Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
Add more filters











Publication year range
1.
Chemosphere ; 364: 143252, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39236918

ABSTRACT

Ionic liquids (ILs) have found diverse applications in research and industry. Biocompatible ILs, a subset considered less toxic than traditional ILs, have expanded their applications into biomedical fields. However, there is limited understanding of the toxicity profiles, safe concentrations, and underlying factors driving their toxicity. In this study, we investigated the cytotoxicity of 13 choline-based ILs using four different cell lines: Human dermal fibroblasts (HDF), epidermoid carcinoma cells (A431), cervical cancer cells (HeLa), and gastric cancer cells (AGS). Additionally, we explored the haemolytic activity of these ILs. Our findings showed that the cytotoxic and haemolytic activities of ILs can be attributed to the hydrophobicity of the anions and the pH of the IL solutions. Furthermore, utilising quartz crystal microbalance with dissipation (QCM-D), we delved into the interaction of selected ILs, including choline acetate [Cho][Ac] and choline geranate [Cho][Ge], with model cell membranes composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). The QCM-D data showed that ILs with higher toxicities exhibited more pronounced interactions with membranes. Increased variations in frequency and dissipation reflected substantial changes in membrane fluidity and mass following the addition of the more toxic ILs. Furthermore, total internal reflection fluorescence microscopy study revealed that [Cho][Ac] could cause lipid rearrangements and pore formation in the membrane, while [Cho][Ge] disrupted the bilayer packing. This study advances our understanding of the cellular toxicities associated with choline-based ILs and provides valuable insights into their mechanisms of action concerning IL-membrane interactions. These findings have significant implications for the safe and informed utilisation of biocompatible ILs in the realm of drug delivery and biotechnology.


Subject(s)
Acetates , Amino Acids , Anions , Cell Membrane , Choline , Ionic Liquids , Ionic Liquids/chemistry , Ionic Liquids/toxicity , Humans , Choline/chemistry , Anions/chemistry , Cell Membrane/drug effects , Acetates/chemistry , Acetates/toxicity , Amino Acids/chemistry , Hydrophobic and Hydrophilic Interactions , HeLa Cells , Cell Line, Tumor , Cell Survival/drug effects
2.
Hortic Res ; 11(9): uhae184, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39247888

ABSTRACT

Nitric oxide (NO) is a redox-dependent signaling molecule that plays a crucial role in regulating a wide range of biological processes in plants. It functions by post-translationally modifying proteins, primarily through S-nitrosation. Thioredoxin (Trx), a small and ubiquitous protein with multifunctional properties, plays a pivotal role in the antioxidant defense system. However, the regulatory mechanism governing the response of tomato Trxh (SlTrxh) to excessive nitrate stress remains unknown. In this study, overexpression or silencing of SlTrxh in tomato led to increased or decreased nitrate stress tolerance, respectively. The overexpression of SlTrxh resulted in a reduction in levels of reactive oxygen species (ROS) and an increase in S-nitrosothiol (SNO) contents; conversely, silencing SlTrxh exhibited the opposite trend. The level of S-nitrosated SlTrxh was increased and decreased in SlTrxh overexpression and RNAi plants after nitrate treatment, respectively. SlTrxh was found to be susceptible to S-nitrosation both in vivo and in vitro, with Cysteine 54 potentially being the key site for S-nitrosation. Protein interaction assays revealed that SlTrxh physically interacts with SlGrx9, and this interaction is strengthened by S-nitrosation. Moreover, a combination of yeast one-hybrid (Y1H), electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR), and transient expression assays confirmed the direct binding of SlMYB86 to the SlTrxh promoter, thereby enhancing its expression. SlMYB86 is located in the nucleus and SlMYB86 overexpressed and knockout tomato lines showed enhanced and decreased nitrate stress tolerance, respectively. Our findings indicate that SlTrxh functions downstream of SlMYB86 and highlight the potential significance of S-nitrosation of SlTrxh in modulating its function under nitrate stress.

