Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 316
Filter
1.
Cureus ; 16(8): e66552, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39252725

ABSTRACT

Cervical cancer is one of the most frequent malignant tumors in females. Concurrent chemoradiotherapy is one of the treatment options for cervical cancer. The treatment time of conventional radiotherapy is long. Moderately hypofractionated radiotherapy (MHRT) offers the advantage of shortening the overall treatment duration and enhancing the radiobiological effects on tumors. MHRT shortens the overall treatment duration while enhancing the radiobiological effects on tumors. Previous studies have reported that MHRT of cervical cancer has relatively high toxicity. Daily online adaptive radiation therapy (oART) showed improvements in dosimetry and a decrease in toxicity. To the best of our knowledge, this case was the first reported case of moderated hypofractionated oART used in a cervical cancer patient to date in a prospective clinical trial (NCT05994300). This case serves as a critical reminder that cervical cancer is a potential tumor that may be in MHRT with iterative cone beam computed tomography-guided oART. Further data are needed to confirm the toxicity and efficacy of this technique.

2.
ACS Biomater Sci Eng ; 10(9): 5496-5512, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39246058

ABSTRACT

Ultrasound (US) is a type of mechanical wave that is capable of transmitting energy through biological tissues. By utilization of various frequencies and intensities, it can elicit specific biological effects. US imaging (USI) technology has been continuously developed with the advantages of safety and the absence of radiation. The advancement of nanotechnology has led to the utilization of various nanomaterials composed of both organic and inorganic compounds as ultrasound contrast agents (UCAs). These UCAs enhance USI, enabling real-time monitoring, diagnosis, and treatment of diseases, thereby facilitating the widespread adoption of UCAs in precision medicine. In this review, we introduce various UCAs based on nanomaterials for USI. Their principles can be roughly divided into the following categories: carrying and transporting gases, endogenous gas production, and the structural characteristics of the nanomaterial itself. Furthermore, the synergistic benefits of US in conjunction with various imaging modalities and their combined application in disease monitoring and diagnosis are introduced. In addition, the challenges and prospects for the development of UCAs are also discussed.


Subject(s)
Contrast Media , Nanostructures , Ultrasonography , Contrast Media/chemistry , Humans , Nanostructures/chemistry , Nanostructures/therapeutic use , Ultrasonography/methods , Animals
3.
Int Orthop ; 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39269485

ABSTRACT

PURPOSE: To investigate whether congenital cervical spinal stenosis (CCSS) affects the outcome of three-level anterior cervical discectomy and fusion (ACDF) in patients with cervical spondylotic myelopathy (CSM). METHODS: One hundred seventeen patients with CSM who underwent three-level ACDF between January 2019 and January 2023 were retrospectively examined. Patients were grouped according to presence of CCSS, which was defined as Pavlov ratio ≤ 0.75. The CCSS and no CCSS groups comprised 68 (58.1%) and 49 (41.9%) patients, respectively. RESULTS: The Japanese Orthopaedic Association (JOA) score did not significantly differ between the two groups at any postoperative time point (p > 0.05). The JOA improvement rate was lower in the CCSS group 1 month after surgery (41.7% vs. 45.5%, p < 0.05), but showed no difference at any follow-up time point after one month. Multivariate logistic regression identified preoperative age (OR = 10.639), JOA score (OR = 0.370), increased signal intensity (ISI) in the spinal cord on T2-weighted MRI (T2-WI) (Grade 1: OR = 6.135; Grade 2: OR = 29.892), and degree of spinal cord compression (30-60%: OR = 17.919; ≥60%: OR = 46.624) as independent predictors of a poor one year outcome (JOA recovery rate < 50%). CONCLUSION: Although early JOA improvement is slower in the CCSS group, it does not affect the final neurological improvement at 1 year. Therefore, CCSS should not be considered a contraindication for three-level ACDF in patients with CSM. The main factors influencing one year outcome were preoperative age, JOA score, ISI grade, and degree of spinal cord compression.

