Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 46
1.
Micromachines (Basel) ; 15(4)2024 Apr 13.
Article En | MEDLINE | ID: mdl-38675332

A high porosity micropore arrayed parylene membrane is a promising device that is used to capture circulating and exfoliated tumor cells (CTCs and ETCs) for liquid biopsy applications. However, its fabrication still requires either expensive equipment or an expensive process. Here, we report on the fabrication of high porosity (>40%) micropore arrayed parylene membranes through a simple reactive ion etching (RIE) that uses photoresist as the etching mask. Vertical sidewalls were observed in etched parylene pores despite the sloped photoresist mask sidewalls, which was found to be due to the simultaneous high DC-bias RIE induced photoresist melting and substrate pedestal formation. A theoretical model has been derived to illustrate the dependence of the maximum membrane thickness on the final pore-to-pore spacing, and it is consistent with the experimental data. A simple, yet accurate, low number (<50) cell counting method was demonstrated through counting cells directly inside a pipette tip under phase-contrast microscope. Membranes as thin as 3 µm showed utility for low number tumor cell capture, with an efficiency of 87-92%.

2.
Cytogenet Genome Res ; 163(3-4): 178-186, 2023.
Article En | MEDLINE | ID: mdl-37369178

In a nuclear or radiological incident, first responders must quickly and accurately measure radiation exposure among civilians as medical countermeasures are radiation dose-dependent and time-sensitive. Although several approaches have been explored to measure absorbed radiation dose, there is an important need to develop point-of-care (POC) bioassay devices that can be used immediately to triage thousands of individuals potentially exposed to radiation. Here we present a proof-of-concept study showing the use of a paper-based vertical flow immunoassay (VFI) to detect radiation dosimetry genes. Using labeled primers during amplification and a multiplex membrane, our results showed that the nucleic acid VFI can simultaneously detect two biodosimetry genes, CDKN1A and DDB2, as well as one housekeeping gene MRPS5. The assay demonstrated good linearity and precision with an inter- and intra-assay coefficient of variance <20% and <10%, respectively. Moreover, the assay showed its ability to discriminate non-irradiated controls (0 Gy) from irradiated samples (1 + 2 Gy) with an overall sensitivity of 62.5% and specificity of 100% (AUC = 0.8672, 95% CI: 0.723-1.000; p = 0.004). Interestingly, the gene combination also showed a dose-dependent response for 0, 1, and 2 Gy, similar to data obtained by real-time PCR benchmark. These preliminary results suggest that a VFI platform can be used to detect simultaneously multiple genes that can be then quantified, thus offering a new approach for a POC biodosimetry assay that could be rapidly deployed on-site to test a large population and help triage and medical management after radiological event.


Point-of-Care Systems , Radiometry , Humans , Genes, Essential , Immunoassay
3.
Int J Mol Sci ; 24(10)2023 May 12.
Article En | MEDLINE | ID: mdl-37240034

Abnormal uterine bleeding is a common benign gynecological complaint and is also the most common symptom of endometrial cancer (EC). Although many microRNAs have been reported in endometrial carcinoma, most of them were identified from tumor tissues obtained at surgery or from cell lines cultured in laboratories. The objective of this study was to develop a method to detect EC-specific microRNA biomarkers from liquid biopsy samples to improve the early diagnosis of EC in women. Endometrial fluid samples were collected during patient-scheduled in-office visits or in the operating room prior to surgery using the same technique performed for saline infusion sonohysterography (SIS). The total RNA was extracted from the endometrial fluid specimens, followed by quantification, reverse transcription, and real-time PCR arrays. The study was conducted in two phases: exploratory phase I and validation phase II. In total, endometrial fluid samples from 82 patients were collected and processed, with 60 matched non-cancer versus endometrial carcinoma patients used in phase I and 22 in phase II. The 14 microRNA biomarkers, out of 84 miRNA candidates, with the greatest variation in expression from phase I, were selected to enter phase II validation and statistical analysis. Among them, three microRNAs had a consistent and substantial fold-change in upregulation (miR-429, miR-183-5p, and miR-146a-5p). Furthermore, four miRNAs (miR-378c, miR-4705, miR-1321, and miR-362-3p) were uniquely detected. This research elucidated the feasibility of the collection, quantification, and detection of miRNA from endometrial fluid with a minimally invasive procedure performed during a patient in-office visit. The screening of a larger set of clinical samples was necessary to validate these early detection biomarkers for endometrial cancer.