3.
Front Med (Lausanne) ; 11: 1421497, 2024.
Article in English | MEDLINE | ID: mdl-39234043

ABSTRACT

Background and aims: Rheumatoid arthritis (RA) is a prevalent chronic autoimmune disease characterized by chronic inflammation. The Inflammatory Burden Index (IBI) is a newly proposed comprehensive inflammation index used to assess systemic inflammation. The relationship between IBI and RA, as well as its all-cause mortality, remains unclear. The objective of this study was to examine the correlation between IBI and RA and to analyze the association between IBI and all-cause mortality in RA. Methods: The study comprehensively analyzes adult data from the National Health and Nutrition Examination Survey (NHANES) spanning 1999 to 2018. The participants' IBI was calculated using the formula IBI = CRP * neutrophils/lymphocytes. Three models were constructed to investigate the relationship between IBI and the prevalence of RA. Nonlinear relationships were determined using restricted cubic spline curves. Stratified analyses and interaction tests were used to explore the relationship between RA and IBI in different subgroups. The same data analyses were applied to investigate the association between IBI and RA all-cause mortality. Results: The data analyses revealed a stable positive and nonlinear correlation between IBI and the risk of RA, as well as a positive, nonlinear, J-shaped association between IBI and RA all-cause mortality. The correlation and association were consistent across most subgroups, and multiple covariates had no effect on the results. No significant effect of multiple covariates on the association was found through interaction tests. Conclusion: Our study has demonstrated a positive correlation between the prevalence of RA and all-cause mortality with the IBI index. This suggests that lower levels of inflammation in the body are associated with a reduced risk of RA prevalence and all-cause mortality. Further prospective studies are required to explore the mechanisms involved.

4.
Adv Colloid Interface Sci ; 331: 103242, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38964196

ABSTRACT

Proteins in ionic liquids (ILs) and deep eutectic solvents (DESs) have gained significant attention due to their potential applications in various fields, including biocatalysis, bioseparation, biomolecular delivery, and structural biology. Scattering approaches including dynamic light scattering (DLS) and small-angle X-ray and neutron scattering (SAXS and SANS) have been used to understand the solution behavior of proteins at the nanoscale and microscale. This review provides a thorough exploration of the application of these scattering techniques to elucidate protein properties in ILs and DESs. Specifically, the review begins with the theoretical foundations of the relevant scattering approaches and describes the essential solvent properties of ILs and DESs linked to scattering such as refractive index, scattering length density, ion-pairs, liquid nanostructure, solvent aggregation, and specific ion effects. Next, a detailed introduction is provided on protein properties such as type, concentration, size, flexibility and structure as observed through scattering methodologies. This is followed by a review of the literature on the use of scattering for proteins in ILs and DESs. It is highlighted that enhanced data analysis and modeling tools are necessary for assessing protein flexibility and structure, and for understanding protein hydration, aggregation and specific ion effects. It is also noted that complementary approaches are recommended for comprehensively understanding the behavior of proteins in solution due to the complex interplay of factors, including ion-binding, dynamic hydration, intermolecular interactions, and specific ion effects. Finally, the challenges and potential research directions for this field are proposed, including experimental design, data analysis approaches, and supporting methods to obtain fundamental understandings of complex protein behavior and protein systems in solution. We envisage that this review will support further studies of protein interface science, and in particular studies on solvent and ion effects on proteins.


Subject(s)
Ionic Liquids , Proteins , Scattering, Small Angle , Ionic Liquids/chemistry , Proteins/chemistry , Deep Eutectic Solvents/chemistry , Solutions , Neutron Diffraction , X-Ray Diffraction , Dynamic Light Scattering , Solvents/chemistry
5.
Anal Chim Acta ; 1306: 342615, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38692795

ABSTRACT

The Caco-2 cells were used as intestinal epithelial cell model to illustrate the hyperuricemia (HUA) mechanism under the co-culture of the imbalanced intestinal microbiome in this work. The uric acid (UA) concentration in the HUA process was monitored, and could be up to 425 µmol/L at 8 h co-cultured with the imbalanced intestinal microbiome. Single-cell potentiometry based on ion-selective microelectrode was used to study extracellular calcium change, which is hypothesized to play an important role in the UA excretion. The potential signal of the calcium in the extremely limited microenvironment around single Caco-2 cell was recorded through the single-cell analysis platform. The potential signal of sharp decrease and slow increase followed within a few seconds indicates the sudden uptake and gradually excretion process of calcium through the cell membrane. Moreover, the value of the potential decrease increases with the increase of the time co-cultured with the imbalanced intestinal microbiome ranging from 0 to 8 h. The Ca2+ concentration around the cell membrane could decrease from 1.3 mM to 0.4 mM according to the potential decrease of 27.0 mV at the co-culture time of 8 h. The apoptosis ratio of the Caco-2 cells also exhibits time dependent with the co-culture of the imbalanced intestinal microbiome, and was 39.1 ± 3.6 % at the co-culture time of 8 h, which is much higher than the Caco-2 cells without any treatment (3.9 ± 2.9 %). These results firstly provide the links between the UA excretion with the apoptosis of the intestinal epithelial cell under the interaction of the imbalanced intestinal microbiome. Moreover, the apoptosis could be triggered by the calcium signaling.