4.
World Neurosurg ; 191: 172-185, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39182836

ABSTRACT

This review was performed to analyze the research on cervical spondylotic myelopathy published during the past 25 years, summarize the developments in existing research, and predict future hotspots in the field. The goal is to provide a comprehensive overview and exploration of developments in this research area. A bibliometric analysis was performed using CiteSpace and VOSviewer to quantitatively and visually analyze relevant literature from Web of Science between 1998 and 2023. Co-occurrence analysis and co-citation analysis were conducted to evaluate papers, authors, journals, countries, and keywords. In total, 1886 papers were included. The overall publication output in this field increased throughout the review period. Stable author collaboration groups were formed, with the most influential author being Fehlings M.G. Japan and the United States contributed the highest number of publications. The predicted future research hotspots include risk factor analysis, outcome prediction, and machine learning. This study provides both an overview of the research trajectory in the field of cervical spondylotic myelopathy for scholars interested in this area, as well as offering insights and references for future research directions in the field.

5.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(4): 1284-1289, 2024 Aug.
Article in Chinese | MEDLINE | ID: mdl-39192432

ABSTRACT

Acute leukaemia is a group of aggressive malignancies with a high mortality rate. The reduction in functional immune cells due to the disease itself and radiotherapy/chemotherapy makes the patients susceptible to co-infections, of which pulmonary infection is a major cause of death. Early accurate diagnosis and appropriate treatment may prevent the spread of infection in patients with acute leukaemia complicated with pulmonary infection, thus reduce serious complications such as sepsis, respiratory failure and multi-organ failure. However, there are still clinical difficulties in the diagnosis and treatment of pulmonary infections in acute leukemia patients. Therefore, the current research advances in the diagnosis and treatment of bacterial, fungal and viral infections in the lungs of patients with acute leukemia were briefly summarized in this review.


Subject(s)
Leukemia , Humans , Leukemia/complications , Leukemia/therapy , Acute Disease , Respiratory Tract Infections
6.
Clinics (Sao Paulo) ; 79: 100406, 2024.
Article in English | MEDLINE | ID: mdl-39059144

ABSTRACT

BACKGROUND: Patients with Hematological Malignancies (HM) are at a high risk of mortality from Coronavirus disease 2019 (COVID-19). The available antivirals were different between China and other countries. In China, azvudine was obtained for emergency use to treat adult COVID-19 patients with moderate symptoms in July 2022. While nirmatrelvir-ritonavir was well-known and used in many countries. The purpose of the present study was to assess whether there was any difference in the efficacy and safety of the two drugs. METHODS: This study was a prospective observational study of patients with HM who developed COVID-19. Patients were divided into three treatment groups: nirmatrelvir-ritonavir, azvudine, and observation. Treatment outcomes, first nucleic acid test negative time, hospitalization time, and the conversion rate of mild or moderate disease to severe disease were recorded. RESULTS: First nucleic acid test negative time (23.5 days vs. 34 days, p = 0.015), hospitalization time (p = 0.015), and conversion rate (31.8 % vs. 8 %, p = 0.046) were statistically different between the nirmatrelvir-ritonavir and observation groups. First nucleic acid test negative time (20 days vs. 34 days, p = 0.009) and hospitalization time (p = 0.026) were statistically different between the azvudine and observation groups. ECOG score and liver disease were significantly associated with the conversion rate from mild or moderate disease to severe disease using multivariate analysis (p < 0.05). CONCLUSIONS: The authors found no significant differences existed in outcome measures between patients with HM and COVID-19 who were treated with nirmatrelvir-ritonavir or azvudine.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Hematologic Neoplasms , Ritonavir , Humans , Male , Ritonavir/therapeutic use , Middle Aged , Antiviral Agents/therapeutic use , Female , Prospective Studies , Hematologic Neoplasms/drug therapy , Treatment Outcome , Adult , Aged , SARS-CoV-2 , COVID-19
7.
Parasit Vectors ; 17(1): 288, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971783

