Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Insights Imaging ; 15(1): 92, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38530547

ABSTRACT

OBJECTIVES: To collect real-world data about the knowledge and self-perception of young radiologists concerning the use of contrast media (CM) and the management of adverse drug reactions (ADR). METHODS: A survey (29 questions) was distributed to residents and board-certified radiologists younger than 40 years to investigate the current international situation in young radiology community regarding CM and ADRs. Descriptive statistics analysis was performed. RESULTS: Out of 454 respondents from 48 countries (mean age: 31.7 ± 4 years, range 25-39), 271 (59.7%) were radiology residents and 183 (40.3%) were board-certified radiologists. The majority (349, 76.5%) felt they were adequately informed regarding the use of CM. However, only 141 (31.1%) received specific training on the use of CM and 82 (18.1%) about management ADR during their residency. Although 266 (58.6%) knew safety protocols for handling ADR, 69.6% (316) lacked confidence in their ability to manage CM-induced ADRs and 95.8% (435) expressed a desire to enhance their understanding of CM use and handling of CM-induced ADRs. Nearly 300 respondents (297; 65.4%) were aware of the benefits of contrast-enhanced ultrasound, but 249 (54.8%) of participants did not perform it. The preferred CM injection strategy in CT parenchymal examination and CT angiography examination was based on patient's lean body weight in 318 (70.0%) and 160 (35.2%), a predeterminate fixed amount in 79 (17.4%) and 116 (25.6%), iodine delivery rate in 26 (5.7%) and 122 (26.9%), and scan time in 31 (6.8%) and 56 (12.3%), respectively. CONCLUSION: Training in CM use and management ADR should be implemented in the training of radiology residents. CRITICAL RELEVANCE STATEMENT: We highlight the need for improvement in the education of young radiologists regarding contrast media; more attention from residency programs and scientific societies should be focused on training about contrast media use and the management of adverse drug reactions. KEY POINTS: • This survey investigated training of young radiologists about use of contrast media and management adverse reactions. • Most young radiologists claimed they did not receive dedicated training. • An extreme heterogeneity of responses was observed about contrast media indications/contraindications and injection strategy.

2.
Diagnostics (Basel) ; 14(4)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38396418

ABSTRACT

Magnetic resonance elastography (MRE) is an imaging technique that combines low-frequency mechanical vibrations with magnetic resonance imaging to create visual maps and quantify liver parenchyma stiffness. As in recent years, diffuse liver diseases have become highly prevalent worldwide and could lead to a chronic condition with different stages of fibrosis. There is a strong necessity for a non-invasive, highly accurate, and standardised quantitative assessment to evaluate and manage patients with different stages of fibrosis from diagnosis to follow-up, as the actual reference standard for the diagnosis and staging of liver fibrosis is biopsy, an invasive method with possible peri-procedural complications and sampling errors. MRE could quantitatively evaluate liver stiffness, as it is a rapid and repeatable method with high specificity and sensitivity. MRE is based on the propagation of mechanical shear waves through the liver tissue that are directly proportional to the organ's stiffness, expressed in kilopascals (kPa). To obtain a valid assessment of the real hepatic stiffness values, it is mandatory to obtain a high-quality examination. To understand the pearls and pitfalls of MRE, in this review, we describe our experience after one year of performing MRE from indications and patient preparation to acquisition, quality control, and image analysis.