Subject(s)
Gastrointestinal Microbiome , Single-Cell Analysis , Single-Cell Analysis/instrumentation , Single-Cell Analysis/methods , Caco-2 Cells , Humans , Microelectrodes , Coculture Techniques/instrumentation , Coculture Techniques/methods , Calcium/analysis , Carbon Fiber , Intestines/microbiology , Potentiometry/instrumentation , Adenosine/analysis , Apoptosis
6.
ACS Appl Bio Mater ; 7(3): 1958-1967, 2024 03 18.
Article in English | MEDLINE | ID: mdl-38363649

ABSTRACT

Cancer remains a highly lethal disease due to its elusive early detection, rapid spread, and significant side effects. Nanomedicine has emerged as a promising platform for drug delivery, diagnosis, and treatment monitoring. In particular, carbon dots (CDs), a type of fluorescent nanomaterial, offer excellent fluorescence properties and the ability to carry multiple drugs simultaneously through covalent bonding. In this work, CDs with carbonyl groups on the surface were prepared by aldol condensation and reacted with amine groups in the structure of doxorubicin (DOX) through Schiff base reaction to generate pH-responsive CDs-DOX. On the other hand, cubosomes with three-dimensional lattice structures formed by lipid bilayers have advantageous capabilities of encapsulating various hydrophilic, amphiphilic, and hydrophobic substances. The pH-responsive CDs-DOX are subsequently loaded into cubosomes to form an anticancer therapeutic nanosystem, CDs-DOX@cubosome. Leveraging the unique properties of CDs-DOX and cubosomes, our CDs-DOX@cubosome can enter tumor tissue through the enhanced permeation and retention effect first and conduct membrane fusion with tumor cells to intracellularly release CDs-DOX. Then, the imine bond in CDs-DOX breaks under acidic conditions within human cancer cell lines (HeLa and HepG-2 cells), releasing DOX and achieving enhanced treatment of tumors. Additionally, fluorescent CDs can synchronously achieve real-time in situ diagnosis of tumor tissue. We demonstrate that our CDs-DOX@cubosome works as an excellent drug delivery system with therapeutic efficiency enhancement to the tumor and reduced side effects.


Subject(s)
Carbon , Doxorubicin , Humans , Carbon/pharmacology , Carbon/chemistry , Doxorubicin/pharmacology , Doxorubicin/chemistry , Drug Delivery Systems/methods , HeLa Cells , Hydrogen-Ion Concentration
7.
J Colloid Interface Sci ; 663: 82-93, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38394820

ABSTRACT

HYPOTHESIS: Lipid nanoparticles containing a cationic lipid are increasingly used in drug and gene delivery as they can display improved cellular uptake, enhanced loading for anionic cargo such as siRNA and mRNA or exhibit additional functionality such as cytotoxicity against cancer cells. This research study tests the hypothesis that the molecular structure of the cationic lipid influences the structure of the lipid nanoparticle, the cellular uptake, and the resultant cytotoxicity. EXPERIMENTS: Three potentially cytotoxic cationic lipids, with systematic variations to the hydrophobic moiety, were designed and synthesised. All the three cationic lipids synthesised contain pharmacophores such as the bicyclic coumarin group (CCA12), the tricyclic etodolac moiety (ETD12), or the large pentacyclic triterpenoid "ursolic" group (U12) conjugated to a quaternary ammonium cationic lipid containing twin C12 chains. The cationic lipids were doped into monoolein cubosomes at a range of concentrations from 0.1 mol% to 5 mol% and the effect of the lipid molecular architecture on the cubosome phase behaviour was assessed using a combination of Small Angle X-Ray Scattering (SAXS), Dynamic Light Scattering (DLS), zeta-potential and cryo-Transmission Electron Microscopy (Cryo-TEM). The resulting cytotoxicity of these particles against a range of cancerous and non-cancerous cell-lines was assessed, along with their cellular uptake. FINDINGS: The molecular architecture of the cationic lipid was linked to the internal nanostructure of the resulting cationic cubosomes with a transition to more curved cubic and hexagonal phases generally observed. Cubosomes formed from the cationic lipid CCA12 were found to have improved cellular uptake and significantly higher cytotoxicity than the cationic lipids ETD12 and U12 against the gastric cancer cell-line (AGS) at lipid concentrations ≥ 75 µg/mL. CCA12 cationic cubosomes also displayed reasonable cytotoxicity against the prostate cancer PC-3 cell-line at lipid concentrations ≥ 100 µg/mL. In contrast, 2.5 mol% ETD12 and 2.5 mol% U12 cubosomes were generally non-toxic against both cancerous and non-cancerous cell lines over the entire concentration range tested. The molecular architecture of the cationic lipid was found to influence the cubosome phase behaviour, the cellular uptake and the toxicity although further studies are necessary to determine the exact relationship between structure and cellular uptake across a range of cell lines.


