Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Mol Cell Cardiol ; 187: 1-14, 2024 02.
Article in English | MEDLINE | ID: mdl-38103633

ABSTRACT

BACKGROUND: Although aging is known to be associated with an increased incidence of both atrial and ventricular arrhythmias, there is limited knowledge about how Schwann cells (SC) and the intracardiac nervous system (iCNS) remodel with age. Here we investigate the differences in cardiac SC, parasympathetic nerve fibers, and muscarinic acetylcholine receptor M2 (M2R) expression in young and old mice. Additionally, we examine age-related changes in cardiac responses to sympathomimetic and parasympathomimetic drugs. METHODS AND RESULTS: Lower SC density, lower SC proliferation and fewer parasympathetic nerve fibers were observed in cardiac and, as a control sciatic nerves from old (20-24 months) compared to young mice (2-3 months). In old mice, chondroitin sulfate proteoglycan 4 (CSPG4) was increased in sciatic but not cardiac nerves. Expression of M2R was lower in ventricular myocardium and ventricular conduction system from old mice compared to young mice, while no significant difference was seen in M2R expression in sino-atrial or atrio-ventricular node pacemaker tissue. Heart rate was slower and PQ intervals were longer in Langendorff-perfused hearts from old mice. Ventricular tachycardia and fibrillation were more frequently observed in response to carbachol administration in hearts from old mice versus those from young mice. CONCLUSIONS: On the background of reduced presence of SC and parasympathetic nerve fibers, and of lower M2R expression in ventricular cardiomyocytes and conduction system of aged hearts, the propensity of ventricular arrhythmogenesis upon parasympathomimetic drug application is increased. Whether this is caused by an increase in heterogeneity of iCNS structure and function remains to be elucidated.


Subject(s)
Heart Conduction System , Myocardium , Mice , Animals , Myocardium/metabolism , Arrhythmias, Cardiac/metabolism , Heart Atria , Parasympathetic Nervous System
2.
Methods Mol Biol ; 2644: 423-434, 2023.
Article in English | MEDLINE | ID: mdl-37142938

ABSTRACT

Electrical activity plays a key role in physiology, in particular for signaling and coordination. Cellular electrophysiology is often studied with micropipette-based techniques such as patch clamp and sharp electrodes, but for measurements at the tissue or organ scale, more integrated approaches are needed. Epifluorescence imaging of voltage-sensitive dyes ("optical mapping") is a tissue non-destructive approach to obtain insight into electrophysiology with high spatiotemporal resolution. Optical mapping has primarily been applied to excitable organs, especially the heart and brain. Action potential durations, conduction patterns, and conduction velocities can be determined from the recordings, providing information about electrophysiological mechanisms, including factors such as effects of pharmacological interventions, ion channel mutations, or tissue remodeling. Here, we describe the process for optical mapping of Langendorff-perfused mouse hearts, highlighting potential issues and key considerations.


Subject(s)
Fluorescent Dyes , Heart , Animals , Mice , Membrane Potentials , Tissue Survival , Heart/physiology , Action Potentials
3.
J Physiol ; 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37082830