3.
Cancers (Basel) ; 16(3)2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38339411

ABSTRACT

The aim of this study was to compare CT radiomics and morphological features when assessing benign lymph nodes (LNs) in colon cancer (CC). This retrospective study included 100 CC patients (test cohort) who underwent a preoperative CT examination and were diagnosed as pN0 after surgery. Regional LNs were scored with a morphological Likert scale (NODE-SCORE) and divided into two groups: low likelihood (LLM: 0-2 points) and high likelihood (HLM: 3-7 points) of malignancy. The T-test and the Mann-Whitney test were used to compare 107 radiomic features extracted from the two groups. Radiomic features were also extracted from primary lesions (PLs), and the receiver operating characteristic (ROC) was used to test a LN/PL ratio when assessing the LN's status identified with radiomics and with the NODE-SCORE. An amount of 337 LNs were divided into 167 with LLM and 170 with HLM. Radiomics showed 15/107 features, with a significant difference (p < 0.02) between the two groups. The comparison of selected features between 81 PLs and the corresponding LNs showed all significant differences (p < 0.0001). According to the LN/PL ratio, the selected features recognized a higher number of LNs than the NODE-SCORE (p < 0.001). On validation of the cohort of 20 patients (10 pN0, 10 pN2), significant ROC curves were obtained for LN/PL busyness (AUC = 0.91; 0.69-0.99; 95% C.I.; and p < 0.001) and for LN/PL dependence entropy (AUC = 0.76; 0.52-0.92; 95% C.I.; and p = 0.03). The radiomics ratio between CC and LNs is more accurate for noninvasively discriminating benign LNs compared to CT morphological features.

4.
Eur Radiol ; 34(4): 2384-2393, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37688618

ABSTRACT

OBJECTIVES: To perform a comprehensive within-subject image quality analysis of abdominal CT examinations reconstructed with DLIR and to evaluate diagnostic accuracy compared to the routinely applied adaptive statistical iterative reconstruction (ASiR-V) algorithm. MATERIALS AND METHODS: Oncologic patients were prospectively enrolled and underwent contrast-enhanced CT. Images were reconstructed with DLIR with three intensity levels of reconstruction (high, medium, and low) and ASiR-V at strength levels from 10 to 100% with a 10% interval. Three radiologists characterized the lesions and two readers assessed diagnostic accuracy and calculated signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), figure of merit (FOM), and subjective image quality, the latter with a 5-point Likert scale. RESULTS: Fifty patients (mean age: 70 ± 10 years, 23 men) were enrolled and 130 liver lesions (105 benign lesions, 25 metastases) were identified. DLIR_H achieved the highest SNR and CNR, comparable to ASiR-V 100% (p ≥ .051). DLIR_M returned the highest subjective image quality (score: 5; IQR: 4-5; p ≤ .001) and significant median increase (29%) in FOM (p < .001). Differences in detection were identified only for lesions ≤ 0.5 cm: 32/33 lesions were detected with DLIR_M and 26 lesions were detected with ASiR-V 50% (p = .031). Lesion accuracy of was 93.8% (95% CI: 88.1, 97.3; 122 of 130 lesions) for DLIR and 87.7% (95% CI: 80.8, 92.8; 114 of 130 lesions) for ASiR-V 50%. CONCLUSIONS: DLIR yields superior image quality and provides higher diagnostic accuracy compared to ASiR-V in the assessment of hypovascular liver lesions, in particular for lesions ≤ 0.5 cm. CLINICAL RELEVANCE STATEMENT: Deep learning image reconstruction algorithm demonstrates higher diagnostic accuracy compared to iterative reconstruction in the identification of hypovascular liver lesions, especially for lesions ≤ 0.5 cm. KEY POINTS: • Iterative reconstruction algorithm impacts image texture, with negative effects on diagnostic capabilities. • Medium-strength deep learning image reconstruction algorithm outperforms iterative reconstruction in the diagnostic accuracy of ≤ 0.5 cm hypovascular liver lesions (93.9% vs 78.8%), also granting higher objective and subjective image quality. • Deep learning image reconstruction algorithm can be safely implemented in routine abdominal CT protocols in place of iterative reconstruction.