Subject(s)
Nanoparticles , Scattering, Small Angle , X-Ray Diffraction , Nanoparticles/chemistry , Microscopy, Electron, Transmission , Dynamic Light Scattering , Molecular Structure
8.
ACS Appl Mater Interfaces ; 16(10): 12161-12174, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38416873

ABSTRACT

Glioblastoma multiforme (GBM) is an aggressive brain cancer with high malignancy and resistance to conventional treatments, resulting in a bleak prognosis. Nanoparticles offer a way to cross the blood-brain barrier (BBB) and deliver precise therapies to tumor sites with reduced side effects. In this study, we developed angiopep-2 (Ang2)-functionalized lipid cubosomes loaded with cisplatin (CDDP) and temozolomide (TMZ) for crossing the BBB and providing targeted glioblastoma therapy. Developed lipid cubosomes showed a particle size of around 300 nm and possessed an internal ordered inverse primitive cubic phase, a high conjugation efficiency of Ang2 to the particle surface, and an encapsulation efficiency of more than 70% of CDDP and TMZ. In vitro models, including BBB hCMEC/D3 cell tight monolayer, 3D BBB cell spheroid, and microfluidic BBB/GBM-on-a-chip models with cocultured BBB and glioblastoma cells, were employed to study the efficiency of the developed cubosomes to cross the BBB and showed that Ang2-functionalized cubosomes can penetrate the BBB more effectively. Furthermore, Ang2-functionalized cubosomes showed significantly higher uptake by U87 glioblastoma cells, with a 3-fold increase observed in the BBB/GBM-on-a-chip model as compared to that of the bare cubosomes. Additionally, the in vivo biodistribution showed that Ang2 modification could significantly enhance the brain accumulation of cubosomes in comparison to that of non-functionalized particles. Moreover, CDDP-loaded Ang2-functionalized cubosomes presented an enhanced toxic effect on U87 spheroids. These findings suggest that the developed Ang2-cubosomes are prospective for improved BBB crossing and enhanced delivery of therapeutics to glioblastoma and are worth pursuing further as a potential application of nanomedicine for GBM treatment.


Subject(s)
Brain Neoplasms , Glioblastoma , Nanoparticles , Peptides , Humans , Glioblastoma/drug therapy , Glioblastoma/pathology , Blood-Brain Barrier/pathology , Tissue Distribution , Prospective Studies , Cell Line, Tumor , Temozolomide , Brain Neoplasms/pathology , Nanoparticles/therapeutic use , Lipids/therapeutic use
9.
Small ; 20(20): e2309200, 2024 May.
Article in English | MEDLINE | ID: mdl-38295089