Endometrial Neoplasms , MicroRNAs , Humans , Female , MicroRNAs/genetics , MicroRNAs/metabolism , Biomarkers, Tumor/genetics , Endometrial Neoplasms/diagnosis , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Endometrium/metabolism , Reverse Transcription , Biomarkers
4.
Biosens Bioelectron ; 219: 114796, 2023 Jan 01.
Article En | MEDLINE | ID: mdl-36257115

This paper presents simple, fast, and sensitive detection of multiple biothreat agents by paper-based vertical flow colorimetric sandwich immunoassay for detection of Yersinia pestis (LcrV and F1) and Francisella tularensis (lipopolysaccharide; LPS) antigens using a vertical flow immunoassay (VFI) prototype with portable syringe pump and a new membrane holder. The capture antibody (cAb) printing onto nitrocellulose membrane and gold-labelled detection antibody (dAb) were optimized to enhance the assay sensitivity and specificity. Even though the paper pore size was relaxed from previous 0.1 µm to the current 0.45 µm for serum samples, detection limits as low as 0.050 ng/mL for LcrV and F1, and 0.100 ng/mL for FtLPS have been achieved in buffer and similarly in diluted serum (with LcrV and F1 LODs remained the same and LPS LOD reduced to 0.250 ng/mL). These were 40, 80, and 50X (20X for LPS in serum) better than those from lateral flow configuration. Furthermore, the comparison of multiplex format demonstrated low cross-reactivity and equal sensitivity to that of the singleplex assay. The optimized VFI platform thus provides a portable and rapid on-site monitoring system for multiplex biothreat detection with the potential for high sensitivity, specificity, reproducibility, and multiplexing capability, supporting its utility in remote and resource-limited settings.

5.
ACS Appl Bio Mater ; 5(12): 5682-5692, 2022 12 19.
Article En | MEDLINE | ID: mdl-36368008

Recently, decellularized plant biomaterials have been explored for their use as tissue engineered substitutes. Herein, we expanded upon the investigation of the mechanical properties of these materials to explore their elasticity as many anatomical areas of the body require biomechanical dynamism. We first constructed a device to secure the scaffold and induce a strain within the physiological range of the normal human adult lung during breathing (12-20 movements/min; 10-20% elongation). Results showed that decellularized spinach leaves can support cyclic strain for 24 h and displayed heterogeneous local strain values (7.76-15.88%) as well as a Poisson's ratio (0.12) similar to that of mammalian lungs (10.67-19.67%; 0.01), as opposed to an incompressible homogeneous standard polymer (such as PDMS (10.85-12.71%; 0.4)). Imaging and mechanical testing showed that the vegetal scaffold exhibited strain hardening but maintained its structural architecture and water retention capacity, suggesting an unaltered porosity. Interestingly, we also showed that cells seeded on the scaffold can also sense the mechanical strain as demonstrated by a nuclear reorientation perpendicular to strain direction (63.3° compared to 41.2° for nonstretched cells), a nuclear location of YAP and increased expression of YAP target genes, a high cytoplasmic calcium level, and an elevated expression level of collagen genes (COL1A1, COL3A1, COL4A1, and COL6A) with an increased collagen secretion at the protein level. Taken together, these data demonstrated that decellularized plant leaf tissues have an inherent elastic property similar to that found in the mammalian system to which cells can sense and respond.