Subject(s)
Deep Learning , Liver Neoplasms , Male , Humans , Middle Aged , Aged , Aged, 80 and over , Radiographic Image Interpretation, Computer-Assisted/methods , Radiation Dosage , Tomography, X-Ray Computed/methods , Algorithms , Image Processing, Computer-Assisted , Liver Neoplasms/diagnostic imaging
5.
Eur Radiol Exp ; 7(1): 77, 2023 12 07.
Article in English | MEDLINE | ID: mdl-38057616

ABSTRACT

PURPOSE: To determine if pelvic/ovarian and omental lesions of ovarian cancer can be reliably segmented on computed tomography (CT) using fully automated deep learning-based methods. METHODS: A deep learning model for the two most common disease sites of high-grade serous ovarian cancer lesions (pelvis/ovaries and omentum) was developed and compared against the well-established "no-new-Net" framework and unrevised trainee radiologist segmentations. A total of 451 CT scans collected from four different institutions were used for training (n = 276), evaluation (n = 104) and testing (n = 71) of the methods. The performance was evaluated using the Dice similarity coefficient (DSC) and compared using a Wilcoxon test. RESULTS: Our model outperformed no-new-Net for the pelvic/ovarian lesions in cross-validation, on the evaluation and test set by a significant margin (p values being 4 × 10-7, 3 × 10-4, 4 × 10-2, respectively), and for the omental lesions on the evaluation set (p = 1 × 10-3). Our model did not perform significantly differently in segmenting pelvic/ovarian lesions (p = 0.371) compared to a trainee radiologist. On an independent test set, the model achieved a DSC performance of 71 ± 20 (mean ± standard deviation) for pelvic/ovarian and 61 ± 24 for omental lesions. CONCLUSION: Automated ovarian cancer segmentation on CT scans using deep neural networks is feasible and achieves performance close to a trainee-level radiologist for pelvic/ovarian lesions. RELEVANCE STATEMENT: Automated segmentation of ovarian cancer may be used by clinicians for CT-based volumetric assessments and researchers for building complex analysis pipelines. KEY POINTS: • The first automated approach for pelvic/ovarian and omental ovarian cancer lesion segmentation on CT images has been presented. • Automated segmentation of ovarian cancer lesions can be comparable with manual segmentation of trainee radiologists. • Careful hyperparameter tuning can provide models significantly outperforming strong state-of-the-art baselines.


Subject(s)
Deep Learning , Ovarian Cysts , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/diagnostic imaging , Neural Networks, Computer , Tomography, X-Ray Computed
6.
Nat Commun ; 14(1): 6756, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37875466

ABSTRACT

High grade serous ovarian carcinoma (HGSOC) is a highly heterogeneous disease that typically presents at an advanced, metastatic state. The multi-scale complexity of HGSOC is a major obstacle to predicting response to neoadjuvant chemotherapy (NACT) and understanding critical determinants of response. Here we present a framework to predict the response of HGSOC patients to NACT integrating baseline clinical, blood-based, and radiomic biomarkers extracted from all primary and metastatic lesions. We use an ensemble machine learning model trained to predict the change in total disease volume using data obtained at diagnosis (n = 72). The model is validated in an internal hold-out cohort (n = 20) and an independent external patient cohort (n = 42). In the external cohort the integrated radiomics model reduces the prediction error by 8% with respect to the clinical model, achieving an AUC of 0.78 for RECIST 1.1 classification compared to 0.47 for the clinical model. Our results emphasize the value of including radiomics data in integrative models of treatment response and provide methods for developing new biomarker-based clinical trials of NACT in HGSOC.


Subject(s)
Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/diagnostic imaging , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Neoadjuvant Therapy/methods , Biomarkers, Tumor/genetics
7.
Radiol Med ; 128(8): 922-933, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37326780

ABSTRACT

Radiomics is a new emerging field that includes extraction of metrics and quantification of so-called radiomic features from medical images. The growing importance of radiomics applied to oncology in improving diagnosis, cancer staging and grading, and improved personalized treatment, has been well established; yet, this new analysis technique has still few applications in cardiovascular imaging. Several studies have shown promising results describing how radiomics principles could improve the diagnostic accuracy of coronary computed tomography angiography (CCTA) and magnetic resonance imaging (MRI) in diagnosis, risk stratification, and follow-up of patients with coronary heart disease (CAD), ischemic heart disease (IHD), hypertrophic cardiomyopathy (HCM), hypertensive heart disease (HHD), and many other cardiovascular diseases. Such quantitative approach could be useful to overcome the main limitations of CCTA and MRI in the evaluation of cardiovascular diseases, such as readers' subjectiveness and lack of repeatability. Moreover, this new discipline could potentially overcome some technical problems, namely the need of contrast administration or invasive examinations. Despite such advantages, radiomics is still not applied in clinical routine, due to lack of standardized parameters acquisition, inconsistent radiomic methods, lack of external validation, and different knowledge and experience among the readers. The purpose of this manuscript is to provide a recent update on the status of radiomics clinical applications in cardiovascular imaging.


