyl isobutyl ketone (MIBK) and ethyl acetate (EA) were significantly correlated with Staphylococcus, Psychrobacter, Pseudomonas and Myroides (p < 0.01), and it is speculated that they contribute significantly to flavor formation. The results of this study are helpful for understanding the microbial dynamics and characteristic volatile flavor compounds in Zhenba bacon, and provide new insights into the relationship between microorganisms and flavor through potential correlations.

3.
Foods ; 13(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38611386

ABSTRACT

This study aimed to understand the genetic and metabolic traits of a Lactiplantibacillus plantarum JS21 strain and its probiotic abilities through laboratory tests and computer analysis. L. plantarum JS21 was isolated from a traditional fermented food known as "Jiangshui" in Hanzhong city. In this research, the complete genetic makeup of JS21 was determined using Illumina and PacBio technologies. The JS21 genome consisted of a 3.423 Mb circular chromosome and five plasmids. It was found to contain 3023 protein-coding genes, 16 tRNA genes, 64 rRNA operons, 40 non-coding RNA genes, 264 pseudogenes, and six CRISPR array regions. The GC content of the genome was 44.53%. Additionally, the genome harbored three complete prophages. The evolutionary relationship and the genome collinearity of JS21 were compared with other L. plantarum strains. The resistance genes identified in JS21 were inherent. Enzyme genes involved in the Embden-Meyerhof-Parnas (EMP) and phosphoketolase (PK) pathways were detected, indicating potential for facultative heterofermentative pathways. JS21 possessed bacteriocins plnE/plnF genes and genes for polyketide and terpenoid assembly, possibly contributing to its antibacterial properties against Escherichia coli (ATCC 25922), Escherichia coli (K88), Staphylococcus aureus (CMCC 26003), and Listeria monocytogenes (CICC 21635). Furthermore, JS21 carried genes for Na+/H+ antiporters, F0F1 ATPase, and other stress resistance genes, which may account for its ability to withstand simulated conditions of the human gastrointestinal tract in vitro. The high hydrophobicity of its cell surface suggested the potential for intestinal colonization. Overall, L. plantarum JS21 exhibited probiotic traits as evidenced by laboratory experiments and computational analysis, suggesting its suitability as a dietary supplement.

4.
Poult Sci ; 103(4): 103513, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38350389

ABSTRACT

As the largest organ of the body, the skin participates in various physiological activities, such as barrier function, sensory function, and temperature regulation, thereby maintaining the balance between the body and the natural environment. To date, compositional and transcriptional profiles in chicken skin cells have not been reported. Here, we report detailed transcriptome analyses of cell populations present in the skin of a black-feather chicken and a white-feather chicken using single-cell RNA sequencing (scRNA-seq). By analyzing cluster-specific gene expression profiles, we identified 12 cell clusters, and their corresponding cell types were also characterized. Subsequently, we characterized the subpopulations of keratinocytes, myocytes, mesenchymal cells, fibroblasts, and melanocytes. It is worth noting that we have identified a subpopulation of keratinocytes involved in pigment granule capture and a subpopulation of melanocytes involved in pigment granule deposition, both of which have a higher cell abundance in black-feather chicken compared to white-feather chicken. Meanwhile, we also compared the cellular heterogeneity features of Lueyang black-bone chicken skin with different feather colors. In addition, we also screened out 12 genes those could be potential markers of melanocytes. Finally, we validated the specific expression of SGK1, WNT5A, CTSC, TYR, and LAPTM5 in black-feather chicken, which may be the key candidate genes determining the feather color differentiation of Lueyang black-bone chicken. In summary, this study first revealed the transcriptome characteristics of chicken skin cells via scRNA-seq technology. These datasets provide valuable information for the study of avian skin characteristics and have important implications for future poultry breeding.