ABSTRACT

Electromechanical reciprocity - comprising electro-mechanical (EMC) and mechano-electric coupling (MEC) - provides cardiac adaptation to changing physiological demands. Understanding electromechanical reciprocity and its impact on function and heterogeneity in pathological conditions - such as (drug-induced) acquired long QT syndrome (aLQTS) - might lead to novel insights in arrhythmogenesis. Our aim is to investigate how electrical changes impact on mechanical function (EMC) and vice versa (MEC) under physiological conditions and in aLQTS. To measure regional differences in EMC and MEC in vivo, we used tissue phase mapping cardiac MRI and a 24-lead ECG vest in healthy (control) and IKr -blocker E-4031-induced aLQTS rabbit hearts. MEC was studied in vivo by acutely increasing cardiac preload, and ex vivo by using voltage optical mapping (OM) in beating hearts at different preloads. In aLQTS, electrical repolarization (heart rate corrected RT-interval, RTn370) was prolonged compared to control (P < 0.0001) with increased spatial and temporal RT heterogeneity (P < 0.01). Changing electrical function (in aLQTS) resulted in significantly reduced diastolic mechanical function and prolonged contraction duration (EMC), causing increased apico-basal mechanical heterogeneity. Increased preload acutely prolonged RTn370 in both control and aLQTS hearts (MEC). This effect was more pronounced in aLQTS (P < 0.0001). Additionally, regional RT-dispersion increased in aLQTS. Motion-correction allowed us to determine APD-prolongation in beating aLQTS hearts, but limited motion correction accuracy upon preload-changes prevented a clear analysis of MEC ex vivo. Mechano-induced RT-prolongation and increased heterogeneity were more pronounced in aLQTS than in healthy hearts. Acute MEC effects may play an additional role in LQT-related arrhythmogenesis, warranting further mechanistic investigations. KEY POINTS: Electromechanical reciprocity comprising excitation-contraction coupling (EMC) and mechano-electric feedback loops (MEC) is essential for physiological cardiac function. Alterations in electrical and/or mechanical heterogeneity are known to have potentially pro-arrhythmic effects. In this study, we aimed to investigate how electrical changes impact on the mechanical function (EMC) and vice versa (MEC) both under physiological conditions (control) and in acquired long QT syndrome (aLQTS). We show that changing the electrical function (in aLQTS) results in significantly altered mechanical heterogeneity via EMC and, vice versa, that increasing the preload acutely prolongs repolarization duration and increases electrical heterogeneity, particularly in aLQTS as compared to control. Our results substantiate the hypothesis that LQTS is an ?electro-mechanical', rather than a 'purely electrical', disease and suggest that acute MEC effects may play an additional role in LQT-related arrhythmogenesis.

4.
Biophys Rev ; 13(5): 587-610, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34765043

ABSTRACT

Passive mechanical tissue properties are major determinants of myocardial contraction and relaxation and, thus, shape cardiac function. Tightly regulated, dynamically adapting throughout life, and affecting a host of cellular functions, passive tissue mechanics also contribute to cardiac dysfunction. Development of treatments and early identification of diseases requires better spatio-temporal characterisation of tissue mechanical properties and their underlying mechanisms. With this understanding, key regulators may be identified, providing pathways with potential to control and limit pathological development. Methodologies and models used to assess and mimic tissue mechanical properties are diverse, and available data are in part mutually contradictory. In this review, we define important concepts useful for characterising passive mechanical tissue properties, and compare a variety of in vitro and in vivo techniques that allow one to assess tissue mechanics. We give definitions of key terms, and summarise insight into determinants of myocardial stiffness in situ. We then provide an overview of common experimental models utilised to assess the role of environmental stiffness and composition, and its effects on cardiac cell and tissue function. Finally, promising future directions are outlined.

5.
Cells ; 10(11)2021 10 28.
Article in English | MEDLINE | ID: mdl-34831145

ABSTRACT

Cardiac electrophysiological disorders, in particular arrhythmias, are a key cause of morbidity and mortality throughout the world. There are two basic requirements for arrhythmogenesis: an underlying substrate and a trigger. Altered conduction velocity (CV) provides a key substrate for arrhythmogenesis, with slowed CV increasing the probability of re-entrant arrhythmias by reducing the length scale over which re-entry can occur. In this review, we examine methods to measure cardiac CV in vivo and ex vivo, discuss underlying determinants of CV, and address how pathological variations alter CV, potentially increasing arrhythmogenic risk. Finally, we will highlight future directions both for methodologies to measure CV and for possible treatments to restore normal CV.


Subject(s)
Arrhythmias, Cardiac/physiopathology , Heart Conduction System/physiopathology , Ventricular Remodeling/physiology , Animals , Arrhythmias, Cardiac/diagnostic imaging , Arrhythmias, Cardiac/pathology , Electrocardiography , Electrodes , Gap Junctions/metabolism , Heart Conduction System/diagnostic imaging , Heart Conduction System/pathology , Humans
6.
Cells ; 10(3)2021 03 16.
Article in English | MEDLINE | ID: mdl-33809739