Subject(s)
Cardiomyopathy, Hypertrophic , Heart Diseases , Humans , Magnetic Resonance Imaging , Heart Diseases/diagnostic imaging , Tomography, X-Ray Computed , Computed Tomography Angiography
8.
J Pers Med ; 13(5)2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37240887

ABSTRACT

BACKGROUND: preoperative risk assessment of gastrointestinal stromal tumors (GISTS) is required for optimal and personalized treatment planning. Radiomics features are promising tools to predict risk assessment. The purpose of this study is to develop and validate an artificial intelligence classification algorithm, based on CT features, to define GIST's prognosis as determined by the Miettinen classification. METHODS: patients with histological diagnosis of GIST and CT studies were retrospectively enrolled. Eight morphologic and 30 texture CT features were extracted from each tumor and combined to obtain three models (morphologic, texture and combined). Data were analyzed using a machine learning classification (WEKA). For each classification process, sensitivity, specificity, accuracy and area under the curve were evaluated. Inter- and intra-reader agreement were also calculated. RESULTS: 52 patients were evaluated. In the validation population, highest performances were obtained by the combined model (SE 85.7%, SP 90.9%, ACC 88.8%, and AUC 0.954) followed by the morphologic (SE 66.6%, SP 81.8%, ACC 76.4%, and AUC 0.742) and texture (SE 50%, SP 72.7%, ACC 64.7%, and AUC 0.613) models. Reproducibility was high of all manual evaluations. CONCLUSIONS: the AI-based radiomics model using a CT feature demonstrates good predictive performance for preoperative risk stratification of GISTs.

9.
Radiol Med ; 128(6): 755-764, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37155000

ABSTRACT

The term Explainable Artificial Intelligence (xAI) groups together the scientific body of knowledge developed while searching for methods to explain the inner logic behind the AI algorithm and the model inference based on knowledge-based interpretability. The xAI is now generally recognized as a core area of AI. A variety of xAI methods currently are available to researchers; nonetheless, the comprehensive classification of the xAI methods is still lacking. In addition, there is no consensus among the researchers with regards to what an explanation exactly is and which are salient properties that must be considered to make it understandable for every end-user. The SIRM introduces an xAI-white paper, which is intended to aid Radiologists, medical practitioners, and scientists in the understanding an emerging field of xAI, the black-box problem behind the success of the AI, the xAI methods to unveil the black-box into a glass-box, the role, and responsibilities of the Radiologists for appropriate use of the AI-technology. Due to the rapidly changing and evolution of AI, a definitive conclusion or solution is far away from being defined. However, one of our greatest responsibilities is to keep up with the change in a critical manner. In fact, ignoring and discrediting the advent of AI a priori will not curb its use but could result in its application without awareness. Therefore, learning and increasing our knowledge about this very important technological change will allow us to put AI at our service and at the service of the patients in a conscious way, pushing this paradigm shift as far as it will benefit us.