Subject(s)
Chickens , Transcriptome , Animals , Chickens/genetics , Feathers , Gene Expression Profiling/veterinary , Pigmentation/genetics
5.
Biol Reprod ; 110(1): 48-62, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-37812443

ABSTRACT

Genomic integrity is critical for sexual reproduction, ensuring correct transmission of parental genetic information to the descendant. To preserve genomic integrity, germ cells have evolved multiple DNA repair mechanisms, together termed as DNA damage response. The RNA N6-methyladenosine is the most abundant mRNA modification in eukaryotic cells, which plays important roles in DNA damage response, and YTH N6-methyladenosine RNA binding protein 2 (YTHDF2) is a well-acknowledged N6-methyladenosine reader protein regulating the mRNA decay and stress response. Despite this, the correlation between YTHDF2 and DNA damage response in germ cells, if any, remains enigmatic. Here, by employing a Ythdf2-conditional knockout mouse model as well as a Ythdf2-null GC-1 mouse spermatogonial cell line, we explored the role and the underlying mechanism for YTHDF2 in spermatogonial DNA damage response. We identified that, despite no evident testicular morphological abnormalities under the normal circumstance, conditional mutation of Ythdf2 in adult male mice sensitized germ cells, including spermatogonia, to etoposide-induced DNA damage. Consistently, Ythdf2-KO GC-1 cells displayed increased sensitivity and apoptosis in response to DNA damage, accompanied by the decreased SET domain bifurcated 1 (SETDB1, a histone methyltransferase) and H3K9me3 levels. The Setdb1 knockdown in GC-1 cells generated a similar phenotype, but its overexpression in Ythdf2-null GC-1 cells alleviated the sensitivity and apoptosis in response to DNA damage. Taken together, these results demonstrate that the N6-methyladenosine reader YTHDF2 promotes DNA damage repair by positively regulating the histone methyltransferase SETDB1 in spermatogonia, which provides novel insights into the mechanisms underlying spermatogonial genome integrity maintenance and therefore contributes to safe reproduction.


Subject(s)
Acetates , Phenols , RNA-Binding Proteins , Spermatogonia , Animals , Male , Mice , DNA Damage , DNA Repair , Histone Methyltransferases/genetics , Histone Methyltransferases/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Spermatogonia/metabolism , Transcription Factors/genetics
6.
Mol Divers ; 2023 Sep 09.
Article in English | MEDLINE | ID: mdl-37688740

ABSTRACT

The activated form of vitamin D3 [1,25-dihydroxyvitamin D3; 1,25(OH)2D3] is important for various physiological processes, such as bone mineralization and calcium metabolism, and plays an anticancer role in numerous cancers as well. Its role in melanoma cells has yet to be proven. NOP2/Sun RNA methyltransferase 2 (NSUN2) is a typical RNA methyltransferase and is highly expressed in a variety of cancer cells. However, the molecular mechanisms underlying the role of 1,25(OH)2D3 and NSUN2 in melanoma cells remain largely unknown. The current study showed that 1,25(OH)2D3 could significantly and specifically inhibit the proliferation and migration of melanoma B16 cells. 1,25(OH)2D3 enhances vitamin D receptor expression while simultaneously reducing NSUN2 expression in melanoma cells. Subsequently, knockdown of NSUN2 suppressed B16 cell proliferation and migration. RNA-Seq results illuminated that DNA replication, cell proliferation and cell cycle pathways were enriched, and genes promoting these pathways were reduced after knocking down Nsun2. Dual-luciferase reporter assays showed that 1,25(OH)2D3 downregulated reporter gene expression was controlled by the Nsun2 promoter. The results suggest that 1,25(OH)2D3 binds to the vitamin D response element located upstream of the Nsun2 promoter to downregulate Nsun2 transcription activity and then affects the gene expression pattern related to cell proliferation and the cell cycle, thereby restraining B16 cell proliferation and migration.

7.
Poult Sci ; 102(9): 102855, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37390546

ABSTRACT

Newcastle disease virus (NDV) is an RNA virus taking poultry as the host, and the Newcastle disease (ND) caused by NDV is one of the diseases with serious damage to the health of poultry. Mx encoding by myxovirus resistance gene, induced by type I interferon (IFN), has a wide range of antiviral and GTPase activities in human, mice, and other species via inhibition virus replication. However, the antiviral ability of chicken Mx is still a controversial issue. To explore the effect of chicken Mx post-NDV infection, Mx-knockout DF-1 cells were constructed via CRISPR/Cas9 gene editing system. The number of copies of NDV was detected by RT-qPCR, and the mRNA expression levels of IRF-7, IFN-α, IFN-ß, TNF-α, p21, p27, and Bak in DF-1 cells were analyzed after NDV infection. Compared with control cells, virus titers were much higher in Mx-knockout DF-1 cells post-NDV infection. The deficiency of Mx aggravated the cell pathological features post-NDV infection, and promoted the expression levels of IRF-7, IFN-α, IFN-ß, and pro-inflammatory cytokine TNF-α in host cells. In addition, cells with Mx deficiency could alleviate the harm from virus by enhancing the expression of p21, p27, and Bak, which related to cell proliferation apoptosis. In conclusion, Mx played an important role in antivirus invasion. In the absence of Mx, cells could alleviate the harm from virus infection via retarding cell proliferation and enhancing cell apoptosis.