ABSTRACT

BACKGROUND: Currently, treatment regimens for visceral leishmaniasis (VL) are limited because of the presence of numerous adverse effects. Nicotinamide, a readily available and cost-effective vitamin, has been widely acknowledged for its safety profile. Several studies have demonstrated the anti-leishmanial effects of nicotinamide in vitro. However, the potential role of nicotinamide in Leishmania infection in vivo remains elusive. METHODS: In this study, we assessed the efficacy of nicotinamide as a therapeutic intervention for VL caused by Leishmania infantum in an experimental mouse model and investigated its underlying molecular mechanisms. The potential molecular mechanism was explored through cytokine analysis, examination of spleen lymphocyte subsets, liver RNA-seq analysis, and pathway validation. RESULTS: Compared to the infection group, the group treated with nicotinamide demonstrated significant amelioration of hepatosplenomegaly and recovery from liver pathological damage. The NAM group exhibited parasite reduction rates of 79.7% in the liver and 86.7% in the spleen, respectively. Nicotinamide treatment significantly reduced the activation of excessive immune response in infected mice, thereby mitigating hepatosplenomegaly and injury. Furthermore, nicotinamide treatment enhanced fatty acid ß-oxidation by upregulating key enzymes to maintain lipid homeostasis. CONCLUSIONS: Our findings provide initial evidence supporting the safety and therapeutic efficacy of nicotinamide in the treatment of Leishmania infection in BALB/c mice, suggesting its potential as a viable drug for VL.


Subject(s)
Leishmania infantum , Leishmaniasis, Visceral , Lipid Metabolism , Liver , Mice, Inbred BALB C , Niacinamide , Spleen , Animals , Leishmaniasis, Visceral/drug therapy , Leishmaniasis, Visceral/parasitology , Leishmaniasis, Visceral/immunology , Niacinamide/pharmacology , Niacinamide/therapeutic use , Mice , Lipid Metabolism/drug effects , Liver/parasitology , Liver/drug effects , Liver/pathology , Leishmania infantum/drug effects , Spleen/parasitology , Spleen/drug effects , Cytokines/metabolism , Disease Models, Animal , Female , Inflammation/drug therapy , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use
8.
Article in English | MEDLINE | ID: mdl-39046868

ABSTRACT

Recently, Electrooculography-based Human-Computer Interaction (EOG-HCI) technology has gained widespread attention in industrial areas, including assistive robots, augmented reality in gaming, etc. However, as the fundamental step of EOG-HCI, accurate eye movement classification (EMC) still faces a significant challenge, where their constraints in extracting discriminative features limit the performance of most existing works. To address this issue, a Residual Self-Calibrated Network with Multi-Scale Channel Attention (RSCA), focusing on efficient feature extraction and enhancement is proposed. The RSCA network first employs three self-calibrated convolution blocks within a hierarchical residual framework to fully extract the discriminative multi-scale features. Then, a multi-scale channel attention module adaptively weights the learned features to screen out the discriminative representation by aggregating the multi-scale context information along the channel dimension, thus further boosting the performance. Comprehensive experiments were performed using 5 public datasets and 7 prevailing methods for comparative validation. The results confirm that the RSCA network outperforms all other methods significantly, establishing a state-of-the-art benchmark for EOG-based EMC. Furthermore, thorough ablation analyses confirm the effectiveness of the employed modules within the RSCA network, providing valuable insights for the design of EOG-based deep models.

9.
Adv Radiat Oncol ; 9(7): 101510, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38826155

ABSTRACT

Purpose: This study evaluated the first clinical implementation of daily iterative cone beam computed tomography (iCBCT)-guided online adaptive radiation therapy (oART) in the postoperative treatment of endometrial and cervical cancer. Methods and Materials: Seventeen consecutive patients treated with daily iCBCT-guided oART were enrolled in this prospective study, with a reduced uniform 3-dimensional PTV margin of 5 mm. Treatment plans were designed to deliver 45 or 50.4 Gy in 1.8 Gy daily fractions to PTV. Pre- and posttreatment ultrasound and iCBCT scans were performed to record intrafractional bladder and rectal volume changes. The accuracy of contouring, oART procedure time, dosimetric outcomes, and acute toxicity were evaluated. Results: The average time from first iCBCT acquisition to completion of treatment was 22 minutes and 26 seconds. During this period, bladder volume increased by 44 cm3 using iCBCT contouring, whereas rectal volume remained stable (62.9 cm3 pretreatment vs 61.9 cm3 posttreatment). A total of 91.6% of influencers and 88.1% of CTVs required no or minor edits. The adapted plan was selected in all (434) fractions and significantly improved the dosimetry coverage for CTV and PTV, especially the vaginal PTV coverage by nearly 7% (P < .05). The adapted bladder Dmean was 104.61 cGy, and the rectum Dmean was 123.67 cGy, significantly lower than the scheduled plan of 108.24 and 128.19 cGy, respectively. The bone marrow and femur head left and right dosimetry were also improved with adaptation. Grade 2 acute gastrointestinal and genitourinary toxicities were 24% and 0, respectively. There was a grade 3 acute toxicity of decreased white blood cell count in 1 patient. Conclusions: Daily oART was associated with favorable dosimetry improvement and low acute toxicity, supporting its safety and efficacy for postoperative treatment of endometrial and cervical cancer. These results need to be validated in a larger prospective randomized controlled cohort.

