Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 419: 126407, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34175707

ABSTRACT

In this work, a recyclable self-floating A-GUN-coated (Ag/AgCl@g-C3N4@UIO-66(NH2)-coated) foam was fabricated for effective inactivation of Microcystis aeruginosa (M. aeruginosa) under visible light. The floating photocatalyst was able to inactivate 98% of M. aeruginosa within 180 min under the visible-light irrigation, and the floating photocatalyst exhibited a stable performance in various conditions. Moreover, the inactivation efficiency can still maintain nearly 92% after five times recycle experiments, showing excellent photocatalytic stability. Furthermore, effects of A-GUN/SMF floating catalyst on the physiological properties, cellular organics, and algal functional groups of M. aeruginosa were studied. The floating photocatalyst can not only make full use of excellent photocatalytic activities of A-GUN nanocomposite, but also promote contact between catalyst and algae, and realize the effective recovery of the photocatalyst. Finally, possible photocatalytic inactivation mechanisms of algae were obtained, which provides references for removing cyanobacteria blooms in real water bodies.


Subject(s)
Cyanobacteria , Microcystis , Nanocomposites , Catalysis , Light
2.
J Environ Manage ; 281: 111884, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33385902

ABSTRACT

A new method for algal community restructuring is proposed, where harmful algae growth is inhibited through the addition of remedial nano-agent, while probiotic algae growth is promoted or only affected indistinctively. In this paper, the inhibiting effects of five different nanomaterials on Microcystis aeruginosa (M. aeruginosa) and Cyclotella sp. were studied, and the optimal nanomaterial was served as algae-inhibition ingredient of the remedial agent. The effects of the remedial agent on algal growth and their physiological characteristics were investigated, and the restructuring of algal community in actual water samples was explored. The results indicated that the inhibition ratio of 10 mg/L nm-Cu2O/SiO2 on M. aeruginosa and Cyclotella sp. could reach 293.1% and 82.8% respectively, acting as the best candidate for algae-inhibiting ingredient. After adding the remedial nano-agent made with nm-Cu2O/SiO2, the content of chlorophyll a, protein, and polysaccharides of M. aeruginosa decreased sharply, while the physiological characteristics of Cyclotella sp. were not significantly affected. Besides, the total biomass and proportion of cyanobacteria dropped (P < 0.05), but the Bacillariophyta biomass increased significantly (P < 0.05). The uniformity index, Shannon-Wiener index, and richness index all increased significantly (P < 0.05). Meanwhile, the quality of actual water samples has been improved evidently (P < 0.001). Therefore, the prepared remedial nano-agent in this study can control the harmful algae bloom to a certain extent by restructuring the algal community in eutrophic water bodies.


Subject(s)
Diatoms , Microcystis , Chlorophyll A , Harmful Algal Bloom , Silicon Dioxide , Water
3.
J Hazard Mater ; 403: 123964, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33265006

ABSTRACT

Antibiotic contamination is increasing scrutinized recently. In this work, the Ag-AgCl/WO3/g-C3N4 (AWC) nanocomposites were successfully synthesized using a two-step process involving electrostatic self-assembly and in-situ deposition for trimethoprim (TMP) degradation. The as-prepared photocatalysts were investigated and characterized by XRD, FTIR, XPS, TGA, SEM, TEM, UV-vis, PL and EIS. The experimental results indicated that 99.9% of TMP (4 mg/L) was degraded within 60 min when the concentration of AWC was 0.5 g/L. Reactive species scavenging experiments and electron spin resonance (ESR) experiments illustrated that superoxide radical (•O2-) and photogenerated holes (h+) were the main active species. The functional theory calculation and identification of intermediates via HPLC-MS revealed the possible degradation pathways of TMP. A double photoelectron-transfer mechanism in AWC photocatalyst was proposed. Five cycling photocatalytic tests and reactions under different solution matrix effects further supported that the AWC was a promising photocatalyst for the removal of TMP from the aquatic environment.


Subject(s)
Nanocomposites , Silver , Catalysis , Light , Trimethoprim
4.
J Hazard Mater ; 404(Pt B): 124062, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33068992

ABSTRACT

In this work, a novel Ag/AgCl@g-C3N4@UIO-66(NH2) heterojunction was constructed for photocatalytic inactivation of Microcystis aeruginosa (M. aeruginosa) under visible light. The photocatalyst was synthesized by a facile method and characterized by XRD, SEM, TEM, BET, XPS, FT-IR, UV-vis DRS, PL and EIS. The nanocomposite can not only provide lots of active sites, but also improve capacities to utilize visible-light energy and effectively transfer charge carriers, thus enhancing removal efficiencies of cyanobacteria (99.9% chlorophyll a was degraded within 180 min). Various factors in photodegradation of chlorophyll a were studied. Besides, changes on cellular morphologies, membrane permeability, physiological activities of M. aeruginosa during photocatalysis were investigated. Moreover, the cycle test indicated that Ag/AgCl@g-C3N4@UIO-66(NH2) exhibits excellent reusability and photocatalytic stability. Finally, a possible mechanism of M. aeruginosa inactivation was proposed. In a word, Ag/AgCl@g-C3N4@UIO-66(NH2) can efficiently inactivate cyanobacteria under visible light, thus providing useful references for further removal of harmful algae in real water bodies.