Subject(s)
Newcastle Disease , Animals , Mice , Humans , Chickens , Newcastle disease virus , Tumor Necrosis Factor-alpha , Antiviral Agents/pharmacology , Cell Line , Immunity , Fibroblasts , Virus Replication
8.
Mol Hum Reprod ; 29(7)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37233400

ABSTRACT

Chromium (Cr) and its compounds are closely associated with individuals' lives and extensively used in industry. Excessive exposure to hexavalent chromium (Cr(VI)) induces oxidative damage of various organs including the testes, posing a serious threat to male reproductive fitness. As an endogenous antioxidant, melatonin holds potent antioxidative and anti-inflammatory properties, becoming a potential candidate for treatment of a variety of diseases, including reproductive disorders. Here, by using a mouse model, we systematically assessed Cr(VI)-induced damage to male fertility as well as the preventive role of melatonin. We analyzed the histology and pathology of the testis and epididymis, the density, viability, and malformation of caudal epididymal sperm, the proliferative activity and apoptosis of various spermatogenic subtypes and Sertoli cells, as well as the fertility of mice at five timepoints within one cycle of spermatogenesis (Days 0, 14, 21, 28, and 35) post 14 days of Cr(VI) and/or melatonin intraperitoneal injection. We identified that the testicular damage caused by Cr(VI) persisted to Day 21 after administration and then started to be alleviated, with clear alleviation on Day 35. Pretreatment with melatonin evidently reduced Cr(VI)-induced testicular damage and accelerated spermatogenic restoration, generating an almost normal phenotype on Day 35. Melatonin pretreatment also retained the sperm quality at all time points investigated. Moreover, melatonin to some extent preserved the fertility of Cr(VI)-treated mice without apparent side effects. The findings shed light on the future clinical application of melatonin as a therapeutic agent for environmental heavy metal toxicant-induced male subfertility or infertility.


Subject(s)
Melatonin , Male , Animals , Melatonin/pharmacology , Longitudinal Studies , Semen , Antioxidants/pharmacology , Chromium/toxicity , Fertility
9.
Poult Sci ; 102(7): 102721, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37186968

ABSTRACT

Lueyang black-bone chicken is a domestic breed in China. The genetic mechanism of the formation of important economic traits of this breed has not been studied systematically. Therefore, in this study, whole genome resequencing was used to systematically analyze and evaluate the genetic diversity of the black-feather and white-feather populations, and to screen and identify key genes related to phenotypes. The results of principal component analysis and population structure analysis showed that Lueyang black-feathered chickens and white-feathered chickens could be divided into 2 subgroups, and the genetic diversity of black-feathered chicken was richer than that of white-feathered chickens. Linkage disequilibrium analysis also showed that the selection intensity of black-feathered chickens was lower than for white-feathered chickens, which was mainly due to the small population size of white-feathered chickens and a certain degree of inbreeding. Fixation index (FST) analysis revealed that the candidate genes related to feather color traits were G-gamma, FA, FERM, Kelch, TGFb, Arf, FERM, and melanin synthesis-related gene tyrosinase (TYR). Based on Kyoto Encyclopedia of Genes and Genomes enrichment analysis, Jak-STAT, mTOR, and TGF-ß signaling pathways were mainly related to melanogenesis and plume color. The findings of this study supported important information for the evaluation and protection of chicken genetic resources and help to analyze the unique genetic phenotypes such as melanin deposition and feather color of Lueyang black-bone chicken. Additionally, it could provide basic research data for the improvement and breeding of Lueyang black-bone chicken with characteristic traits.