10.
J Colloid Interface Sci ; 671: 770-778, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38830289

ABSTRACT

Porous carbon materials are highly desirable for removing benzene due to their low energy for capture and regeneration. Research has demonstrated that narrow microporous volume is crucial for effective adsorption of benzene at ultra-low concentration. Unfortunately, achieving directional increase in the narrow microporous volume in porous carbon remains a challenge. Here, nitrogen-doped hydrothermal carbon was prepared using urea-assisted hydrothermal method, and then porous carbon (PUC800) was prepared by KOH activation. The resulting material had 180 % higher pore volume and 179 % higher surface area compared to non-nitrogen activation methods. Then, using mechanochemical (mechanical compaction and KOH activation) approach to produce PUC800-3T, which had a 30 % increase in pore volume and a 33 % increase in surface area compared to PUC800. PUC800-3T showed benzene adsorption capacity of 4.2 mmol g-1 at 1 Pa and 5.8 mmol g-1 at 5 Pa. Experimental and molecular simulation indicate that the benzene adsorption at 1 and 5 Pa is determined by pore volume of less than 0.8 and 0.9 nm, respectively. Density functional theory calculations provided insight into the CH⋯X (X = N/O) interactions drive benzene adsorption on the carbon framework. This work provides valuable theoretical and experimental support for designing, preparing, and applying adsorbents for trace removal of benzene vapor.

11.
Immunol Res ; 72(4): 851-863, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38755433

ABSTRACT

This study aimed to develop and validate a nomogram based on immune checkpoint genes (ICGs) for predicting prognosis and immune checkpoint blockade (ICB) efficacy in lung adenocarcinoma (LUAD) patients. A total of 385 LUAD patients from the TCGA database and 269 LUAD patients in the combined dataset (GSE41272 + GSE50081) were divided into training and validation cohorts, respectively. Three different machine learning algorithms including random forest (RF), least absolute shrinkage and selection operator (LASSO) logistic regression analysis, and support vector machine (SVM) were employed to select the predictive markers from 82 ICGs to construct the prognostic nomogram. The X-tile software was used to stratify patients into high- and low-risk subgroups based on the nomogram-derived risk scores. Differences in functional enrichment and immune infiltration between the two subgroups were assessed using gene set variation analysis (GSVA) and various algorithms. Additionally, three lung cancer cohorts receiving ICB therapy were utilized to evaluate the ability of the model to predict ICB efficacy in the real world. Five ICGs were identified as predictive markers across all three machine learning algorithms, leading to the construction of a nomogram with strong potential for prognosis prediction in both the training and validation cohorts (all AUC values close to 0.800). The patients were divided into high- (risk score ≥ 185.0) and low-risk subgroups (risk score < 185.0). Compared to the high-risk subgroup, the low-risk subgroup exhibited enrichment in immune activation pathways and increased infiltration of activated immune cells, such as CD8 + T cells and M1 macrophages (P < 0.05). Furthermore, the low-risk subgroup had a greater likelihood of benefiting from ICB therapy and longer progression-free survival (PFS) than did the high-risk subgroup (P < 0.05) in the two cohorts receiving ICB therapy. A nomogram based on ICGs was constructed and validated to aid in predicting prognosis and ICB treatment efficacy in LUAD patients.