Biocompatible Materials , Spinacia oleracea , Animals , Humans , Spinacia oleracea/metabolism , Collagen/metabolism , Elasticity , Tissue Engineering , Mammals/metabolism
6.
Radiother Oncol ; 176: 187-198, 2022 11.
Article En | MEDLINE | ID: mdl-36228760

While the cellular interactions and biochemical signaling has been investigated for long and showed to play a major role in the cell's fate, it is now also evident that mechanical forces continuously applied to the cells in their microenvironment are as important for tissue homeostasis. Mechanical cues are emerging as key regulators of cellular drug response and we aimed to demonstrate in this review that such effects should also be considered vital for the cellular response to radiation. In order to explore the mechanobiology of the radiation response, we reviewed the main mechanoreceptors and transducers, including integrin-mediated adhesion, YAP/TAZ pathways, Wnt/ß-catenin signaling, ion channels and G protein-coupled receptors and showed their implication in the modulation of cellular radiosensitivity. We then discussed the current studies that investigated a direct effect of mechanical stress, including extracellular matrix stiffness, shear stress and mechanical strain, on radiation response of cancer and normal cells and showed through preliminary results that such stress effectively can alter cell response after irradiation. However, we also highlighted the limitations of these studies and emphasized some of the contradictory data, demonstrating that the effect of mechanical cues could involve complex interactions and potential crosstalk with numerous cellular processes also affected by irradiation. Overall, mechanical forces alter radiation response and although additional studies are required to deeply understand the underlying mechanisms, these effects should not be neglected in radiation research as they could reveal new fundamental knowledge for predicting radiosensitivity or understanding resistance to radiotherapy.


Extracellular Matrix , Mechanotransduction, Cellular , Humans , Mechanotransduction, Cellular/physiology , Extracellular Matrix/metabolism , Signal Transduction , Cell Communication
7.
ACS Omega ; 7(36): 32262-32271, 2022 Sep 13.
Article En | MEDLINE | ID: mdl-36120062

Antibody microarrays have proven useful in immunoassay-based point-of-care diagnostics for infectious diseases. Noncontact piezoelectric inkjet printing has advantages to print antibody microarrays on nitrocellulose substrates for this application due to its compatibility with sensitive solutions and substrates, simple droplet control, and potential for high-capacity printing. However, there remain real-world challenges in printing such microarrays, which motivated this study. The effects of three concentrations of capture antibody (cAb) reagents and nozzle hydrostatic pressures were chosen to investigate three responses: the number of printed membrane disks, dispensing performance, and microarray quality. Printing conditions were found to be most ideal with 5 mg/mL cAb and a nozzle hydrostatic pressure near zero, which produced 130 membrane disks in a single print versus the 10 membrane disks per print before optimization. These results serve to inform efficient printing of antibody microarrays on nitrocellulose membranes for rapid immunoassay-based detection of infectious diseases and beyond.

8.
Gastroenterology ; 163(5): 1252-1266.e2, 2022 11.
Article En | MEDLINE | ID: mdl-35850192

BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma (PDAC) incidence is rising worldwide, and most patients present with an unresectable disease at initial diagnosis. Measurement of carbohydrate antigen 19-9 (CA19-9) levels lacks adequate sensitivity and specificity for early detection; hence, there is an unmet need to develop alternate molecular diagnostic biomarkers for PDAC. Emerging evidence suggests that tumor-derived exosomal cargo, particularly micro RNAs (miRNAs), offer an attractive platform for the development of cancer-specific biomarkers. Herein, genomewide profiling in blood specimens was performed to develop an exosome-based transcriptomic signature for noninvasive and early detection of PDAC. METHODS: Small RNA sequencing was undertaken in a cohort of 44 patients with an early-stage PDAC and 57 nondisease controls. Using machine-learning algorithms, a panel of cell-free (cf) and exosomal (exo) miRNAs were prioritized that discriminated patients with PDAC from control subjects. Subsequently, the performance of the biomarkers was trained and validated in independent cohorts (n = 191) using quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays. RESULTS: The sequencing analysis initially identified a panel of 30 overexpressed miRNAs in PDAC. Subsequently using qRT-PCR assays, the panel was reduced to 13 markers (5 cf- and 8 exo-miRNAs), which successfully identified patients with all stages of PDAC (area under the curve [AUC] = 0.98 training cohort; AUC = 0.93 validation cohort); but more importantly, was equally robust for the identification of early-stage PDAC (stages I and II; AUC = 0.93). Furthermore, this transcriptomic signature successfully identified CA19-9 negative cases (<37 U/mL; AUC = 0.96), when analyzed in combination with CA19-9 levels, significantly improved the overall diagnostic accuracy (AUC = 0.99 vs AUC = 0.86 for CA19-9 alone). CONCLUSIONS: In this study, an exosome-based liquid biopsy signature for the noninvasive and robust detection of patients with PDAC was developed.