Subject(s)
Microcystis , Nanocomposites , Chlorophyll A , Light , Silver , Spectroscopy, Fourier Transform Infrared
5.
Sci Total Environ ; 741: 140341, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32615428

ABSTRACT

The frequent harmful algae blooms (HABs) in eutrophic waters pose serious threats to the water environment and health of human beings and animals. In this study, a new type of photocatalytic coating was prepared by loading Ag2CO3-N:GO (AGON) on the polyurethane sponge modified by silica sol via a dip coating method for the photocatalytic inactivation of Microcystis aeruginosa (M. aeruginosa) and degradation of Microcystin-LR (MC-LR). The factors including photocatalyst loading dosage, natural organic matter (NOM), and alkalinity were studied. The effects on the physiological characteristics of M. aeruginosa and reactive oxygen species (ROS) were also investigated to reveal the photocatalytic inactivation mechanisms. The results showed that the AGON coating-4 (the initial concentration of AGON suspension used for loading is 4 g/L) exhibited the optimum photocatalytic performance under visible light, which can completely remove chlorophyll a after 5 h of irradiation. And the NOM and alkalinity in water have relatively negative effects on the photocatalytic inactivation of algae. The prepared AGON coating also exhibited excellent photocatalytic performance in the degradation of MC-LR under visible light. It only needed 20, 60 and 120 min to completely degrade 0.1, 0.3 and 0.5 mg/L MC-LR, respectively. However, the mixed systems of algae and MC-LR required a longer time to achieve photocatalytic degradation. The O2- were the predominant reactive oxygen species, causing the damage of cell membranes and walls and the leakage of cellular content, which eventually led to the irreversible damage to algal cells. What's more, the coating can be reused several times due to its good cyclability and stability. Therefore, the AGON coating has promising prospects for the treatment of algal blooms in eutrophic waters.


Subject(s)
Microcystis , Silver , Animals , Chlorophyll A , Harmful Algal Bloom , Light , Microcystins
6.
J Hazard Mater ; 367: 529-538, 2019 04 05.
Article in English | MEDLINE | ID: mdl-30641423

ABSTRACT

Metal-organic Frameworks (MOFs) as a new type of nanomaterials are extensively used in various fields of environment pollution remediation. However, the MOFs are rarely applied in the removal of cyanobacterial blooms, and more fundamental investigation is warrant for more insights into mechanisms for algae inhibition. In this study, Cu-MOF-74 was synthesized by a simple hydrothermal method, and its inhibitory effect on the growth of Microcystis aeruginosa was studied. Furthermore, its mechanisms were explored with respect to metal ion release, agglomeration, shading and algal cell membrane breakage, production of extracellular hydroxyl radical and intracellular reactive oxygen species. The results showed that the inhibition rate of M. aeruginosa was 372% after 24-h exposure when the concentration of Cu-MOF-74 exceeded 1 mg/L. However, the addition of Cu-MOF-74 at the concentration lower than 0.1 mg/L promoted the algal growth. The inhibition of algal growth by Cu-MOF-74 was basically attributed to the presence of hydroxyl radical and intracellular reactive oxygen species, with the released Cu2+ and cell aggregation involved to some extent. Overall, nanocrystalline Cu-MOF-74 is of great potential in the control of harmful cyanobacterial blooms and the inhibition is specific to the concentration of Cu-MOF-74.


Subject(s)
Copper/toxicity , Metal-Organic Frameworks/toxicity , Microcystis/drug effects , Nanoparticles/toxicity , Harmful Algal Bloom/drug effects , Microcystis/growth & development , Microcystis/metabolism , Reactive Oxygen Species/metabolism
7.
RSC Adv ; 8(61): 35314-35326, 2018 Oct 10.
Article in English | MEDLINE | ID: mdl-35547055

ABSTRACT

Metal-organic frameworks (MOFs), as a new type of nanomaterial, have been rapidly developed and widely applied in the environmental area. However, the algae removal efficiency of MOFs, the effect of metal ions and organic ligands contained in MOFs and the stability of MOFs in water need further study. Based on the characteristics of algae, five types of MOFs, which were Cu-MOF-74, Zn-MOF-74, ZIF-8, Ag/AgCl@ZIF-8 and MIL-125(Ti) were synthesized and characterized by X-ray diffractometer (XRD), field emission scanning electron microscope (FESEM), and X-ray photoelectron spectroscopy (XPS). The effect of MOFs on the growth of Microcystis aeruginosa was comparatively studied, and the inhibition mechanism of MOFs on algae as well as the stability of MOFs was explored. Results showed that all of the as-synthetic MOFs had superior stability in water, and the order of stability of MOFs followed the order MIL-125(Ti) > Cu-MOF-74 > Ag/AgCl@ZIF-8 > ZIF-8 > Zn-MOF-74. The types of metal ions and organic ligands doped in MOFs have grade affected the inhibitory efficiency on the algae: containing Cu2+ and Ag+ ions, MOFs had more significant inhibitory capacity to algae than those containing Zn2+ ions; meanwhile, compared with MOFs which are assembled with 2,5-dihydroxyterephthalic acid (DHTA) organic ligands, MOFs containing 2-methylimidazole (GC) organic contributed to the removal of algae significantly. The order of inhibitory effects of algae by five MOFs follows the order Cu-MOF-74 > Ag/AgCl@ZIF-8 > ZIF-8 > Zn-MOF-74 > MIL-125(Ti). The physiological characteristics of algal cells were changed after being treated with different concentrations of Cu-MOF-74. Once the concentration of Cu-MOF-74 reached 1 mg L-1, the algal cells began to be inhibited, the relative inhibition rate of algal cells at 120 h was over 400%, and the inhibition process fitted pseudo-second-order kinetic model well. The Cu2+ released by Cu-MOF-74 that the concentration higher than 1 mg L-1 would lead to the destruction of algae cell morphology and the loss of cell integrity, causing cell contents to be partially released into the water, promoting the accumulation and precipitation of algal cells which were destabilizing already to achieve the purpose of inhibition of algae. In summary, MOFs can be used to inhibit the growth of cyanobacteria and have a promising application prospect.

SELECTION OF CITATIONS
SEARCH DETAIL