ABSTRACT

Self-assembled lipid nanoparticles (LNPs), serving as essential nanocarriers in recent COVID-19 mRNA vaccines, provide a stable and versatile platform for delivering a wide range of biological materials. Notably, LNPs with unique inverse mesostructures, such as cubosomes and hexosomes, are recognized as fusogenic nanocarriers in the drug delivery field. This study delves into the physicochemical properties, including size, lyotropic liquid crystalline mesophase, and apparent pKa of LNPs with various lipid components, consisting of two ionizable lipids (ALC-0315 and SM-102) used in commercial COVID-19 mRNA vaccines and a well-known inverse mesophase structure-forming helper lipid, phytantriol (PT). Two partial mesophase diagrams are generated for both ALC-0315/PT LNPs and SM-102/PT LNPs as a function of two factors, ionizable lipid ratio (α, 0-100 mol%) and pH condition (pH 3-11). Furthermore, the impact of different LNP stabilizers (Pluronic F127, Pluronic F108, and Tween 80) on their pH-dependent phase behavior is evaluated. The findings offer insights into the self-assembled mesostructure and ionization state of the studied LNPs with potentially enhanced endosomal escape ability. This research is relevant to developing innovative next-generation LNP systems for delivering various therapeutics.


Subject(s)
Fatty Alcohols , Lipids , Liquid Crystals , Nanoparticles , Nanoparticles/chemistry , Fatty Alcohols/chemistry , Liquid Crystals/chemistry , Hydrogen-Ion Concentration , Lipids/chemistry , Ions/chemistry , Liposomes
10.
J Colloid Interface Sci ; 657: 841-852, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38091907

ABSTRACT

Lipid-based lyotropic liquid crystalline nanoparticles (LCNPs) face stability challenges in biological fluids during clinical translation. Ionic Liquids (ILs) have emerged as effective solvent additives for tuning the structure of LCNP's and enhancing their stability. We investigated the effect of a library of 21 choline-based biocompatible ILs with 9 amino acid anions as well as 10 other organic/inorganic anions during the preparation of phytantriol (PHY)-based LCNPs, followed by incubation in human serum and serum proteins. Small angle X-ray scattering (SAXS) results show that the phase behaviour of the LCNPs depends on the IL concentration and anion structure. Incubation with human serum led to a phase transition from the inverse bicontinuous cubic (Q2) to the inverse hexagonal (H2) mesophase, influenced by the specific IL present. Liquid chromatography-mass spectrometry (LC-MS) and proteomics analysis of selected samples, including PHY control and those with choline glutamate, choline hexanoate, and choline geranate, identified abundant proteins in the protein corona, including albumin, apolipoproteins, and serotransferrin. The composition of the protein corona varied among samples, shedding light on the intricate interplay between ILs, internal structure and surface chemistry of LCNPs, and biological fluids.


Subject(s)
Ionic Liquids , Liquid Crystals , Nanoparticles , Protein Corona , Humans , Scattering, Small Angle , X-Ray Diffraction , Nanoparticles/chemistry , Anions , Liquid Crystals/chemistry
11.
J Am Chem Soc ; 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37870621

ABSTRACT

mRNA lipid nanoparticle (LNP) technology presents enormous opportunities to prevent and treat various diseases. Here, we developed a novel series of LNPs containing ionizable amino-lipids showing a remarkable array of tunable and pH-sensitive lyotropic liquid crystalline mesophases including the inverse bicontinuous cubic and hexagonal phases characterized by high-throughput synchrotron radiation X-ray scattering. Furthermore, with an interest in developing mRNA therapeutics for lung macrophage targeting, we discovered that there is a strong correlation between the mesophase transition of the LNPs during acidification and the macrophage association/transfection efficiency of mRNAs. The slight molecular structural differences between the SM-102 and ALC-0315 ionizable lipids are linked to the LNP's ability to transform their internal structures from an amorphous state to the inverse micellar, hexagonal, and finally cubic structures during endosomal maturation. SM-102 LNPs showed exceptionally improved transfection efficiency due to their ability to form a cubic structure at a lower pH than the ALC-0315 analogues, which remained within the hexagonal structure, previously attributed to promoting endosomal escape of the ionizable LNPs. Overall, the new knowledge draws our attention to the important role of mesophase transition in endosomal escape, and the novel LNP libraries reported herein have broad prospects for advancing mRNA therapeutics.