Adenocarcinoma , Carcinoma, Pancreatic Ductal , Exosomes , MicroRNAs , Pancreatic Neoplasms , Humans , CA-19-9 Antigen , Exosomes/genetics , Exosomes/pathology , Transcriptome , Carcinoma, Pancreatic Ductal/diagnosis , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Biomarkers, Tumor/genetics , Cohort Studies , MicroRNAs/genetics , Carbohydrates , Pancreatic Neoplasms
9.
PLoS One ; 17(5): e0268508, 2022.
Article En | MEDLINE | ID: mdl-35594269

Biological materials can be shipped off-site for diagnostic, therapeutic and research purposes. They usually are kept in certain environments for their final application during transportation. However, active reagent handling during transportation from a collection site to a laboratory or biorepository has not been reported yet. In this paper, we show the application of a micro-controlled centrifugal microfluidic system inside a shipping container that can add reagent to an actively cultured human blood sample during transportation to ensure a rapid biodosimetry of cytokinesis-block micronucleus (CBMN) assay. The newly demonstrated concept could have a significant impact on rapid biodosimetry triage for medical countermeasure in a radiological disaster. It also opens a new capability in accelerated sample processing during transportation for biomedical and healthcare applications.


Disasters , Radiometry , Cytokinesis , Humans , Indicators and Reagents , Micronucleus Tests
10.
Prog Mol Biol Transl Sci ; 187(1): 41-91, 2022.
Article En | MEDLINE | ID: mdl-35094781

The high failure rate in drug development is often attributed to the lack of accurate pre-clinical models that may lead to false discoveries and inconclusive data when the compounds are eventually tested in clinical phase. With the evolution of cell culture technologies, drug testing systems have widely improved, and today, with the emergence of microfluidics devices, drug screening seems to be at the dawn of an important revolution. An organ-on-chip allows the culture of living cells in continuously perfused microchambers to reproduce physiological functions of a particular tissue or organ. The advantages of such systems are not only their ability to recapitulate the complex biochemical interactions between different human cell types but also to incorporate physical forces, including shear stress and mechanical stretching or compression. To improve this model, and to reproduce the absorption, distribution, metabolism, and elimination process of an exogenous compound, organ-on-chips can even be linked fluidically to mimic physiological interactions between different organs, leading to the development of body-on-chips. Although these technologies are still at a young age and need to address a certain number of limitations, they already demonstrated their relevance to study the effect of drugs or toxins on organs, displaying a similar response to what is observed in vivo. The purpose of this review is to present the evolution from organ-on-chip to body-on-chip, examine their current use for drug testing and discuss their advantages and future challenges they will face in order to become an essential pillar of pharmaceutical research.


Lab-On-A-Chip Devices , Microfluidics , Drug Development , Drug Evaluation, Preclinical , Humans , Toxicity Tests
11.
Int J Radiat Biol ; 98(5): 843-854, 2022.
Article En | MEDLINE | ID: mdl-34606416