Subject(s)
Artificial Intelligence , Radiology, Interventional , Humans , Radiography , Radiologists , Algorithms
10.
Radiol Med ; 128(4): 434-444, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36847992

ABSTRACT

PURPOSE: To perform a comprehensive intraindividual objective and subjective image quality evaluation of coronary CT angiography (CCTA) reconstructed with deep learning image reconstruction (DLIR) and to assess correlation with routinely applied hybrid iterative reconstruction algorithm (ASiR-V). MATERIAL AND METHODS: Fifty-one patients (29 males) undergoing clinically indicated CCTA from April to December 2021 were prospectively enrolled. Fourteen datasets were reconstructed for each patient: three DLIR strength levels (DLIR_L, DLIR_M, and DLIR_H), ASiR-V from 10% to 100% in 10%-increment, and filtered back-projection (FBP). Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) determined objective image quality. Subjective image quality was assessed with a 4-point Likert scale. Concordance between reconstruction algorithms was assessed by Pearson correlation coefficient. RESULTS: DLIR algorithm did not impact vascular attenuation (P ≥ 0.374). DLIR_H showed the lowest noise, comparable with ASiR-V 100% (P = 1) and significantly lower than other reconstructions (P ≤ 0.021). DLIR_H achieved the highest objective quality, with SNR and CNR comparable to ASiR-V 100% (P = 0.139 and 0.075, respectively). DLIR_M obtained comparable objective image quality with ASiR-V 80% and 90% (P ≥ 0.281), while achieved the highest subjective image quality (4, IQR: 4-4; P ≤ 0.001). DLIR and ASiR-V datasets returned a very strong correlation in the assessment of CAD (r = 0.874, P = 0.001). CONCLUSION: DLIR_M significantly improves CCTA image quality and has very strong correlation with routinely applied ASiR-V 50% dataset in the diagnosis of CAD.


Subject(s)
Computed Tomography Angiography , Deep Learning , Male , Humans , Computed Tomography Angiography/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Coronary Angiography/methods , Algorithms , Radiation Dosage , Image Processing, Computer-Assisted/methods
11.
Cancers (Basel) ; 15(3)2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36765777

ABSTRACT

Colorectal cancer still represents the third most frequent cancer in the world; around one-third of cancers are located in the rectum, with important differences in terms of diagnosis, treatment management, and survival compared to colon cancer [...].

12.
J Comput Assist Tomogr ; 47(2): 244-254, 2023.
Article in English | MEDLINE | ID: mdl-36728734

ABSTRACT

ABSTRACT: Image reconstruction processing in computed tomography (CT) has evolved tremendously since its creation, succeeding at optimizing radiation dose while maintaining adequate image quality. Computed tomography vendors have developed and implemented various technical advances, such as automatic noise reduction filters, automatic exposure control, and refined imaging reconstruction algorithms.Focusing on imaging reconstruction, filtered back-projection has represented the standard reconstruction algorithm for over 3 decades, obtaining adequate image quality at standard radiation dose exposures. To overcome filtered back-projection reconstruction flaws in low-dose CT data sets, advanced iterative reconstruction algorithms consisting of either backward projection or both backward and forward projections have been developed, with the goal to enable low-dose CT acquisitions with high image quality. Iterative reconstruction techniques play a key role in routine workflow implementation (eg, screening protocols, vascular and pediatric applications), in quantitative CT imaging applications, and in dose exposure limitation in oncologic patients.Therefore, this review aims to provide an overview of the technical principles and the main clinical application of iterative reconstruction algorithms, focusing on the strengths and weaknesses, in addition to integrating future perspectives in the new era of artificial intelligence.


Subject(s)
Artificial Intelligence , Tomography, X-Ray Computed , Humans , Child , Radiation Dosage , Tomography, X-Ray Computed/methods , Algorithms , Image Processing, Computer-Assisted/methods , Radiographic Image Interpretation, Computer-Assisted/methods
13.
Diagnostics (Basel) ; 13(1)2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36611441

ABSTRACT

In recent years, radiomics has been among the most impactful topics in the research field of quantitative imaging [...].