12.
RSC Adv ; 13(31): 21414-21420, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37465577

ABSTRACT

The simple and sensitive detection of miRNA-122 in blood is crucially important for early hepatocellular carcinoma (HCC) diagnosis. In this work, a platinum microelectrode (PtµE) was prepared and electrodeposited with molybdenum disulfide (MoS2) and gold nanoparticles (AuNP), respectively, and denoted as PtµE/MoS2/Au. The prepared PtµE/MoS2/Au was used as the microsensor for the detection of miRNA-122 combined with the probe DNA as a biorecognition element which is the complementary strand of miRNA-122. The PtµE/MoS2/Au conjugated with the probe DNA modified with sulfydryl units was used as the micro-biosensor for the detection of miRNA-122. The square wave voltammetry was performed for the quantitative detection of miRNA-122 using [Fe(CN)6]4-/3- as a mediator. Under the optimized conditions, the PtµE/MoS2/Au micro-biosensor shows a linear detection toward miRNA-122 ranging from 10-11 to 10-8 M (S = 6.9 nA dec-1, R2 = 0.9997), and the detection limit is 1.6 × 10-12 M (3σ/b). The PtµE/MoS2/Au micro-biosensor demonstrates good selectivity against other types of proteins and small molecules, and has good reproducibility. Moreover, the PtµE/MoS2/Au micro-biosensor was successfully applied for the measurement of miRNA-122 in real blood samples. Herein, the proposed detection assay could be a potential tool in HCC clinical diagnostics with high sensitivity.

13.
Adv Healthc Mater ; : e2301597, 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37499268

ABSTRACT

Granular microporous hydrogels are emerging as effective biomaterial scaffolds for tissue engineering due to their improved characteristics compared to traditional nanoporous hydrogels, which better promote cell viability, cell migration, cellular/tissue infiltration, and tissue regeneration. Recent advances have resulted in the development of granular hydrogels made of non-spherical microgels, which compared to those made of spherical microgels have higher macroporosity, more stable mechanical properties, and better ability to guide the alignment and differentiation of cells in anisotropic tissue. The development of these hydrogels as an emerging research area is attracting increasing interest in regenerative medicine. This review first summarizes the fabrication techniques available for non-spherical microgels with different aspect-ratios. Then, it introduces the development of granular microporous hydrogels made of non-spherical microgels, their physicochemical characteristics, and their applications in tissue regeneration. The limitations and future outlook of research on microporous granular hydrogels are also critically discussed.

14.
Biomater Sci ; 11(17): 5955-5969, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37477383

ABSTRACT

Synthetic polymer nanodiscs are self-assembled structures formed from amphipathic copolymers encapsulating membrane proteins and surrounding phospholipids into water soluble discs. These nanostructures have served as an analytical tool for the detergent free solubilisation and structural study of membrane proteins (MPs) in their native lipid environment. We established the polymer-lipid nanodisc forming ability of a novel class of amphipathic copolymer comprised of an alternating sequence of N-alkyl functionalised maleimide (AlkylM) of systematically varied hydrocarbon chain length, and cationic N-methyl-4-vinyl pyridinium iodide (MVP). Using a combination of physicochemical techniques, the solubilisation efficiency, size, structure and shape of DMPC lipid containing poly(MVP-co-AlkylM) nanodiscs were determined. Lipid solubilisation increased with AlkylM hydrocarbon chain length from methyl (MM), ethyl (EtM), n-propyl (PM), iso-butyl (IBM) through to n-butyl (BM) maleimide bearing polymers. More hydrophobic derivatives formed smaller sized nanodiscs and lipid ordering within poly(MVP-co-AlkylM) nanodiscs was affected by nanodisc size. In dye-release assays, shorter N-alkyl substituted polymers, particularly poly(MVP-co-EtM), exhibited low activities against eukaryotic mimetic POPC membrane and increased their liposome disruption as POPC : POPG membrane mixtures increased in their anionic POPG component, resembling the charge profile of bacterial membranes. These trends in membrane selectivity were transferred towards native cell systems in which gram-positive Staphylococcus aureus and gram-negative Acenobacter baumannii bacterial strains were relatively susceptible to disruption by hydrophobic n-butyl- and n-propyl-poly(MVP-co-AlkylM) derivatives compared to human red blood cells (HRBCs), with a more pronounced selectivity resulting from poly(MVP-co-PM). Such selective membrane interaction by less hydrophobic polymers provides a framework for polymer design towards applications including selective membrane component solubilisation, biosensing and antimicrobial development.