PURPOSE: In a nuclear or radiological event, an early diagnostic or prognostic tool is needed to distinguish unexposed from low- and highly exposed individuals with the latter requiring early and intensive medical care. Radiation-induced gene expression (GE) changes observed within hours and days after irradiation have shown potential to serve as biomarkers for either dose reconstruction (retrospective dosimetry) or the prediction of consecutively occurring acute or chronic health effects. The advantage of GE markers lies in their capability for early (1-3 days after irradiation), high-throughput, and point-of-care (POC) diagnosis required for the prediction of the acute radiation syndrome (ARS). CONCLUSIONS: As a key session of the ConRad conference in 2021, experts from different institutions were invited to provide state-of-the-art information on a range of topics including: (1) Biodosimetry: What are the current efforts to enhance the applicability of this method to perform retrospective biodosimetry? (2) Effect prediction: Can we apply radiation-induced GE changes for prediction of acute health effects as an approach, complementary to and integrating retrospective dose estimation? (3) High-throughput and point-of-care diagnostics: What are the current developments to make the GE approach applicable as a high-throughput as well as a POC diagnostic platform? (4) Low level radiation: What is the lowest dose range where GE can be used for biodosimetry purposes? (5) Methodological considerations: Different aspects of radiation-induced GE related to more detailed analysis of exons, transcripts and next-generation sequencing (NGS) were reported.


Acute Radiation Syndrome , Radiometry , Acute Radiation Syndrome/genetics , Biomarkers , Gene Expression , Humans , Radiometry/methods , Retrospective Studies
12.
Infect Dis Rep ; 13(4): 1061-1077, 2021 Dec 14.
Article En | MEDLINE | ID: mdl-34940407

Since the outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in December 2019, the spread of SARS-CoV2 infection has been escalating rapidly around the world. In order to provide more timely access to medical intervention, including diagnostic tests and medical treatment, the FDA authorized multiple test protocols for diagnostic tests from nasopharyngeal swab, saliva, urine, bronchoalveolar lavage and fecal samples. The traditional diagnostic tests for this novel coronavirus 2019 require standard processes of viral RNA isolation, reverse transcription of RNA to cDNA, then real-time quantitative PCR with the RNA templates extracted from the patient samples. Recently, many reports have demonstrated a direct detection of SARS-Co-V2 genomic material from saliva samples without any RNA isolation step. To make the rapid detection of SARS-Co-V2 infection more accessible, a point-of-care type device was developed for SARS-CoV-2 detection. Herein, we report a portable microfluidic-based integrated detection-analysis system for SARS-CoV-2 nucleic acids detection directly from saliva samples. The saliva cartridge is self-contained and capable of microfluidic evaluation of saliva, from heating, mixing with the primers to multiplex real-time quantitative polymerase chain reaction, detecting SARS-CoV-2 with different primer sets and internal control. The approach has a detection sensitivity of 1000 copies/mL of SARS-CoV-2 RNA or virus, with consistency and automation, from saliva sample-in to result-out.

13.
Int J Mol Sci ; 22(22)2021 Nov 16.
Article En | MEDLINE | ID: mdl-34830229

The decellularization of plant-based biomaterials to generate tissue-engineered substitutes or in vitro cellular models has significantly increased in recent years. These vegetal tissues can be sourced from plant leaves and stems or fruits and vegetables, making them a low-cost, accessible, and sustainable resource from which to generate three-dimensional scaffolds. Each construct is distinct, representing a wide range of architectural and mechanical properties as well as innate vasculature networks. Based on the rapid rise in interest, this review aims to detail the current state of the art and presents the future challenges and perspectives of these unique biomaterials. First, we consider the different existing decellularization techniques, including chemical, detergent-free, enzymatic, and supercritical fluid approaches that are used to generate such scaffolds and examine how these protocols can be selected based on plant cellularity. We next examine strategies for cell seeding onto the plant-derived constructs and the importance of the different functionalization methods used to assist in cell adhesion and promote cell viability. Finally, we discuss how their structural features, such as inherent vasculature, porosity, morphology, and mechanical properties (i.e., stiffness, elasticity, etc.) position plant-based scaffolds as a unique biomaterial and drive their use for specific downstream applications. The main challenges in the field are presented throughout the discussion, and future directions are proposed to help improve the development and use of vegetal constructs in biomedical research.