ABSTRACT

The mechanical environment of cardiac cells changes continuously and undergoes major alterations during diseases. Most cardiac diseases, including atrial fibrillation, are accompanied by fibrosis which can impair both electrical and mechanical function of the heart. A key characteristic of fibrotic tissue is excessive accumulation of extracellular matrix, leading to increased tissue stiffness. Cells are known to respond to changes in their mechanical environment, but the molecular mechanisms underlying this ability are incompletely understood. We used cell culture systems and hydrogels with tunable stiffness, combined with advanced biophysical and imaging techniques, to elucidate the roles of the stretch-activated channel Piezo1 in human atrial fibroblast mechano-sensing. Changing the expression level of Piezo1 revealed that this mechano-sensor contributes to the organization of the cytoskeleton, affecting mechanical properties of human embryonic kidney cells and human atrial fibroblasts. Our results suggest that this response is independent of Piezo1-mediated ion conduction at the plasma membrane, and mediated in part by components of the integrin pathway. Further, we show that Piezo1 is instrumental for fibroblast adaptation to changes in matrix stiffness, and that Piezo1-induced cell stiffening is transmitted in a paracrine manner to other cells by a signaling mechanism requiring interleukin-6. Piezo1 may be a new candidate for targeted interference with cardiac fibroblast function.


Subject(s)
Extracellular Matrix/metabolism , Fibroblasts/metabolism , Heart Atria/metabolism , Ion Channels/metabolism , Mechanotransduction, Cellular , Cytoskeleton/metabolism , Cytoskeleton/pathology , Elastic Modulus , Extracellular Matrix/pathology , Fibroblasts/pathology , Fibrosis , HEK293 Cells , Heart Atria/pathology , Humans , Integrin beta1/metabolism , Interleukin-6/metabolism , Ion Channels/genetics , Paracrine Communication
7.
Adv Exp Med Biol ; 1293: 377-388, 2021.
Article in English | MEDLINE | ID: mdl-33398827

ABSTRACT

The heart is a complex multicellular organ comprising both cardiomyocytes (CM), which make up the majority of the cardiac volume, and non-myocytes (NM), which represent the majority of cardiac cells. CM drive the pumping action of the heart, triggered via rhythmic electrical activity. NM, on the other hand, have many essential functions including generating extracellular matrix, regulating CM activity, and aiding in repair following injury. NM include neurons and interstitial, immune, and endothelial cells. Understanding the role of specific cell types and their interactions with one another may be key to developing new therapies with minimal side effects to treat cardiac disease. However, assessing cell-type-specific behavior in situ using standard techniques is challenging. Optogenetics enables population-specific observation and control, facilitating studies into the role of specific cell types and subtypes. Optogenetic models targeting the most important cardiac cell types have been generated and used to investigate non-canonical roles of those cell populations, e.g., to better understand how cardiac pacing occurs and to assess potential translational possibilities of optogenetics. So far, cardiac optogenetic studies have primarily focused on validating models and tools in the healthy heart. The field is now in a position where animal models and tools should be utilized to improve our understanding of the complex heterocellular nature of the heart, how this changes in disease, and from there to enable the development of cell-specific therapies and improved treatments.


Subject(s)
Endothelial Cells , Heart Diseases , Animals , Extracellular Matrix , Heart Diseases/therapy , Light , Myocytes, Cardiac , Optogenetics
8.
Methods Mol Biol ; 2191: 287-307, 2021.
Article in English | MEDLINE | ID: mdl-32865751

ABSTRACT

Optogenetic approaches have evolved as potent means to investigate cardiac electrophysiology, with research ranging from the study of arrhythmia mechanisms to effects of cardiac innervation and heterocellular structural and functional interactions, both in healthy and diseased myocardium. Most commonly, these studies use channelrhodopsin-2 (ChR2)-expressing murine models that enable light-activated depolarization of the target cell population. However, each newly generated mouse line requires thorough characterization, as cell-type specific ChR2 expression cannot be taken for granted, and the electrophysiological response of its activation in the target cell should be evaluated. In this chapter, we describe detailed protocols for assessing ChR2 specificity using immunohistochemistry, isolation of specific cell populations to analyze electrophysiological effects of ChR2 activation with the patch-clamp technique, and whole-heart experiments to assess in situ effects of optical stimulation.