Subject(s)
Adenocarcinoma of Lung , Immune Checkpoint Inhibitors , Immunotherapy , Lung Neoplasms , Machine Learning , Nomograms , Humans , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/mortality , Adenocarcinoma of Lung/therapy , Adenocarcinoma of Lung/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Lung Neoplasms/therapy , Lung Neoplasms/mortality , Lung Neoplasms/drug therapy , Lung Neoplasms/diagnosis , Prognosis , Immunotherapy/methods , Immune Checkpoint Inhibitors/therapeutic use , Biomarkers, Tumor/genetics , Cohort Studies , Immune Checkpoint Proteins/genetics , Immune Checkpoint Proteins/metabolism , Female , Algorithms , Male , Treatment Outcome , Middle Aged
12.
J Acoust Soc Am ; 155(5): 3015-3026, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38717207

ABSTRACT

Sound speed is a critical parameter in ocean acoustic studies, as it determines the propagation and interpretation of recorded sounds. The potential for exploiting oceanic vessel noise as a sound source of opportunity to estimate ocean sound speed profile is investigated. A deep learning-based inversion scheme, relying upon the underwater radiated noise of moving vessels measured by a single hydrophone, is proposed. The dataset used for this study consists of Automatic Identification System data and acoustic recordings of maritime vessels transiting through the Santa Barbara Channel between January 2015 and December 2017. The acoustic recordings and vessel descriptors are used as predictors for regressing sound speed for each meter in the top 200 m of the water column, where sound speeds are most variable. Multiple (typically ranging between 4 and 10) transits were recorded each day; therefore, this dataset provides an opportunity to investigate whether multiple acoustic observations can be leveraged together to improve inversion estimates. The proposed single-transit and multi-transit models resulted in depth-averaged root-mean-square errors of 1.79 and 1.55 m/s, respectively, compared to the seasonal average predictions of 2.80 m/s.

13.
Microorganisms ; 12(5)2024 May 17.
Article in English | MEDLINE | ID: mdl-38792849

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver condition worldwide. Numerous studies conducted recently have demonstrated a connection between the dysbiosis of the development of NAFLD and gut microbiota. Rebuilding a healthy gut ecology has been proposed as a strategy involving the use of probiotics. The purpose of this work is to investigate and compare the function of probiotics Akkermansia muciniphila (A. muciniphila) and VSL#3 in NAFLD mice. Rodent NAFLD was modeled using a methionine choline-deficient diet (MCD) with/without oral probiotic delivery. Subsequently, qPCR, histological staining, and liver function tests were conducted. Mass spectrometry-based analysis and 16S rDNA gene sequencing were used to investigate the liver metabolome and gut microbiota. We found that while both A. muciniphila and VSL#3 reduced hepatic fat content, A. muciniphila outperformed VSL#3. Furthermore, probiotic treatment restored the ß diversity of the gut flora and A. muciniphila decreased the abundance of pathogenic bacteria such as Ileibacterium valens. These probiotics altered the metabolism in MCD mice, especially the glycerophospholipid metabolism. In conclusion, our findings distinguished the role of A. muciniphila and VSL#3 in NAFLD and indicated that oral-gavage probiotics remodel gut microbiota and improve metabolism, raising the possibility of using probiotics in the cure of NAFLD.

14.
J Nat Prod ; 87(6): 1501-1512, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38603577

ABSTRACT

Epithelial ovarian cancer is among the deadliest gynecological tumors worldwide. Clinical treatment usually consists of surgery and adjuvant chemo- and radiotherapies. Due to the high rate of recurrence and rapid development of drug resistance, the current focus of research is on finding effective natural products with minimal toxic side effects for treating epithelial ovarian tumors. Cannabidiol is among the most abundant cannabinoids and has a non-psychoactive effect compared to tetrahydrocannabinol, which is a key advantage for clinical application. Studies have shown that cannabidiol has antiproliferative, pro-apoptotic, cytotoxic, antiangiogenic, anti-inflammatory, and immunomodulatory properties. However, its therapeutic value for epithelial ovarian tumors remains unclear. This study aims to investigate the effects of cannabidiol on epithelial ovarian tumors and to elucidate the underlying mechanisms. The results showed that cannabidiol has a significant inhibitory effect on epithelial ovarian tumors. In vivo experiments demonstrated that cannabidiol could inhibit tumor growth by modulating the intestinal microbiome and increasing the abundance of beneficial bacteria. Western blot assays showed that cannabidiol bound to EGFR/AKT/MMPs proteins and suppressed EGFR/AKT/MMPs expression in a dose-dependent manner. Network pharmacology and molecular docking results suggested that cannabidiol could affect the EGFR/AKT/MMPs signaling pathway.


