Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Am J Cancer Res ; 14(7): 3335-3347, 2024.
Article in English | MEDLINE | ID: mdl-39113865

ABSTRACT

In this study, we constructed engineered exosomes carrying the long non-coding RNA (lncRNA) SVIL-AS1 (SVIL-AS1 Exos), and explored its role and mechanism in lung cancer. After the construction of SVIL-AS1 Exos, their physicochemical characteristics were identified. Then, their function and effect in three different cell lines, A549, HeLa, and HepG2, were detected using western blot, the quantitative reverse transcriptase polymerase chain reaction, flow cytometry, 5-ethynyl-2'-deoxyuridine, and Cell Counting Kit-8 experiments. Finally, a mouse xenograft model was constructed to analyze tumor growth and explore the in vivo utility of SVIL-AS1 Exos using hematoxylin and eosin staining, immunohistochemistry, and the TdT-mediated dUTP nick end labeling assay. The results demonstrated that SVIL-AS1 Exos preferentially targeted A549 lung cancer cells over HeLa and HepG2 cells. SVIL-AS1 Exos promoted apoptosis and inhibited A549 cell proliferation by elevating expression of the lncRNA, SVIL-AS1. In vivo, SVIL-AS1 Exos effectively inhibited the growth of lung cancer A549 cells. Furthermore, SVIL-AS1 Exos suppressed the expression of miR-21-5p and upregulated the expression of caspase-9, indicating that SVIL-AS1 may regulate the development of lung cancer through the miR-21-5p/caspase-9 pathway. In conclusion, the engineered SVIL-AS1 Exos targeted lung cancer cells to inhibit the expression of miR-21-5p, upregulate the expression of caspase-9, and inhibit the development of lung cancer.

2.
Am J Transl Res ; 14(10): 7040-7051, 2022.
Article in English | MEDLINE | ID: mdl-36398246

ABSTRACT

OBJECTIVE: Lung cancer (LC) is a clinically challenging cancer. Genistein is a natural isoflavone product with anti-tumor effects. This study aims to investigate the effect of genistein on A549 cell apoptosis, to provide more experimental evidence for clinical treatment. METHODS: Real-time quantitative polymerase chain reaction, western blotting, molecular docking, and target prediction methods were performed to detect the effect of genistein on LC cells. Cell viability of A549 treated by genistein was measured by a CCK-8 assay. The A549 cell apoptosis after genistein treatment was detected by flow cytometry. RESULTS: Genistein promoted the apoptosis of LC cells in a time- and concentration-dependent manner. In addition, the low expression of inosine monophosphate dehydrogenase-2 (IMPDH2) inhibited the effect of genistein on LC cells. By predicting IMPDH2 LC-related apoptosis genes and finding the closely related gene protein kinase B (AKT1), it was found that the highly expressed AKT1 inhibited the effect of genistein on LC cell apoptosis and viability. CONCLUSION: Genistein may be a promising treatment for LC.

3.
Oncol Lett ; 20(5): 219, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32963625

ABSTRACT

Inosine 5'-monophosphate dehydrogenase type II (IMPDH2) is an important enzyme involved in the biosynthesis of guanine nucleotides. Therefore, the present study aimed to investigate the potential and molecular mechanism of IMPDH2 in non-small cell lung cancer (NSCLC). Reverse transcription-quantitative PCR and immunohistochemistry were used to detect IMPDH2 expression levels in NSCLC tissues and cells. A Cell Counting Kit-8 assay, colony formation assay, flow cytometry, wound healing, Transwell assay, western blotting and immunofluorescence analyses were utilized to identify the effects of upregulated IMPDH2 levels on NSCLC cells. The expression levels of IMPDH2 have been discovered to be upregulated in several types of human cancer; however, the biological and clinical value of IMPDH2 in NSCLC remains unclear. The results of the present study revealed that the expression levels of IMPDH2 were significantly upregulated in NSCLC tissues. Furthermore, the genetic knockdown of IMPDH2 significantly hindered the proliferation, apoptosis, invasion, migration and epithelial-mesenchymal transition of NSCLC cells, whereas the overexpression of IMPDH2 achieved the opposite results. In addition, the results of the present study demonstrated that the inhibition of IMPDH2 inhibited the Wnt/ß-catenin signaling pathway by decreasing the expression levels of Wnt3a and ß-catenin, while increasing the expression levels of phosphorylated glycogen synthase kinase-3ß in NSCLC cells. These findings of the present study indicated that IMPDH2 may promote NSCLC progression by activating the Wnt/ß-catenin signaling pathway, which suggested that IMPDH2 may be a novel therapeutic target for patients with NSCLC.

SELECTION OF CITATIONS
SEARCH DETAIL