Subject(s)
Nanostructures , Polymers , Humans , Polymers/chemistry , Membrane Proteins/chemistry , Nanostructures/chemistry , Maleimides , Phospholipids/chemistry , Lipid Bilayers/chemistry
15.
Angew Chem Int Ed Engl ; 62(35): e202304977, 2023 08 28.
Article in English | MEDLINE | ID: mdl-37391876

ABSTRACT

Ionisable amino-lipid is a key component in lipid nanoparticles (LNPs), which plays a crucial role in the encapsulation of RNA molecules, allowing efficient cellular uptake and then releasing RNA from acidic endosomes. Herein, we present direct evidence for the remarkable structural transitions, with decreasing membrane curvature, including from inverse micellar, to inverse hexagonal, to two distinct inverse bicontinuous cubic, and finally to a lamellar phase for the two mainstream COVID-19 vaccine ionisable ALC-0315 and SM-102 lipids, occurring upon gradual acidification as encountered in endosomes. The millisecond kinetic growth of the inverse cubic and hexagonal structures and the evolution of the ordered structural formation upon ionisable lipid-RNA/DNA complexation are quantitatively revealed by in situ synchrotron radiation time-resolved small angle X-ray scattering coupled with rapid flow mixing. We found that the final self-assembled structural identity, and the formation kinetics, were controlled by the ionisable lipid molecular structure, acidic bulk environment, lipid compositions, and nucleic acid molecular structure/size. The implicated link between the inverse membrane curvature of LNP and LNP endosomal escape helps future optimisation of ionisable lipids and LNP engineering for RNA and gene delivery.


Subject(s)
COVID-19 , Nanoparticles , Nucleic Acids , Humans , Lipids/chemistry , COVID-19 Vaccines , Nucleic Acids/chemistry , COVID-19/prevention & control , RNA , Nanoparticles/chemistry , Hydrogen-Ion Concentration , RNA, Small Interfering
16.
J Colloid Interface Sci ; 648: 376-388, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37302221

ABSTRACT

Globular proteins are well-folded model proteins, where ions can substantially influence their structure and aggregation. Ionic liquids (ILs) are salts in the liquid state with versatile ion combinations. Understanding the IL effect on protein behavior remains a major challenge. Here, we employed small angle X-ray scattering to investigate the effect of aqueous ILs on the structure and aggregation of globular proteins, namely, hen egg white lysozyme (Lys), human lysozyme (HLys), myoglobin (Mb), ß-lactoglobulin (ßLg), trypsin (Tryp) and superfolder green fluorescent protein (sfGFP). The ILs contain ammonium-based cations paired with the mesylate, acetate or nitrate anion. Results showed that only Lys was monomeric, whereas the other proteins formed small or large aggregates in buffer. Solutions with over 17 mol% IL resulted in significant changes in the protein structure and aggregation. The Lys structure was expanded at 1 mol% but compact at 17 mol% with structural changes in loop regions. HLys formed small aggregates, with the IL effect similar to Lys. Mb and ßLg mostly had distinct monomer and dimer distributions depending on IL type and IL concentration. Complex aggregation was noted for Tryp and sfGFP. While the anion had the largest ion effect, changing the cation also induced the structural expansion and protein aggregation.


Subject(s)
Ionic Liquids , Muramidase , Humans , Muramidase/chemistry , Ionic Liquids/chemistry , X-Rays , Anions , Cations , Green Fluorescent Proteins , Scattering, Small Angle
17.
Food Chem X ; 18: 100651, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37091511

ABSTRACT

The emerging research interests in fabrication of protein particles as soft-particle emulsifiers show the prospective potential of using protein particles in novel poly-phase dispersing food systems. This review first provides a comprehensive summary and analysis on the dominant role of key physicochemical properties of protein particles including wettability, morphology, surface charge and protein concentration on their emulsifying abilities to construct Pickering emulsions. It was found that the constructed emulsions showed high sensitivity to changes in pH, ionic strength and temperature (thermal and freeze-thaw treatment). Moreover, oxidation remains as a challenge for protein particle based Pickering emulsions during prolonged storage, reducing their acceptance in food products. Current strategies for improving the stability of these emulsions to variable aqueous conditions and variable temperatures, and restricting oxidation event are summarized. In summary, an "ideal" protein particle-based Pickering emulsion system is proposed, encompassing aspects of interfacial property, emulsion network and texture, and antioxidant enrichment, thus promoting industrial translation into novel food and nutraceutical products.