Subject(s)
Cannabidiol , Carcinoma, Ovarian Epithelial , Gastrointestinal Microbiome , Ovarian Neoplasms , Cannabidiol/pharmacology , Cannabidiol/chemistry , Gastrointestinal Microbiome/drug effects , Female , Humans , Carcinoma, Ovarian Epithelial/drug therapy , Ovarian Neoplasms/drug therapy , Animals , Mice , ErbB Receptors/metabolism , Cell Line, Tumor , Proto-Oncogene Proteins c-akt/metabolism , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Molecular Structure
15.
J Mol Neurosci ; 74(2): 48, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662286

ABSTRACT

We aimed to develop and validate a predictive model for identifying long-term survivors (LTS) among glioblastoma (GB) patients, defined as those with an overall survival (OS) of more than 3 years. A total of 293 GB patients from CGGA and 169 from TCGA database were assigned to training and validation cohort, respectively. The differences in expression of immune checkpoint genes (ICGs) and immune infiltration landscape were compared between LTS and short time survivor (STS) (OS<1.5 years). The differentially expressed genes (DEGs) and weighted gene co-expression network analysis (WGCNA) were used to identify the genes differentially expressed between LTS and STS. Three different machine learning algorithms were employed to select the predictive genes from the overlapping region of DEGs and WGCNA to construct the nomogram. The comparison between LTS and STS revealed that STS exhibited an immune-resistant status, with higher expression of ICGs (P<0.05) and greater infiltration of immune suppression cells compared to LTS (P<0.05). Four genes, namely, OSMR, FMOD, CXCL14, and TIMP1, were identified and incorporated into the nomogram, which possessed good potential in predicting LTS probability among GB patients both in the training (C-index, 0.791; 0.772-0.817) and validation cohort (C-index, 0.770; 0.751-0.806). STS was found to be more likely to exhibit an immune-cold phenotype. The identified predictive genes were used to construct the nomogram with potential to identify LTS among GB patients.


Subject(s)
Brain Neoplasms , Glioblastoma , Machine Learning , Humans , Glioblastoma/genetics , Glioblastoma/immunology , Brain Neoplasms/genetics , Brain Neoplasms/immunology , Tissue Inhibitor of Metalloproteinase-1/genetics , Tissue Inhibitor of Metalloproteinase-1/metabolism , Cancer Survivors , Algorithms , Nomograms , Male , Female , Transcriptome , Middle Aged
16.
Radiat Oncol ; 19(1): 48, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622628

ABSTRACT

BACKGROUND: Tumor regression and organ movements indicate that a large margin is used to ensure target volume coverage during radiotherapy. This study aimed to quantify inter-fractional movements of the uterus and cervix in patients with cervical cancer undergoing radiotherapy and to evaluate the clinical target volume (CTV) coverage. METHODS: This study analyzed 303 iterative cone beam computed tomography (iCBCT) scans from 15 cervical cancer patients undergoing external beam radiotherapy. CTVs of the uterus (CTV-U) and cervix (CTV-C) contours were delineated based on each iCBCT image. CTV-U encompassed the uterus, while CTV-C included the cervix, vagina, and adjacent parametrial regions. Compared with the planning CTV, the movement of CTV-U and CTV-C in the anterior-posterior, superior-inferior, and lateral directions between iCBCT scans was measured. Uniform expansions were applied to the planning CTV to assess target coverage. RESULTS: The motion (mean ± standard deviation) in the CTV-U position was 8.3 ± 4.1 mm in the left, 9.8 ± 4.4 mm in the right, 12.6 ± 4.0 mm in the anterior, 8.8 ± 5.1 mm in the posterior, 5.7 ± 5.4 mm in the superior, and 3.0 ± 3.2 mm in the inferior direction. The mean CTV-C displacement was 7.3 ± 3.2 mm in the left, 8.6 ± 3.8 mm in the right, 9.0 ± 6.1 mm in the anterior, 8.4 ± 3.6 mm in the posterior, 5.0 ± 5.0 mm in the superior, and 3.0 ± 2.5 mm in the inferior direction. Compared with the other tumor (T) stages, CTV-U and CTV-C motion in stage T1 was larger. A uniform CTV planning treatment volume margin of 15 mm failed to encompass the CTV-U and CTV-C in 11.1% and 2.2% of all fractions, respectively. The mean volume change of CTV-U and CTV-C were 150% and 51%, respectively, compared with the planning CTV. CONCLUSIONS: Movements of the uterine corpus are larger than those of the cervix. The likelihood of missing the CTV is significantly increased due to inter-fractional motion when utilizing traditional planning margins. Early T stage may require larger margins. Personal radiotherapy margining is needed to improve treatment accuracy.