Biocompatible Materials/chemistry , Cellulose/chemistry , Extracellular Matrix/chemistry , Plant Leaves/chemistry , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Animals , Biocompatible Materials/pharmacology , Biomechanical Phenomena , Cell Adhesion , Cell Survival , Cellulose/pharmacology , Detergents/chemistry , Elastic Modulus , Eukaryotic Cells/cytology , Eukaryotic Cells/drug effects , Eukaryotic Cells/physiology , Humans , Plant Cells/chemistry , Plant Leaves/anatomy & histology , Plant Stems/anatomy & histology , Plant Stems/chemistry , Plants/anatomy & histology , Plants/chemistry , Solvents/chemistry
14.
Clin Transl Med ; 11(6): e461, 2021 06.
Article En | MEDLINE | ID: mdl-34185420

Several clinical examinations have shown the essential impact of monitoring (de)hydration (fluid and electrolyte imbalance) in cancer patients. There are multiple risk factors associated with (de)hydration, including aging, excessive or lack of fluid consumption in sports, alcohol consumption, hot weather, diabetes insipidus, vomiting, diarrhea, cancer, radiation, chemotherapy, and use of diuretics. Fluid and electrolyte imbalance mainly involves alterations in the levels of sodium, potassium, calcium, and magnesium in extracellular fluids. Hyponatremia is a common condition among individuals with cancer (62% of cases), along with hypokalemia (40%), hypophosphatemia (32%), hypomagnesemia (17%), hypocalcemia (12%), and hypernatremia (1-5%). Lack of hydration and monitoring of hydration status can lead to severe complications, such as nausea/vomiting, diarrhea, fatigue, seizures, cell swelling or shrinking, kidney failure, shock, coma, and even death. This article aims to review the current (de)hydration (fluid and electrolyte imbalance) monitoring technologies focusing on cancer. First, we discuss the physiological and pathophysiological implications of fluid and electrolyte imbalance in cancer patients. Second, we explore the different molecular and physical monitoring methods used to measure fluid and electrolyte imbalance and the measurement challenges in diverse populations. Hydration status is assessed in various indices; plasma, sweat, tear, saliva, urine, body mass, interstitial fluid, and skin-integration techniques have been extensively investigated. No unified (de)hydration (fluid and electrolyte imbalance) monitoring technology exists for different populations (including sports, elderly, children, and cancer). Establishing novel methods and technologies to facilitate and unify measurements of hydration status represents an excellent opportunity to develop impactful new approaches for patient care.


Electrolytes/analysis , Neoplasms/complications , Water-Electrolyte Imbalance/diagnosis , Humans , Water-Electrolyte Imbalance/etiology
15.
Sci Rep ; 11(1): 10398, 2021 05 17.
Article En | MEDLINE | ID: mdl-34001964

We report a shipping container that enables a disruptive logistics for cytogenetic biodosimetry for radiation countermeasures through pre-processing cell culture during transportation. The container showed precise temperature control (< 0.01 °C) with uniform sample temperature (< 0.1 °C) to meet the biodosimetry assay requirements. Using an existing insulated shipping box and long shelf life alkaline batteries makes it ideal for national stockpile. Dose curve of cytogenetic biodosimetry assay using the shipping container showed clear dose response and high linear correlation with the control dose curve using a laboratory incubator (Pearson's correlation coefficient: 0.992). The container's ability of pre-processing biological samples during transportation could have a significant impact on radiation countermeasure, as well as potential impacts in other applications such as biobanking, novel molecular or cell-based assays or therapies.


Biological Specimen Banks/standards , Radioactive Hazard Release , Specimen Handling/standards , Transportation/standards , Biological Assay/standards , Cytogenetic Analysis/standards , Cytogenetics/standards , Humans , Ships/standards
16.
Anal Chem ; 93(27): 9337-9344, 2021 07 13.
Article En | MEDLINE | ID: mdl-33989499