Subject(s)
Channelrhodopsins/genetics , Electrophysiologic Techniques, Cardiac/methods , Electrophysiological Phenomena/genetics , Optogenetics/methods , Action Potentials/genetics , Animals , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/pathology , Humans , Light , Mice , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Patch-Clamp Techniques/methods
9.
Circ Res ; 128(2): 203-215, 2021 01 22.
Article in English | MEDLINE | ID: mdl-33228470

ABSTRACT

RATIONALE: The sarcolemma of cardiomyocytes contains many proteins that are essential for electromechanical function in general, and excitation-contraction coupling in particular. The distribution of these proteins is nonuniform between the bulk sarcolemmal surface and membrane invaginations known as transverse tubules (TT). TT form an intricate network of fluid-filled conduits that support electromechanical synchronicity within cardiomyocytes. Although continuous with the extracellular space, the narrow lumen and the tortuous structure of TT can form domains of restricted diffusion. As a result of unequal ion fluxes across cell surface and TT membranes, limited diffusion may generate ion gradients within TT, especially deep within the TT network and at high pacing rates. OBJECTIVE: We postulate that there may be an advective component to TT content exchange, wherein cyclic deformation of TT during diastolic stretch and systolic shortening serves to mix TT luminal content and assists equilibration with bulk extracellular fluid. METHODS AND RESULTS: Using electron tomography, we explore the 3-dimensional nanostructure of TT in rabbit ventricular myocytes, preserved at different stages of the dynamic cycle of cell contraction and relaxation. We show that cellular deformation affects TT shape in a sarcomere length-dependent manner and on a beat-by-beat time-scale. Using fluorescence recovery after photobleaching microscopy, we show that apparent speed of diffusion is affected by the mechanical state of cardiomyocytes, and that cyclic contractile activity of cardiomyocytes accelerates TT diffusion dynamics. CONCLUSIONS: Our data confirm the existence of an advective component to TT content exchange. This points toward a novel mechanism of cardiac autoregulation, whereby the previously implied increased propensity for TT luminal concentration imbalances at high electrical stimulation rates would be countered by elevated advection-assisted diffusion at high mechanical beating rates. The relevance of this mechanism in health and during pathological remodeling (eg, cardiac hypertrophy or failure) forms an exciting target for further research.


Subject(s)
Excitation Contraction Coupling , Heart Rate , Myocardial Contraction , Myocytes, Cardiac/metabolism , Sarcolemma/metabolism , Action Potentials , Animals , Diffusion , Electron Microscope Tomography , Female , Fluorescence Recovery After Photobleaching , Myocytes, Cardiac/ultrastructure , Rabbits , Sarcolemma/ultrastructure
10.
Sci Rep ; 9(1): 8841, 2019 06 20.
Article in English | MEDLINE | ID: mdl-31222042

ABSTRACT

We studied the energy expenditure of isometric contractions using both right-ventricular (RV) and left-ventricular (LV) trabeculae isolated from the rat heart. The energy expenditure under isometric contraction presents entirely as heat liberation. Preparations were challenged to perform at various rates of energy demand while accounting for their inevitable time-dependent decline of performance. They were electrically stimulated to contract at 37 °C with a frequency order (between 0.1 Hz and 10 Hz) dictated by a fully-balanced Latin-Square experimental design. We measured, simultaneously, their stress production and heat output. As functions of stimulus frequency, active stress and heat were not significantly different between RV and LV trabeculae. However, contraction kinetics, indexed as the maximal rate of rise and fall of twitch, were lower in the LV trabeculae. The ratio of heat to stress was greater in the LV trabeculae, suggesting that the economy of contraction of the LV trabeculae is lower. Their lower economy became more pronounced at high stimulus frequencies. Our results allow us to assess whether slowing of kinetics is a causative mechanism for improvement of economy of contraction.


Subject(s)
Body Temperature , Energy Metabolism/physiology , Heart Ventricles , Isometric Contraction/physiology , Animals , Hot Temperature , Kinetics , Myocardial Contraction , Rats , Stress, Physiological , Ventricular Function/physiology
11.
Front Physiol ; 10: 1526, 2019.
Article in English | MEDLINE | ID: mdl-31998137

