Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int Immunopharmacol ; 133: 112101, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38640717

ABSTRACT

Intervertebral disc degeneration (IVDD) is a progressive degenerative disease influenced by various factors. Genkwanin, a known anti-inflammatory flavonoid, has not been explored for its potential in IVDD management. This study aims to investigate the effects and mechanisms of genkwanin on IVDD. In vitro, cell experiments revealed that genkwanin dose-dependently inhibited Interleukin-1ß-induced expression levels of inflammatory factors (Interleukin-6, inducible nitric oxide synthase, cyclooxygenase-2) and degradation metabolic protein (matrix metalloproteinase-13). Concurrently, genkwanin upregulated the expression of synthetic metabolism genes (type II collagen, aggrecan). Moreover, genkwanin effectively reduced the phosphorylation of phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin, mitogen-activated protein kinase (MAPK), and nuclear factor-κB (NF-κB) pathways. Transcriptome sequencing analysis identified integrin α2 (ITGA2) as a potential target of genkwanin, and silencing ITGA2 reversed the activation of PI3K/AKT pathway induced by Interleukin-1ß. Furthermore, genkwanin alleviated Interleukin-1ß-induced senescence and apoptosis in nucleus pulposus cells. In vivo animal experiments demonstrated that genkwanin mitigated the progression of IVDD in the rat model through imaging and histological examinations. In conclusion, This study suggest that genkwanin inhibits inflammation in nucleus pulposus cells, promotes extracellular matrix remodeling, suppresses cellular senescence and apoptosis, through the ITGA2/PI3K/AKT, NF-κB and MAPK signaling pathways. These findings indicate that genkwanin may be a promising therapeutic candidate for IVDD.


Subject(s)
Apoptosis , Cellular Senescence , Flavonoids , Intervertebral Disc Degeneration , Signal Transduction , Animals , Humans , Male , Rats , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Apoptosis/drug effects , Cellular Senescence/drug effects , Disease Models, Animal , Flavonoids/pharmacology , Flavonoids/therapeutic use , Integrin alpha2/metabolism , Integrin alpha2/genetics , Interleukin-1beta/metabolism , Intervertebral Disc Degeneration/drug therapy , Intervertebral Disc Degeneration/pathology , Intervertebral Disc Degeneration/metabolism , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 13/genetics , Nucleus Pulposus/drug effects , Nucleus Pulposus/pathology , Nucleus Pulposus/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Signal Transduction/drug effects
3.
Biomedicines ; 12(2)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38397931

ABSTRACT

Cancer-associated muscle wasting is a widespread syndrome in people with cancer and is characterized by weight loss and muscle atrophy, leading to increased morbidity and mortality. However, the tumor-derived factors that affect the development of muscle wasting and the mechanism by which they act remain unknown. To address this knowledge gap, we aimed to delineate differences in tumor molecular characteristics (especially secretion characteristics) between patients with and without sarcopenia across 10 tumor types from The Cancer Genome Atlas (TCGA). We integrated radiological characteristics from CT scans of TCGA cancer patients, which allowed us to calculate skeletal muscle area (SMA) to confirm sarcopenia. We combined TCGA and GTEx (The Genotype-Tissue Expression) data to analyze upregulated secretory genes in 10 tumor types compared with normal tissues. Upregulated secretory genes in the tumor microenvironment and their relation to SMA were analyzed to identify potential muscle wasting biomarkers (560 samples). Meanwhile, their predictive values for patient survival was validated in 3530 samples in 10 tumor types. A total of 560 participants with transcriptomic data and SMA were included. Among those, 136 participants (24.28%) were defined as having sarcopenia based on SMA. Enrichment analysis for upregulated secretory genes in cancers revealed that pathways associated with muscle wasting were strongly enriched in tumor types with a higher prevalence of sarcopenia. A series of SMA-associated secretory protein-coding genes were identified in cancers, which showed distinct gene expression profiles according to tumor type, and could be used to predict prognosis in cancers (p value ≤ 0.002). Unfortunately, those genes were different and rarely overlapped across tumor types. Tumor secretome characteristics were closely related to sarcopenia. Highly expressed secretory mediators in the tumor microenvironment were associated with SMA and could affect the overall survival of cancer patients, which may provide a valuable starting point for the further understanding of the molecular basis of muscle wasting in cancers. More importantly, tumor-derived pro-sarcopenic factors differ across tumor types and genders, which implies that mechanisms of cancer-associated muscle wasting are complex and diverse across tumors, and may require individualized treatment approaches.

4.
Biomedicines ; 11(10)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37893139

ABSTRACT

The Neural Calcium Sensor1 (NCS1) is a crucial protein that binds to Ca2+ and is believed to play a role in regulating tumor invasion and cell proliferation. However, the role of NCS1 in immune infiltration and cancer prognosis is still unknown. Our study aimed to explore the expression profile, immune infiltration pattern, prognostic value, biological function, and potential compounds targeting NCS1 using public databases. High expression of NCS1 was detected by immune histochemical staining in LIHC (Liver hepatocellular carcinoma), BRCA (Breast invasive carcinoma), KIRC (Kidney renal clear cell carcinoma), and SKCM (Skin Cutaneous Melanoma). The expression of NCS1 in cancer was determined by TCGA (The Cancer Genome Atlas Program), GTEx (The Genotype-Tissue Expression), the Kaplan-Meier plotter, GEO (Gene Expression Omnibus), GEPIA2.0 (Gene Expression Profiling Interactive Analysis 2.0), HPA (The Human Protein Atlas), UALCAN, TIMER2.0, TISIDB, Metascape, Drugbank, chEMBL, and ICSDB databases. NCS1 has genomic mutations as well as aberrant DNA methylation in multiple cancers compared to normal tissues. Also, NCS1 was significantly different in the immune microenvironment, tumor mutational burden (TMB), microsatellite instability (MSI), and immune infiltrate-associated cells in different cancers, which could be used for the typing of immune and molecular subtypes of cancer and the presence of immune checkpoint resistance in several cancers. Univariate regression analysis, multivariate regression analysis, and gene enrichment analysis to construct prognostic models revealed that NCS1 is involved in immune regulation and can be used as a prognostic biomarker for SKCM, LIHC, BRCA, COAD, and KIRC. These results provide clues from a bioinformatic perspective and highlight the importance of NCS1 in a variety of cancers.

SELECTION OF CITATIONS
SEARCH DETAIL
...