Subject(s)
Radiotherapy, Image-Guided , Radiotherapy, Intensity-Modulated , Uterine Cervical Neoplasms , Female , Humans , Uterine Cervical Neoplasms/diagnostic imaging , Uterine Cervical Neoplasms/radiotherapy , Uterine Cervical Neoplasms/pathology , Radiotherapy Planning, Computer-Assisted/methods , Motion , Pelvis/pathology , Cone-Beam Computed Tomography/methods , Radiotherapy, Image-Guided/methods , Radiotherapy, Intensity-Modulated/methods , Radiotherapy Dosage
17.
Carbohydr Polym ; 336: 122125, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38670756

ABSTRACT

In this study, we developed a tissue-adhesive and long-term antibacterial hydrogel consisting of protamine (PRTM) grafted carboxymethyl chitosan (CMC) (PCMC), catechol groups modified CMC (DCMC), and oxidized hyaluronic acid (OHA), named DCMC-OHA-PCMC. According to the antibacterial experiments, the PCMC-treated groups showed obvious and long-lasting inhibition zones against E. coli (and S. aureus), and the corresponding diameters varied from 10.1 mm (and 15.3 mm) on day 1 to 9.8 mm (and 15.3 mm) on day 7. The DCMC-OHA-PCMC hydrogel treated groups also exhibited durable antibacterial ability against E. coli (and S. aureus), and the antibacterial rates changed from 99.3 ± 0.21 % (and 99.6 ± 0.36 %) on day 1 to 76.2 ± 1.74 % (and 84.2 ± 1.11 %) on day 5. Apart from good mechanical and tissue adhesion properties, the hydrogel had excellent hemostatic ability mainly because of the grafted positive-charged PRTM. As the animal assay results showed, the hydrogel was conducive to promoting the deposition of new collagen (0.84 ± 0.03), the regeneration of epidermis (98.91 ± 6.99 µm) and wound closure in the process of wound repairing. In conclusion, the presented outcomes underline the prospective potential of the multifunctional CMC-based hydrogel for applications in wound dressings.


Subject(s)
Anti-Bacterial Agents , Chitosan , Chitosan/analogs & derivatives , Escherichia coli , Hemostasis , Hydrogels , Protamines , Skin , Staphylococcus aureus , Wound Healing , Chitosan/chemistry , Chitosan/pharmacology , Wound Healing/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Protamines/chemistry , Protamines/pharmacology , Hemostasis/drug effects , Skin/drug effects , Mice , Male , Rats , Hemostatics/pharmacology , Hemostatics/chemistry , Tissue Adhesives/pharmacology , Tissue Adhesives/chemistry
18.
PeerJ Comput Sci ; 10: e1751, 2024.
Article in English | MEDLINE | ID: mdl-38435550

ABSTRACT

Liver occupying lesions can profoundly impact an individual's health and well-being. To assist physicians in the diagnosis and treatment of abnormal areas in the liver, we propose a novel network named SEU2-Net by introducing the channel attention mechanism into U2-Net for accurate and automatic liver occupying lesion segmentation. We design the Residual U-block with Squeeze-and-Excitation (SE-RSU), which is to add the Squeeze-and-Excitation (SE) attention mechanism at the residual connections of the Residual U-blocks (RSU, the component unit of U2-Net). SEU2-Net not only retains the advantages of U2-Net in capturing contextual information at multiple scales, but can also adaptively recalibrate channel feature responses to emphasize useful feature information according to the channel attention mechanism. In addition, we present a new abdominal CT dataset for liver occupying lesion segmentation from Peking University First Hospital's clinical data (PUFH dataset). We evaluate the proposed method and compare it with eight deep learning networks on the PUFH and the Liver Tumor Segmentation Challenge (LiTS) datasets. The experimental results show that SEU2-Net has state-of-the-art performance and good robustness in liver occupying lesions segmentation.