Yersinia pestis is a Gram-negative bacterium that is the causative agent of plague and is widely recognized as a potential biological weapon. Due to the high fatality rate of plague when diagnosis is delayed, the development of rapid, sensitive, specific, and cost-effective methods is needed for its diagnosis. The Y. pestis low calcium response V (LcrV) protein has been identified as a potential microbial biomarker for the diagnosis of plague. In this paper, we present a highly sensitive, paper-based, vertical flow immunoassay (VFI) prototype for the detection of LcrV and the diagnosis of plague. An antigen-capture assay using monoclonal antibodies is employed to capture and detect the LcrV protein, using a colorimetric approach. In addition, the effect of miniaturizing the VFI device is explored based on two different sizes of VFI platforms, denoted as "large VFI" and "mini VFI." Also, a comparative analysis is performed between the VFI platform and a lateral flow immunoassay (LFI) platform to exhibit the improved assay sensitivity suitable for point-of-care (POC) diagnostics. The analytical sensitivity or limit of detection (LOD) in the mini VFI is approximately 0.025 ng/mL, that is, 10 times better than that of the large VFI platform or 80 times over a standard lateral flow configuration. The low LOD of the LcrV VFI appears to be highly suitable for testing clinical samples and potentially diagnosing plague at earlier time points. In addition, optimization of the gold nanoparticle (AuNP) concentration, nanomaterial plasmonic properties, and flow velocity analysis could improve the performance of the VFI. Furthermore, we developed automated image analysis software that shows potential for integrating the diagnostic system into a smartphone. These methods and findings demonstrate that the VFI platform is a highly sensitive device for detecting the LcrV and potentially many other biomarkers.


Metal Nanoparticles , Plague , Yersinia pestis , Antibodies, Bacterial , Antigens, Bacterial , Gold , Humans , Immunoassay , Plague/diagnosis
17.
Sci Total Environ ; 780: 146519, 2021 Aug 01.
Article En | MEDLINE | ID: mdl-33774282

The purpose of this research is to evaluate the supercritical carbon dioxide (scCO2) sterilization-based NovaClean process for decontamination and reprocessing of personal protective equipment (PPE) such as surgical masks, cloth masks, and N95 respirators. Preliminarily, Bacillus atrophaeus were inoculated into different environments (dry, hydrated, and saliva) to imitate coughing and sneezing and serve as a "worst-case" regarding challenged PPE. The inactivation of the microbes by scCO2 sterilization with NovaKill or H2O2 sterilant was investigated as a function of exposure times ranging from 5 to 90 min with a goal of elucidating possible mechanisms. Also, human coronavirus SARS-CoV-2 and HCoV-NL63 were inoculated on the respirator material, and viral activity was determined post-treatment. Moreover, we investigated the reprocessing ability of scCO2-based decontamination using wettability testing and surface mapping. Different inactivation mechanisms have been identified in scCO2 sanitization, such as membrane damage, germination defect, and dipicolinic acid leaks. Moreover, the viral sanitization results showed a complete inactivation of both coronavirus HCoV-NL63 and SARS-CoV-2. We did not observe changes in PPE morphology, topographical structure, or material integrity, and in accordance with the WHO recommendation, maintained wettability post-processing. These experiments establish a foundational understanding of critical elements for the decontamination and reuse of PPE in any setting and provide a direction for future research in the field.


COVID-19 , Personal Protective Equipment , Bacillus , Carbon Dioxide , Decontamination , Humans , Hydrogen Peroxide , Masks , SARS-CoV-2 , Sterilization
18.
Sci Rep ; 11(1): 3643, 2021 02 11.
Article En | MEDLINE | ID: mdl-33574461

The use of plant-based biomaterials for tissue engineering has recently generated interest as plant decellularization produces biocompatible scaffolds which can be repopulated with human cells. The predominant approach for vegetal decellularization remains serial chemical processing. However, this technique is time-consuming and requires harsh compounds which damage the resulting scaffolds. The current study presents an alternative solution using supercritical carbon dioxide (scCO2). Protocols testing various solvents were assessed and results found that scCO2 in combination with 2% peracetic acid decellularized plant material in less than 4 h, while preserving plant microarchitecture and branching vascular network. The biophysical and biochemical cues of the scCO2 decellularized spinach leaf scaffolds were then compared to chemically generated scaffolds. Data showed that the scaffolds had a similar Young's modulus, suggesting identical stiffness, and revealed that they contained the same elements, yet displayed disparate biochemical signatures as assessed by Fourier-transform infrared spectroscopy (FTIR). Finally, human fibroblast cells seeded on the spinach leaf surface were attached and alive after 14 days, demonstrating the biocompatibility of the scCO2 decellularized scaffolds. Thus, scCO2 was found to be an efficient method for plant material decellularization, scaffold structure preservation and recellularization with human cells, while performed in less time (36 h) than the standard chemical approach (170 h).