14.
Radiol Med ; 127(10): 1098-1105, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36070066

ABSTRACT

PURPOSE: To compare liver MRI with AIR Recon Deep Learning™(ARDL) algorithm applied and turned-off (NON-DL) with conventional high-resolution acquisition (NAÏVE) sequences, in terms of quantitative and qualitative image analysis and scanning time. MATERIAL AND METHODS: This prospective study included fifty consecutive volunteers (31 female, mean age 55.5 ± 20 years) from September to November 2021. 1.5 T MRI was performed and included three sets of images: axial single-shot fast spin-echo (SSFSE) T2 images, diffusion-weighted images(DWI) and apparent diffusion coefficient(ADC) maps acquired with both ARDL and NAÏVE protocol; the NON-DL images, were also assessed. Two radiologists in consensus drew fixed regions of interest in liver parenchyma to calculate signal-to-noise-ratio (SNR) and contrast to-noise-ratio (CNR). Subjective image quality was assessed by two other radiologists independently with a five-point Likert scale. Acquisition time was recorded. RESULTS: SSFSE T2 objective analysis showed higher SNR and CNR for ARDL vs NAÏVE, ARDL vs NON-DL(all P < 0.013). Regarding DWI, no differences were found for SNR with ARDL vs NAÏVE and, ARDL vs NON-DL (all P > 0.2517).CNR was higher for ARDL vs NON-DL(P = 0.0170), whereas no differences were found between ARDL and NAÏVE(P = 1). No differences were observed for all three comparisons, in terms of SNR and CNR, for ADC maps (all P > 0.32). Qualitative analysis for all sequences showed better overall image quality for ARDL with lower truncation artifacts, higher sharpness and contrast (all P < 0.0070) with excellent inter-rater agreement (k ≥ 0.8143). Acquisition time was lower in ARDL sequences compared to NAÏVE (SSFSE T2 = 19.08 ± 2.5 s vs. 24.1 ± 2 s and DWI = 207.3 ± 54 s vs. 513.6 ± 98.6 s, all P < 0.0001). CONCLUSION: ARDL applied on upper abdomen showed overall better image quality and reduced scanning time compared with NAÏVE protocol.


Subject(s)
Artificial Intelligence , Echo-Planar Imaging , Adult , Aged , Diffusion Magnetic Resonance Imaging/methods , Echo-Planar Imaging/methods , Female , Humans , Image Enhancement/methods , Liver/diagnostic imaging , Magnetic Resonance Imaging , Middle Aged , Prospective Studies , Reproducibility of Results
15.
Diagnostics (Basel) ; 12(9)2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36140572

ABSTRACT

Adrenal lesions are frequently incidentally diagnosed during investigations for other clinical conditions. Despite being usually benign, nonfunctioning, and silent, they can occasionally cause discomfort or be responsible for various clinical conditions due to hormonal dysregulation; therefore, their characterization is of paramount importance for establishing the best therapeutic strategy. Imaging techniques such as ultrasound, computed tomography, magnetic resonance, and PET-TC, providing anatomical and functional information, play a central role in the diagnostic workup, allowing clinicians and surgeons to choose the optimal lesion management. This review aims at providing an overview of the most encountered adrenal lesions, both benign and malignant, including describing their imaging characteristics.

16.
Diagnostics (Basel) ; 12(8)2022 Aug 16.
Article in English | MEDLINE | ID: mdl-36010337

ABSTRACT

Background: to assess the performance and speed of two commercially available advanced cardiac software packages in the automated identification of coronary vessels as an aiding tool for inexperienced readers. Methods: Hundred and sixty patients undergoing coronary CT angiography (CCTA) were prospectively enrolled from February until September 2021 and randomized in two groups, each one composed by 80 patients. Patients in group 1 were scanned on Revolution EVO CT Scanner (GE Healthcare), while patients in group 2 had the CCTA performed on Brilliance iCT (Philips Healthcare); each examination was evaluated on the respective vendor proprietary advanced cardiac software (software 1 and 2, respectively). Two inexperienced readers in cardiac imaging verified the software performance in the automated identification of the three major coronary vessels: (RCA, LCx, and LAD) and in the number of identified coronary segments. Time of analysis was also recorded. Results: software 1 correctly and automatically nominated 202/240 (84.2%) of the three main coronary vessels, while software 2 correctly identified 191/240 (79.6%) (p = 0.191). Software 1 achieved greater performances in recognizing the LCx (81.2% versus 67.5%; p = 0.048), while no differences have been reported in detecting the RCA (p = 0.679), and the LAD (p = 0.618). On a per-segment analysis, software 1 outperformed software 2, automatically detecting 942/1062 (88.7%) coronary segments, while software 2 detected 797/1078 (73.9%) (p < 0.001). Average reconstruction and detection time was of 13.8 s for software 1 and 21.9 s for software 2 (p < 0.001). Conclusions: automated cardiac software packages are a reliable and time-saving tool for inexperienced reader. Software 1 outperforms software 2 and might therefore better assist inexperienced CCTA readers in automated identification of the three main vessels and coronaries segments, with a consistent time saving of the reading session.