ABSTRACT

Fibrosis is associated with aging and many cardiac pathologies. It is characterized both by myofibroblast differentiation and by excessive accumulation of extracellular matrix proteins. Fibrosis-related tissue remodeling results in significant changes in tissue structure and function, including passive mechanical properties. This research area has gained significant momentum with the recent development of new tools and approaches to better characterize and understand the ability of cells to sense and respond to their biophysical environment. We use a novel hydrogel, termed CyPhyGel, to provide an advanced in vitro model of remodeling-related changes in tissue stiffness. Based on light-controlled dimerization of a Cyanobacterial Phytochrome, it enables contactless and reversible tuning of hydrogel mechanical properties with high spatial and temporal resolution. Human primary atrial fibroblasts were cultured on CyPhyGels. After 4 days of culturing on stiff (~4.6 kPa) or soft (~2.7 kPa) CyPhyGels, we analyzed fibroblast cell area and stiffness. Cells grown on the softer substrate were smaller and softer, compared to cells grown on the stiffer substrate. This difference was absent when both soft and stiff growth substrates were combined in a single CyPhyGel, with the resulting cell areas being similar to those on homogeneously stiff gels and cell stiffnesses being similar to those on homogeneously soft substrates. Using CyPhyGels to mimic tissue stiffness heterogeneities in vitro, our results confirm the ability of cardiac fibroblasts to adapt to their mechanical environment, and suggest the presence of a paracrine mechanism that tunes fibroblast structural and functional properties associated with mechanically induced phenotype conversion toward myofibroblasts. In the context of regionally increased tissue stiffness, such as upon scarring or in diffuse fibrosis, such a mechanism could help to prevent abrupt changes in cell properties at the border zone between normal and diseased tissue. The light-tunable mechanical properties of CyPhyGels and their suitability for studying human primary cardiac cells make them an attractive model system for cardiac mechanobiology research. Further investigations will explore the interactions between biophysical and soluble factors in the response of cardiac fibroblasts to spatially and temporally heterogeneous mechanical cues.

12.
Article in English | MEDLINE | ID: mdl-30440302

ABSTRACT

We present the first invasive use of a stiff, multiLED optical probe for intramural optical stimulation of cardiac tissue. We demonstrate that optical pacing is possible with high spatial and temporal resolution in transgenic mice expressing channelrhodopsin-2. The technical implementation of this study builds on optical probes recently developed and tested ex vivo in cerebral tissue of mice. The probes comprise LEDs integrated on flexible substrates stiffened by silicon-based MEMS structures enabling the successful penetration into the cardiac tissue. The probe technology is extended to allow dual-sided illumination for directional tissue stimulation. Implantation trials affirm the ability to optically pace the isolated perfused heart at stimulation frequencies between 4Hz and 12Hz with experimentally determined emittance levels of 10mW mm-2 Rapid activation of two distant LEDs could reliably be used to induce short runs of ventricular fibrillation, while simultaneous activation of all LEDs allowed termination of re-entrant rhythm disturbances (optical defibrillation). Thus, spatially-resolved intramural pacing and rhythm control of the isolated heart is possible using stiff, multi-LED optical probes.


Subject(s)
Heart/physiology , Animals , Electric Countershock , Mice , Ventricular Fibrillation
13.
Front Physiol ; 9: 1806, 2018.
Article in English | MEDLINE | ID: mdl-30618818

ABSTRACT

During the last decade, optogenetics has emerged as a paradigm-shifting technique to monitor and steer the behavior of specific cell types in excitable tissues, including the heart. Activation of cation-conducting channelrhodopsins (ChR) leads to membrane depolarization, allowing one to effectively trigger action potentials (AP) in cardiomyocytes. In contrast, the quest for optogenetic tools for hyperpolarization-induced inhibition of AP generation has remained challenging. The green-light activated ChR from Guillardia theta (GtACR1) mediates Cl--driven photocurrents that have been shown to silence AP generation in different types of neurons. It has been suggested, therefore, to be a suitable tool for inhibition of cardiomyocyte activity. Using single-cell electrophysiological recordings and contraction tracking, as well as intracellular microelectrode recordings and in vivo optical recordings of whole hearts, we find that GtACR1 activation by prolonged illumination arrests cardiac cells in a depolarized state, thus inhibiting re-excitation. In line with this, GtACR1 activation by transient light pulses elicits AP in rabbit isolated cardiomyocytes and in spontaneously beating intact hearts of zebrafish. Our results show that GtACR1 inhibition of AP generation is caused by cell depolarization. While this does not address the need for optogenetic silencing through physiological means (i.e., hyperpolarization), GtACR1 is a potentially attractive tool for activating cardiomyocytes by transient light-induced depolarization.

SELECTION OF CITATIONS
SEARCH DETAIL
...