Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Clin Oral Investig ; 28(9): 486, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39145807

ABSTRACT

OBJECTIVES: To evaluate the effects of coenzyme Q10 (CoQ10) on alveolar bone remodeling and orthodontic tooth movement (OTM). MATERIALS AND METHODS: An orthodontic appliance was placed in 42 female Sprague‒Dawley rats were divided into two groups: the orthodontic force (OF) group (n = 21) and the OF + CoQ10 (CoQ10) treatment group (n = 21). Each group was divided into 3 subgroups, and the rats were sacrificed on days 3, 7 and 14. The rats in CoQ10 and OF groups were administered 100 mg/kg b.w./day CoQ10 (in 1 mL/b.w. soybean oil) and 1 mL b.w./day soybean oil, respectively, by orogastric gavage. The OTM was measured at the end of the experiment. The osteoclast, osteoblast and capillary numbers; vascular endothelial growth factor (VEGF), receptor activator nuclear kappa B ligand (RANKL) and osteoprotegrin (OPG) levels in tissue; and total antioxidant status (TAS) and total oxidant status (TOS) in blood were determined. RESULTS: Compared with the OF group, the CoQ10 treatment group exhibited decreased orthodontic tooth movement and osteoclast and capillary numbers. Indeed, the levels of VEGF and RANKL decreased, while the levels of OPG increased except on day 7. Additionally, the CoQ10 treatment group exhibited lower TOS and higher TAS on days 7 and 14 (p < 0.05). Histological findings showed that the morphology of osteoblasts changed in the CoQ10 group; however, there was no significant difference in the number of osteoblasts between the groups (p > 0.05). CONCLUSION: Due to its effect on oxidative stress and inflammation, CoQ10 regulates bone remodeling by inhibiting osteoclast differentiation, promoting osteoblast differentiation and reducing the amount of OTM. CLINICAL RELEVANCE: Considering that OTM may be slowed with the use of CoQ10, topics such as orthodontic treatment duration, orthodontic force activation and appointment frequency should be considered in treatment planning. It is predicted that the use of CoQ10 will support the effectiveness of treatment in clinical applications such as preventing relapse in orthodontic treatment by regulating bone modulation and anchorage methods that suppress/optimize unwanted tooth movement.


Subject(s)
Bone Remodeling , Rats, Sprague-Dawley , Tooth Movement Techniques , Ubiquinone , Ubiquinone/analogs & derivatives , Ubiquinone/pharmacology , Animals , Rats , Female , Bone Remodeling/drug effects , Vascular Endothelial Growth Factor A/metabolism , RANK Ligand/metabolism , Alveolar Process/drug effects , Osteoclasts/drug effects , Antioxidants/pharmacology
2.
Environ Sci Pollut Res Int ; 31(20): 28890-28904, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38564126

ABSTRACT

Inappropriate disposal of plastic wastes and their durability in nature cause uncontrolled accumulation of plastic in land/marine ecosystems, also causing destructive effects by bioaccumulating along the food chain. Microplastics may cause chronic inflammation in relation to their permanent structures, especially through oxidative stress and cytotoxic cellular damage, which could increase the risk of cancer development. The accumulation of microplastics in the liver is a major concern, and therefore, the identification of the mechanisms of their hepatotoxic effects is of great importance. Polymethyl methacrylate (PMMA) is a widely used thermoplastic. It has been determined that PMMA disrupts lipid metabolism in the liver in various aquatic organisms and causes reproductive and developmental toxicity. PMMA-induced hepatotoxic effects in humans have not yet been clarified. In our study, the toxic effects of PMMA (in the range of 3-10 µm) on the human liver were investigated using the HepG2/THP-1 macrophage co-culture model, which is a sensitive immune-mediated liver injury model. Cellular uptake of micro-sized PMMA in the cells was done by transmission electron microscopy. Determination of its effects on cell viability and inflammatory response, oxidative stress, along with gene and protein expression levels that play a role in the mechanism pathways underlying the effects were investigated. The results concluded that inflammation, oxidative stress, and disruptions in lipid metabolism should be the focus of attention as important underlying causes of PMMA-induced hepatotoxicity. Our study, which points out the potential adverse effects of microplastics on human health, supports the literature information on the subject.


Subject(s)
Microplastics , Oxidative Stress , Polymethyl Methacrylate , Humans , Polymethyl Methacrylate/toxicity , Microplastics/toxicity , Hep G2 Cells , Oxidative Stress/drug effects , Coculture Techniques , Liver/drug effects
3.
Toxicol Lett ; 391: 1-12, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37992977