Subject(s)
Chickens , Melanins , Animals , Chickens/genetics , Melanins/genetics , Feathers , Genome , Phenotype , Polymorphism, Single Nucleotide
10.
Toxicol Lett ; 377: 38-50, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36739042

ABSTRACT

Spermatogonial stem cells (SSCs) are the basis of spermatogenesis, and SSC homeostasis is essential for lifelong male fertility. Currently, environmental pollution remains one of the factors affecting human reproductive health. Chromium is a prevalent metal element, and excessive exposure to hexavalent chromium (Cr (VI)) can cause male reproductive disorders. Nevertheless, the toxic effects of Cr (VI) on SSCs and the underlying mechanisms remain incompletely understood. Here, we showed that Cr (VI) exposure triggered mitophagy in mouse SSCs/progenitors in a time-dependent manner. Concurrently, Cr (VI) treatment caused reactive oxygen species (ROS) accumulation and activated the HIF1α-mediated BNIP3 expression to trigger mitophagy. In addition, Cr (VI) exposure significantly decreased the level of m6A modification. Further, we identified that YTHDF2 regulated the stability of Bnip3 and Hif1α mRNAs in an m6A-dependent manner, which was involved in Cr (VI)-induced mitophagy. Collectively, our study not only expands the mechanisms for Cr (VI)-caused male reproductive toxicity, but also provides pharmacological targets for prevention and treatment of Cr (VI)-induced male fertility impairment.


Subject(s)
Chromium , Mitophagy , Animals , Male , Mice , Chromium/metabolism , Membrane Proteins/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Proto-Oncogene Proteins/metabolism , Reactive Oxygen Species/metabolism , RNA, Messenger/genetics , RNA-Binding Proteins , Stem Cells/metabolism
11.
Theriogenology ; 200: 155-167, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36806925

ABSTRACT

Spermatogenesis is a highly complicated biological process that occurs in the epithelium of the seminiferous tubules. It is regulated by a complex network of endocrine and paracrine factors. Sertoli cells (SCs) play a key role in spermatogenesis due to their production of trophic, differentiation, and immune-modulating factors. However, many of the molecular pathways of SC action remain controversial and unclear. Recently, many studies have focused on exosomes as an important mechanism of intercellular communication. We found that the exosomes derived from mouse SCs inhibited the apoptosis of primary spermatogonia. A total of 1016 miRNAs in SCs and 556 miRNAs in exosomes were detected using miRNA high-throughput sequencing. A total of 294 miRNAs were differentially expressed between SCs and exosomes. Furthermore, 19 tsRNA families appeared in SCs, while 6 tsRNA families appeared in exosomes. A total of 57 and 1 miRNAs (RPM >4) and 14 and 1 tsRNAs were exclusively expressed in SCs and exosomes, respectively. MiR-10b is one of the top ten exosomes with a relatively large enrichment of miRNA. Overexpression of miR-10b downregulates the expression of the target KLF4 to reduce spermatogonial apoptosis in primary spermatogonia or the C18-4 cell line.


Subject(s)
Exosomes , MicroRNAs , Male , Mice , Animals , Spermatogonia/physiology , Sertoli Cells/metabolism , MicroRNAs/metabolism , Apoptosis
12.
Theriogenology ; 198: 344-355, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36640739

ABSTRACT

Spermatogenesis is an intricate developmental process occurring in testes by which spermatogonial stem cells (SSCs) self-renew and differentiate into mature sperm. The molecular mechanisms for SSC self-renewal and differentiation, while have been well studied in mice, may differ between mice and domestic animals including pigs. To gain knowledge about the molecular mechanisms for porcine SSC self-renewal and differentiation that have so far been poorly understood, here we isolated and enriched prospermatogonia from neonatal porcine testes, and exposed the cells to retinoic acid, a direct inducer for spermatogonial differentiation. We then identified that retinoic acid could induce porcine prospermatogonial differentiation, which was accompanied by a clear transcriptomic alteration, as revealed by the RNA-sequencing analysis. We also compared retinoic acid-induced in vitro porcine spermatogonial differentiation with the in vivo process, and compared retinoic acid-induced in vitro spermatogonial differentiation between pigs and mice. Furthermore, we analyzed retinoic acid-induced differentially expressed long non-coding RNAs (lncRNAs), and demonstrated that a pig-specific lncRNA, lncRNA-106504875, positively regulated porcine spermatogonial proliferation by targeting the core transcription factor ZBTB16. Taken together, these results would help to elucidate the roles of retinoic acid in porcine spermatogonial differentiation, thereby contributing to further knowledge about the molecular mechanisms underlying porcine SSC development and, in the long run, to optimization of both long-term culture and induced differentiation systems for porcine SSCs.