Biocompatible Materials/chemistry , Carbon Dioxide/chemistry , Plant Cells/chemistry , Tissue Scaffolds/chemistry , Extracellular Matrix/chemistry , Humans , Tissue Engineering
19.
Article En | MEDLINE | ID: mdl-32850759

Plant-based scaffolds present many advantages over a variety of biomaterials. Recent studies explored their potential to be repopulated with human cells and thus highlight a growing interest for their use in tissue engineering or for biomedical applications. However, it is still unclear if these in vitro plant-based scaffolds can modify cell phenotype or affect cellular response to external stimuli. Here, we report the characterization of the mechano-regulation of melanoma SK-MEL-28 and prostate PC3 cells seeded on decellularized spinach leaves scaffolds, compared to cells deposited on standard rigid cell culture substrate, as well as their response to drug and radiation treatment. The results showed that YAP/TAZ signaling was downregulated, cellular morphology altered and proliferation rate decreased when cells were cultured on leaf scaffold. Interestingly, cell culture on vegetal scaffold also affected cellular response to external stress. Thus, SK-MEL-28 cells phenotype is modified leading to a decrease in MITF activity and drug resistance, while PC3 cells showed altered gene expression and radiation response. These findings shed lights on the decellularization of vegetal materials to provide substrates that can be repopulated with human cells to better reproduce a soft tissue microenvironment. However, these complex scaffolds mediate changes in cell behavior and in order to exploit the capability of matching physical properties of the various plant scaffolds to diverse physiological functionalities of cells and human tissue constructs, additional studies are required to better characterize physical and biochemical cell-substrate interactions.

20.
Mol Cell Proteomics ; 19(10): 1688-1705, 2020 10.
Article En | MEDLINE | ID: mdl-32709677

Ventilator-associated pneumonia (VAP) is a common hospital-acquired infection, leading to high morbidity and mortality. Currently, bronchoalveolar lavage (BAL) is used in hospitals for VAP diagnosis and guiding treatment options. Although BAL collection procedures are invasive, alternatives such as endotracheal aspirates (ETA) may be of diagnostic value, however, their use has not been thoroughly explored. Longitudinal ETA and BAL were collected from 16 intubated patients up to 15 days, of which 11 developed VAP. We conducted a comprehensive LC-MS/MS based proteome and metabolome characterization of longitudinal ETA and BAL to detect host and pathogen responses to VAP infection. We discovered a diverse ETA proteome of the upper airways reflective of a rich and dynamic host-microbe interface. Prior to VAP diagnosis by microbial cultures from BAL, patient ETA presented characteristic signatures of reactive oxygen species and neutrophil degranulation, indicative of neutrophil mediated pathogen processing as a key host response to the VAP infection. Along with an increase in amino acids, this is suggestive of extracellular membrane degradation resulting from proteolytic activity of neutrophil proteases. The metaproteome approach successfully allowed simultaneous detection of pathogen peptides in patients' ETA, which may have potential use in diagnosis. Our findings suggest that ETA may facilitate early mechanistic insights into host-pathogen interactions associated with VAP infection and therefore provide its diagnosis and treatment.


Gene Expression Profiling , Immunity, Innate/genetics , Pneumonia, Ventilator-Associated/genetics , Pneumonia, Ventilator-Associated/immunology , Adult , Aged , Aged, 80 and over , Amino Acid Sequence , Bronchoalveolar Lavage Fluid , Cohort Studies , Female , Gene Expression Regulation , Humans , Intubation, Intratracheal , Male , Metabolomics , Middle Aged , Neutrophils/metabolism , Peptides/chemistry , Phylogeny , Proteome/metabolism , Proteomics
...