18.
Front Bioeng Biotechnol ; 11: 1159498, 2023.
Article in English | MEDLINE | ID: mdl-37064219

ABSTRACT

Introduction: In addition to many cellular processes, Ca2+ is also involved in tumor initiation, progression, angiogenesis, and metastasis. The development of new tools for single-cell Ca2+ measurement could open a new avenue for cancer therapy. Methods: The all-solid-state calcium ion-selective microelectrode (Ca2+-ISµE) based on carbon fiber modified with PEDOT (PSS) as solid-contact was developed in this work, and the characteristics of the Ca2+-ISµE have also been investigated. Results: The Ca2+-ISµE exhibits a stable Nernstian response in CaCl2 solutions in the active range of 1.0 × 10-8 - 3.1 × 10-3 M with a low detection limit of 8.9 × 10-9 M. The Ca2+-ISµE can be connected to a patch clamp to fabricate a single-cell analysis platform for in vivo calcium monitoring of a single renal carcinoma cell. The calcium signal decreased significantly (8.6 ± 3.2 mV, n = 3) with severe fluctuations of 5.9 ± 1.8 mV when the concentration of K+ in the tumor microenvironment is up to 20 mM. Discussion: The results indicate a severe cell response of a single renal carcinoma cell under high K+ stimuli. The detection system could also be used for single-cell analysis of other ions by changing different ion-selective membranes with high temporal resolution.

19.
ACS Nano ; 17(9): 8598-8612, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37078604

ABSTRACT

Biomimetic cubic phases can be used for protein encapsulation in a variety of applications such as biosensors and drug delivery. Cubic phases with a high concentration of cholesterol and phospholipids were obtained herein. It is shown that the cubic phase structure can be maintained with a higher concentration of biomimetic membrane additives than has been reported previously. Opposing effects on the curvature of the membrane were observed upon the addition of phospholipids and cholesterol. Furthermore, the coronavirus fusion peptide significantly increased the negative curvature of the biomimetic membrane with cholesterol. We show that the viral fusion peptide can undergo structural changes leading to the formation of hydrophobic α-helices that insert into the lipid bilayer. This is of high importance, as a fusion peptide that induces increased negative curvature as shown by the formation of inverse hexagonal phases allows for greater contact area between two membranes, which is required for viral fusion to occur. The cytotoxicity assay showed that the toxicity toward HeLa cells was dramatically decreased when the cholesterol or peptide level in the nanoparticles increased. This suggests that the addition of cholesterol can improve the biocompatibility of the cubic phase nanoparticles, making them safer for use in biomedical applications. As the results, this work improves the potential for the biomedical end-use applications of the nonlamellar lipid nanoparticles and shows the need of systematic formulation studies due to the complex interplay of all components.


Subject(s)
Coronavirus , Humans , Biomimetics , HeLa Cells , Peptides/pharmacology , Peptides/chemistry , Phospholipids/chemistry , Lipid Bilayers/chemistry , Cholesterol
20.
Analyst ; 148(6): 1265-1274, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36786730

ABSTRACT

Based on the pKa determination of cyclovirobuxine D (CVB-D) using the method of potentiometry, we predicted the ionization state of CVB-D at physiological pH. Thus, by taking advantage of the ionization state and consequent non-covalent interactions between protonated CVB-D and deprotonated polymerized bromothymol blue (poly-BTB) under physiological conditions, we developed a simple and reusable electrochemical sensor that contains a poly-BTB/SWNT-modified electrode for electro-inactive CVB-D detection in biological fluids using poly-BTB as both the recognition unit and the electrochemical probe. Upon being immersed in the solution of CVB-D, the poly BTB-based electrode shows a current decrease due to the interaction-driven binding of CVB-D on the electrode surface. The current decrease in the electrochemical sensor toward CVB-D concentration shows a linear relationship in the dynamic ranges of 0.01-1 µM and 1-50 µM with a detection limit of 1.65 nM based on 3σ. The sensor can be easily regenerated through the removal of the binding of CVB-D from the electrode surface by highly negatively charged heparin, and it presents high repeatability with an RSD of less than 4.0% for seven measurements. In animal experiments, the electrochemical sensor was selective and sensitive for CVB-D determination in plasma and liver homogenates. The electrochemical sensor is readily accessible, robust, and cost-effective and holds good promise for more applications in biological and clinical fields associated with CVB-D using less technically demanding and simple operating procedures.


Subject(s)
Drugs, Chinese Herbal , Animals , Potentiometry , Plasma , Electrochemical Techniques
SELECTION OF CITATIONS
SEARCH DETAIL