19.
ACS Biomater Sci Eng ; 10(3): 1830-1842, 2024 03 11.
Article in English | MEDLINE | ID: mdl-38408449

ABSTRACT

Retinoblastoma (RB) is an aggressive tumor of the infant retina. However, the ineffective targeting of its theranostic agents results in poor imaging and therapeutic efficacy, which makes it difficult to identify and treat RB at an early stage. In order to improve the imaging and therapeutic efficacy, we constructed an RB-targeted artificial vesicle composite nanoparticle. In this study, the MnO2 nanosponge (hMNs) was used as the core to absorb two fluorophore-modified DNAzymes to form the Dual/hMNs nanoparticle; after loaded with the artificial vesicle derived from human red blood cells, the RB-targeted DNA aptamers were modified on the surface, thus forming the Apt-EG@Dual/hMNs complex nanoparticle. The DNA aptamer endows this nanoparticle to target the nucleolin-overexpressed RB cell membrane specifically and enters cells via endocytosis. The nanoparticle could release fluorophore-modified DNAzymes and supplies Mn2+ as a DNAzyme cofactor and a magnetic resonance imaging (MRI) agent. Subsequently, the DNAzymes can target two different mRNAs, thereby realizing fluorescence/MR bimodal imaging and dual-gene therapy. This study is expected to provide a reliable and valuable basis for ocular tumor theranostics.


Subject(s)
DNA, Catalytic , Nanoparticles , Retinal Neoplasms , Retinoblastoma , Humans , Retinoblastoma/diagnostic imaging , Retinoblastoma/genetics , Retinoblastoma/therapy , Precision Medicine , Manganese Compounds/pharmacology , Oxides , Nanoparticles/therapeutic use , Retinal Neoplasms/diagnostic imaging , Retinal Neoplasms/genetics , Retinal Neoplasms/therapy
20.
Radiat Oncol ; 19(1): 6, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38212767

ABSTRACT

BACKGROUND: Training senior radiation therapists as "adapters" to manage influencers and target editing is critical in daily online adaptive radiotherapy (oART) for cervical cancer. The purpose of this study was to evaluate the accuracy and dosimetric outcomes of automatic contouring and identify the key areas for modification. METHODS: A total of 125 oART fractions from five postoperative cervical cancer patients and 140 oART fractions from five uterine cervical cancer patients treated with daily iCBCT-guided oART were enrolled in this prospective study. The same adaptive treatments were replanned using the Ethos automatic contours workflow without manual contouring edits. The clinical target volume (CTV) was subdivided into several separate regions, and the average surface distance dice (ASD), centroid deviation, dice similarity coefficient (DSC), and 95% Hausdorff distance (95% HD) were used to evaluate contouring for the above portions. Dosimetric results from automatic oART plans were compared to supervised oART plans to evaluate target volumes and organs at risk (OARs) dose changes. RESULTS: Overall, the paired CTV had high overlap rates, with an average DSC value greater than 0.75. The uterus had the largest consistency differences, with ASD, centroid deviation, and 95% HD being 2.67 ± 1.79 mm, 17.17 ± 12 mm, and 10.45 ± 5.68 mm, respectively. The consistency differences of the lower nodal CTVleft and nodal CTVright were relatively large, with ASD, centroid deviation, and 95% HD being 0.59 ± 0.53 mm, 3.6 ± 2.67 mm, and 5.41 ± 4.08 mm, and 0.59 ± 0.51 mm, 3.6 ± 2.54 mm, and 4.7 ± 1.57 mm, respectively. The automatic online-adapted plan met the clinical requirements of dosimetric coverage for the target volume and improved the OAR dosimetry. CONCLUSIONS: The accuracy of automatic contouring from the Ethos adaptive platform is considered clinically acceptable for cervical cancer, and the uterus, upper vaginal cuff, and lower nodal CTV are the areas that need to be focused on in training.


Subject(s)
Uterine Cervical Neoplasms , Female , Humans , Uterine Cervical Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Prospective Studies , Radiotherapy Dosage , Dose Fractionation, Radiation , Organs at Risk
SELECTION OF CITATIONS
SEARCH DETAIL