17.
Front Oncol ; 12: 868265, 2022.
Article in English | MEDLINE | ID: mdl-35785153

ABSTRACT

Background: Pathological response to neoadjuvant treatment for patients with high-grade serous ovarian carcinoma (HGSOC) is assessed using the chemotherapy response score (CRS) for omental tumor deposits. The main limitation of CRS is that it requires surgical sampling after initial neoadjuvant chemotherapy (NACT) treatment. Earlier and non-invasive response predictors could improve patient stratification. We developed computed tomography (CT) radiomic measures to predict neoadjuvant response before NACT using CRS as a gold standard. Methods: Omental CT-based radiomics models, yielding a simplified fully interpretable radiomic signature, were developed using Elastic Net logistic regression and compared to predictions based on omental tumor volume alone. Models were developed on a single institution cohort of neoadjuvant-treated HGSOC (n = 61; 41% complete response to NCT) and tested on an external test cohort (n = 48; 21% complete response). Results: The performance of the comprehensive radiomics models and the fully interpretable radiomics model was significantly higher than volume-based predictions of response in both the discovery and external test sets when assessed using G-mean (geometric mean of sensitivity and specificity) and NPV, indicating high generalizability and reliability in identifying non-responders when using radiomics. The performance of a fully interpretable model was similar to that of comprehensive radiomics models. Conclusions: CT-based radiomics allows for predicting response to NACT in a timely manner and without the need for abdominal surgery. Adding pre-NACT radiomics to volumetry improved model performance for predictions of response to NACT in HGSOC and was robust to external testing. A radiomic signature based on five robust predictive features provides improved clinical interpretability and may thus facilitate clinical acceptance and application.

18.
Cancers (Basel) ; 14(14)2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35884499

ABSTRACT

The study was aimed to develop a radiomic model able to identify high-risk colon cancer by analyzing pre-operative CT scans. The study population comprised 148 patients: 108 with non-metastatic colon cancer were retrospectively enrolled from January 2015 to June 2020, and 40 patients were used as the external validation cohort. The population was divided into two groups­High-risk and No-risk­following the presence of at least one high-risk clinical factor. All patients had baseline CT scans, and 3D cancer segmentation was performed on the portal phase by two expert radiologists using open-source software (3DSlicer v4.10.2). Among the 107 radiomic features extracted, stable features were selected to evaluate the inter-class correlation (ICC) (cut-off ICC > 0.8). Stable features were compared between the two groups (T-test or Mann−Whitney), and the significant features were selected for univariate and multivariate logistic regression to build a predictive radiomic model. The radiomic model was then validated with an external cohort. In total, 58/108 were classified as High-risk and 50/108 as No-risk. A total of 35 radiomic features were stable (0.81 ≤ ICC < 0.92). Among these, 28 features were significantly different between the two groups (p < 0.05), and only 9 features were selected to build the radiomic model. The radiomic model yielded an AUC of 0.73 in the internal cohort and 0.75 in the external cohort. In conclusion, the radiomic model could be seen as a performant, non-invasive imaging tool to properly stratify colon cancers with high-risk disease.