Subject(s)
RNA, Long Noncoding , Tretinoin , Male , Animals , Mice , Swine , Tretinoin/pharmacology , Semen , Spermatogonia , Testis , Spermatogenesis , Cell Differentiation
13.
Int J Mol Sci ; 25(1)2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38203316

ABSTRACT

Methyltransferase-like 21C (METTL21C) is a member of the non-histone methyltransferase superfamily, which mainly mediates the methylation of lysine (Lys) residues. The main types of modification are Lys dimethylation and trimethylation. However, at present, most of the studies on METTL21C are focused on humans and mice, and there are few reports on poultry. Therefore, chicken embryo fibroblasts (DF-1) were selected as the object of study. To explore the function of chicken METTL21C (chMETTL21C) in the proliferation of DF-1 cells, flow cytometry and qPCR were used to detect the function of chicken METTL21C in the proliferation of DF-1 cells. The results showed that overexpression of METTL21C blocked the cell cycle in the G1max S phase, thus inhibiting cell proliferation. In addition, based on proteomic analysis, stable overexpression of METTL21C may inhibit the proliferation of DF-1 cells by mediating lysine trimethylation of proliferation-related proteins phosphorylated adapter RNA export protein (PHAX), nucleoside diphosphate kinases (NDPKs), eukaryotic transcription extension factor (eukaryotic translation elongation factor 1A,e EF1A), and inversin (Invs). Through immunoprecipitation (co-IP) and liquid chromatography-mass spectrometry (LC-MS/MS) analysis, METTL21C-mediated PHAX Lys-381 methylation was confirmed to be involved in the regulation of DF-1 cell proliferation. The results of this study provide a reference for analyzing the methylation function of METTL21C and the mechanism of regulating the growth and development of chicken cells.


Subject(s)
Lysine , RNA , Chick Embryo , Humans , Animals , Mice , Chromatography, Liquid , Proteomics , Tandem Mass Spectrometry , Adaptor Proteins, Signal Transducing , Chickens , Methyltransferases/genetics
14.
Front Immunol ; 13: 950917, 2022.
Article in English | MEDLINE | ID: mdl-36389748

ABSTRACT

Background: The significant difference in prognosis between IDH1 wild-type and IDH1 mutant glioblastoma multiforme (GBM) may be attributed to their metabolic discrepancies. Hence, we try to construct a prognostic signature based on glycolysis-related genes (GRGs) for IDH1-associated GBM and further investigate its relationships with immunity. Methods: Differentially expressed GRGs between IDH1 wild-type and IDH1 mutant GBM were screened based on the TCGA database and the Molecular Signature Database (MSigDB). Consensus Cluster Plus analysis and KEGG pathway analyses were used to establish a new GRGs set. WGCNA, univariate Cox, and LASSO regression analyses were then performed to construct the prognostic signature. Then, we evaluated association of the prognostic signature with patients' survival, clinical characteristics, tumor immunogenicity, immune infiltration, and validated one hub gene. Results: 956 differentially expressed genes (DEGs) between IDH1 wild-type and mutant GBM were screened out and six key prognostically related GRGs were rigorously selected to construct a prognostic signature. Further evaluation and validation showed that the signature independently predicted GBM patients' prognosis with moderate accuracy. In addition, the prognostic signature was also significantly correlated with clinical traits (sex and MGMT promoter status), tumor immunogenicity (mRNAsi, EREG-mRNAsi and HRD-TAI), and immune infiltration (stemness index, immune cells infiltration, immune score, and gene mutation). Among six key prognostically related GRGs, CLEC5A was selected and validated to potentially play oncogenic roles in GBM. Conclusion: Construction of GRGs prognostic signature and identification of close correlation between the signature and immune landscape would suggest its potential applicability in immunotherapy of GBM in the future.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Brain Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Glioblastoma/pathology , Glycolysis/genetics , Isocitrate Dehydrogenase/genetics , Lectins, C-Type/genetics , Receptors, Cell Surface/genetics
15.
Reprod Toxicol ; 111: 92-105, 2022 08.
Article in English | MEDLINE | ID: mdl-35643323