ABSTRACT

Drug-induced liver injury (DILI) is one of the widespread causes of liver injury and immune system plays important role. Abemaciclib (ABE) is a cyclin-dependent kinase inhibitor used as monotherapy or combination therapy in the treatment of breast cancer. Like other kinase inhibitors, the underlying mechanisms of ABE-induced hepatotoxicity are not completely known yet. In the current study, hepatotoxicity of ABE was evaluated with HepG2/THP-1 co-culture model which has been developed in recent years for the evaluation of DILI potential. Following ABE treatment, oxidative stress, mitochondrial damage, cytokine secretion levels, apoptotic/necrotic cell death were determined. According to our results, ROS production along with GSH depletion was observed in HepG2 cells after ABE treatment. ABE promoted secretion of pro-inflammatory mediators (TNF-α and MCP-1) and declined anti-inflammatory cytokine IL-10 release. Besides, NFKß and JNK1 protein expression levels increased following ABE treatment. ABE enhanced intracellular calcium levels, induced early apoptotic and necrotic cell deaths in HepG2 cells. Furthermore, the changes in some mitochondrial parameters including a reducement in intracellular ATP levels and complex V activity; hyperpolarized mitochondrial membrane potential and enhanced mitochondrial ROS levels were observed, whereas mitochondrial mass did not show any differences after ABE treatments. Therefore, ABE-induced hepatotoxic effects is probably via oxidative stress, inflammatory response and necrotic cell death rather than direct mitochondrial toxicity. In conclusion; the study makes a significant contribution to strengthening the infrastructure we have on in vitro toxicity mechanism evaluations, which are the basis of preclinical toxicity studies.


Subject(s)
Aminopyridines , Benzimidazoles , Chemical and Drug Induced Liver Injury , Protein Kinase Inhibitors , Humans , Coculture Techniques , Reactive Oxygen Species/metabolism , Hep G2 Cells , Protein Kinase Inhibitors/pharmacology , Chemical and Drug Induced Liver Injury/etiology , Cytokines , Cyclin-Dependent Kinases
4.
Toxicology ; 489: 153489, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36933644

ABSTRACT

Ripretinib is a multikinase inhibitor drug approved in 2020 by the FDA and in 2021 by EMA for use in the treatment of advanced gastrointestinal stromal tumors (GIST) which have not adequately responded to previous treatments with kinase inhibitors. The most common side effects of the drug are myalgia and fatigue, which likely causes interruption of the treatment or reduction of the dose. Skeletal muscle cells highly depend on ATP to perform their functions and mitochondrial damage may play a role in skeletal muscle toxicity induced by kinase inhibitors. However, the molecular mechanism has not been clearly identified in the literature yet. In this study, it has been aimed to elucidate the role of mitochondria in the toxic effect of ripretinib on skeletal muscle using the mouse C2C12 myoblast-derived myotubes. The myotubes were exposed to ripretinib at the range of 1-20 µM concentrations for 24 h. To determine the potential role of mitochondrial impairment in ripretinib-induced skeletal muscle toxicity, intracellular ATP level, mitochondrial membrane potential (MMP), mitochondrial ROS production (mtROS), mitochondrial DNA (mtDNA) copy number, and mitochondrial mass were examined after ripretinib treatment. Furthermore, changes in PGC 1α/NRF 1/NRF 2 expression levels that play a role in mitochondrial biogenesis and mitophagy were investigated. Additionally, the mitochondrial electron transport chain (ETC) enzyme activities were evaluated. Lastly, a molecular docking study was done to see ripretinib's possible interaction with DNA polymerase gamma (POLG) which is important for DNA replication in the mitochondria. According to the findings, ripretinib decreases the ATP level and mtDNA copy number, induces loss of MMP, and reduces mitochondrial mass. The activities of the ETC complexes were inhibited with ripretinib exposure which is in line with the observed ATP depletion and MMP loss. The molecular docking study revealed that ripretinib has inhibitory potential against POLG which supports the observed inhibition of mtDNA. The expression of PGC 1α was reduced in the nuclear fraction indicating that PGC-1α was not activated since the NRF 1 expression was reduced and NRF 2 level did not show significant change. Consequently, mtROS production increased in all treatment groups and mitophagy-related gene expressions and Parkin protein expression level were up-regulated at high doses. In conclusion, mitochondrial damage/loss can be one of the underlying causes of ripretinib-induced skeletal muscle toxicity. However, further studies are needed to confirm the results in vivo.


Subject(s)
Muscle Fibers, Skeletal , Muscle, Skeletal , Mice , Animals , Molecular Docking Simulation , Cell Line , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Mitochondria , DNA, Mitochondrial/metabolism , Adenosine Triphosphate/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics
5.
Nat Prod Res ; 37(6): 944-955, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35899398

ABSTRACT

In this study, the biotransformation of carvone and camphor by Aspergillus flavus and the products were investigated. The biotransformation reaction of carvone by A. flavus resulted in the production of neodihydrocarveol, dihydrocarvone, 2-cyclohexene-1-one,2-methyl-5-(1-methylethenyl), limonene-1,2-diol, trans-p-mentha-1(7),8-dien-2-ol, p-menth-8(10)-ene-2,9-diol, and the biotransformation reaction of camphor resulted in the production of 2 -campholenic acid, 2-cyclohexene-1-one,2-hydroxy-4,4,6,6-tetramethyl, α-campholene aldehyde. The naturally produced essential oils by biotransformation of carvone and camphor were observed to be cytotoxic to breast cancer cells while no significant inhibition was seen in the healthy cell line. Additionally, biotransformation products had the highest inhibition (74%) against aflatoxin B1. The bioactivities of biotransformation products are promising, and they can be further investigated for their therapeutic potential as active agents.


Subject(s)
Oils, Volatile , Oils, Volatile/pharmacology , Aspergillus flavus/metabolism , Camphor/pharmacology , Cyclohexenes/pharmacology , Cyclohexenes/metabolism , Biotransformation , Aflatoxin B1
SELECTION OF CITATIONS
SEARCH DETAIL