19.
Radiol Med ; 127(7): 691-701, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35717429

ABSTRACT

AIM: To test radiomic approach in patients with metastatic neuroendocrine tumors (NETs) treated with Everolimus, with the aim to predict progression-free survival (PFS) and death. MATERIALS AND METHODS: Twenty-five patients with metastatic neuroendocrine tumors, 15/25 pancreatic (60%), 9/25 ileal (36%), 1/25 lung (4%), were retrospectively enrolled between August 2013 and December 2020. All patients underwent contrast-enhanced CT before starting Everolimus, histological diagnosis, tumor grading, PFS, overall survival (OS), death, and clinical data collected. Population was divided into two groups: responders (PFS ≤ 11 months) and non-responders (PFS > 11 months). 3D segmentation was performed on whole liver of naïve CT scans in arterial and venous phases, using a dedicated software (3DSlicer v4.10.2). A total of 107 radiomic features were extracted and compared between two groups (T test or Mann-Whitney), radiomics performance assessed with receiver operating characteristic curve, Kaplan-Meyer curves used for survival analysis, univariate and multivariate logistic regression performed to predict death, and interobserver variability assessed. All significant radiomic comparisons were validated by using a synthetic external cohort. P < 0.05 is considered significant. RESULTS: 15/25 patients were classified as responders (median PFS 25 months and OS 29 months) and 10/25 as non-responders (median PFS 4.5 months and OS 23 months). Among radiomic parameters, Correlation and Imc1 showed significant differences between two groups (P < 0.05) with the best performance (internal cohort AUC 0.86-0.84, P < 0.0001; external cohort AUC 0.84-0.90; P < 0.0001). Correlation < 0.21 resulted correlated with death at Kaplan-Meyer analysis (P = 0.02). Univariate analysis showed three radiomic features independently correlated with death, and in multivariate analysis radiomic model showed good performance with AUC 0.87, sensitivity 100%, and specificity 66.7%. Three features achieved 0.77 ≤ ICC < 0.83 and one ICC = 0.92. CONCLUSIONS: In patients affected by metastatic NETs eligible for Everolimus treatment, radiomics could be used as imaging biomarker able to predict PFS and death.


Subject(s)
Neuroendocrine Tumors , Everolimus/therapeutic use , Humans , Neoplasm Grading , Neuroendocrine Tumors/diagnostic imaging , Neuroendocrine Tumors/drug therapy , Neuroendocrine Tumors/pathology , Retrospective Studies , Tomography, X-Ray Computed/methods
20.
Diagnostics (Basel) ; 12(3)2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35328296

ABSTRACT

In many low-income countries, the poor availability of lung biopsy leads to delayed diagnosis of lung cancer (LC), which can appear radiologically similar to tuberculosis (TB). To assess the ability of CT Radiomics in differentiating between TB and LC, and to evaluate the potential predictive role of clinical parameters, from March 2020 to September 2021, patients with histological diagnosis of TB or LC underwent chest CT evaluation and were retrospectively enrolled. Exclusion criteria were: availability of only enhanced CT scans, previous lung surgery and significant CT motion artefacts. After manual 3D segmentation of enhanced CT, two radiologists, in consensus, extracted and compared radiomics features (T-test or Mann−Whitney), and they tested their performance, in differentiating LC from TB, via Receiver operating characteristic (ROC) curves. Forty patients (28 LC and 12 TB) were finally enrolled, and 31 were male, with a mean age of 59 ± 13 years. Significant differences were found in normal WBC count (p < 0.019) and age (p < 0.001), in favor of the LC group (89% vs. 58%) and with an older population in LC group, respectively. Significant differences were found in 16/107 radiomic features (all p < 0.05). LargeDependenceEmphasis and LargeAreaLowGrayLevelEmphasis showed the best performance in discriminating LC from TB, (AUC: 0.92, sensitivity: 85.7%, specificity: 91.7%, p < 0.0001; AUC: 0.92, sensitivity: 75%, specificity: 100%, p < 0.0001, respectively). Radiomics may be a non-invasive imaging tool in many poor nations, for differentiating LC from TB, with a pivotal role in improving oncological patients' management; however, future prospective studies will be necessary to validate these initial findings.

SELECTION OF CITATIONS
SEARCH DETAIL