ABSTRACT

Hexavalent chromium (Cr (VI)) is a widely used metal and has been shown to cause male reproductive abnormalities. However, the underlying mechanisms for the Cr (VI)-induced reproductive toxicity remain incompletely understood. In this study, we investigated the spermatogonial damage caused by Cr (VI) as well as the protective effect of melatonin against Cr (VI)-triggered toxicity. We observed that Cr (VI) caused spermatogonial damage in a time- and dose-dependent manner. Results further showed that melatonin could protect spermatogonia from Cr (VI)-triggered damage via elimination of reactive oxygen species (ROS) as well as via suppression of ATM-p53 phosphorylation and the mitogen-activated protein kinase (MAPK) pathway. Prior administration of melatonin also prevented the Cr (VI)-caused enrichment of H3K9me3 in the Mad1, Mad2 and Bcl2 gene promoter regions, precluding the G2/M arrest and apoptosis in spermatogonia. Taken together, this study demonstrates that melatonin can effectively protect spermatogonia against the damage and against the histone modification changes induced by Cr (VI). This, along with the uncovered molecular mechanism, provide important implications for male infertility induced by environmental pollution.


Subject(s)
Melatonin , Apoptosis , Chromium/toxicity , Humans , Male , Melatonin/pharmacology , Reactive Oxygen Species/metabolism , Spermatogonia/metabolism
16.
Mol Reprod Dev ; 89(8): 325-336, 2022 08.
Article in English | MEDLINE | ID: mdl-35734898

ABSTRACT

Mammalian sperm and oocytes are haploid cells that carry parental genetic and epigenetic information for their progeny. The cytoplasm of oocytes is also capable of reprograming somatic cells to establish totipotency through somatic cell nuclear transfer (SCNT). However, epigenetic barriers seriously counteract SCNT reprogramming. Here, we found that sperm-derived RNAs elevated chromatin accessibility of nuclear donor cells concurrent with the appearance of increased RNA amount and decreased cell proliferation, instead of activating DNA damage response. Additionally, tri-methylation of lysine 9 on histone H3 (H3K9me3) and the H3K9 methyltransferase SUV39H2 were significantly downregulated by the sperm-derived RNA treatment. Our findings thus raise a fascinating possibility that sperm RNA-induced R-loops may activate gene expression and chromatin structure, thereby promoting SCNT reprogramming.


Subject(s)
R-Loop Structures , Semen , Animals , Cellular Reprogramming/genetics , Chromatin/metabolism , Embryo, Mammalian/metabolism , Male , Mammals/genetics , Nuclear Transfer Techniques , RNA/genetics , RNA/metabolism , Spermatozoa
18.
Gene ; 834: 146589, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35598688

ABSTRACT

Vitamin D and vitamin D receptor (VD/VDR) plays a vital role in the development of spermatozoa, which is largely determined by the testosterone level in serum. Testosterone biosynthesis is closely related to lipid metabolism in gonadal adipose around testes. VDR could regulate lipid metabolism in adipocytes as well. However, it still remains unknown how VDR regulates lipid metabolism to impact testosterone biosynthesis in testis. Hereby, various parameters of male fertility were compared between wildtype (WT) and Vdr knockout (Vdr-KO) male mouse. For Vdr-KO mice, the size of testis and gonadal adipose was smaller than that of WT, and the sperm quality and testosterone level were lower than WT. Subsequently, testis proteome data between Vdr-KO and WT mice indicated that dysregulation of lipid metabolism was closely associated with decreased testosterone biosynthesis in Vdr-deficient mouse. And further evaluation of VDR functions in Leydig cells verified that VDR impacted lipid metabolism and regulated the expression of a range of genes involved in testosterone biosynthesis. Knockdown VDR could significantly decrease testosterone synthesis and secretion in Leydig cells. Meanwhile, expression of genes involved in androgen synthesis was decreased but genes related to lipolysis were up-regulated. Collectively, the present study unveiled the relationship between lipid metabolism and testosterone biosynthesis mediated by VDR in mouse testis and its effect on male fertility. These findings will greatly enhance our current understanding of VDR intermediate in lipid metabolism and androgen synthesis.


Subject(s)
Receptors, Calcitriol , Testis , Androgens/metabolism , Animals , Fertility , Lipid Metabolism/genetics , Male , Mice , Mice, Knockout , Receptors, Calcitriol/genetics , Receptors, Calcitriol/metabolism , Testis/metabolism , Testosterone/metabolism , Vitamin D/metabolism
19.
Front Vet Sci ; 9: 856536, 2022.
Article in English | MEDLINE | ID: mdl-35433908

ABSTRACT

Frozen-thawed boar sperm was not widely used in pig artificial insemination as the sperm quality was damaged by biochemical and physical modifications during the cryopreservation process. The aim of this study was to investigate whether reduction of the glucose level in diluted medium could protect the post-thaw boar sperm or not. Boar sperm was diluted with the pre-treatment medium with different doses of glucose (153, 122.4, 91.8, 61.2, 30.6, and 0 mM) during the cooling process. The sperm motility patterns and glycolysis were evaluated during the cooling process. Meanwhile, the post-thaw sperm quality, ATP level, mitochondrial function as well as apoptosis were also measured. It was observed that 153 mM glucose treatment showed the highest glycolysis in boar sperm as the activities of hexokinase, fructose-bisphosphate aldolase A, and lactate dehydrogenase are the highest as well as the lactate level. Reduction of the glucose level from 153 to 30.6 mM suppressed sperm glycolysis. In addition, treatment with 153 mM glucose made the sperm demonstrate a circle-like movement along with a high value of curvilinear velocity and amplitude of the lateral head, while decreasing the glucose level reduced those patterns in the cooling process. Moreover, reduction of the glucose level also significantly increased the post-thaw sperm's total motility, progressive motility, straight-linear velocity, membrane integrity, and acrosome integrity. The treatment with 30.6 mM glucose showed the highest value among the treatments. Furthermore, the post-thaw sperm's succinate dehydrogenase activity, malate dehydrogenase activity, mitochondrial membrane potential as well as ATP level were increased by reducing the glucose level from 153 to 30.6 mM. Interestingly, the treatment with 30.6 mM glucose showed the lowest apoptosis of post-thaw sperm among the treatments. Those observations suggest that reduction of the glucose level in diluted medium increased the post-thaw boar sperm quality via decreasing the glycolytic metabolism. These findings provide novel insights that reduction of boar sperm activity via decreasing sperm glycolysis during the cooling process helps to improve the post-thaw sperm quality during cryopreservation.

20.
World J Clin Cases ; 10(9): 2751-2763, 2022 Mar 26.
Article in English | MEDLINE | ID: mdl-35434091

ABSTRACT

BACKGROUND: The exact definition of Acute kidney injury (AKI) for patients with traumatic brain injury (TBI) is unknown. AIM: To compare the power of the "Risk, Injury, Failure, Loss of kidney function, and End-stage kidney disease" (RIFLE), Acute Kidney Injury Network (AKIN), Creatinine kinetics (CK), and Kidney Disease Improving Global Outcomes (KDIGO) to determine AKI incidence/stage and their association with the in-hospital mortality rate of patients with TBI. METHODS: This retrospective study collected the data of patients admitted to the intensive care unit for neurotrauma from 2001 to 2012, and 1648 patients were included. The subjects in this study were assessed for the presence and stage of AKI using RIFLE, AKIN, CK, and KDIGO. In addition, the propensity score matching method was used. RESULTS: Among the 1648 patients, 291 (17.7%) had AKI, according to KDIGO. The highest incidence of AKI was found by KDIGO (17.7%), followed by AKIN (17.1%), RIFLE (12.7%), and CK (11.5%) (P = 0.97). Concordance between KDIGO and RIFLE/AKIN/CK was 99.3%/99.1%/99.3% for stage 0, 36.0%/91.5%/44.5% for stage 1, 35.9%/90.6%/11.3% for stage 2, and 47.4%/89.5%/36.8% for stage 3. The in-hospital mortality rates increased with the AKI stage in all four definitions. The severity of AKI by all definitions and stages was not associated with in-hospital mortality in the multivariable analyses (all P > 0.05). CONCLUSION: Differences are seen in AKI diagnosis and in-hospital mortality among the four AKI definitions or stages. This study revealed that KDIGO is the best method to define AKI in patients with TBI.

SELECTION OF CITATIONS
SEARCH DETAIL
...