Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Eur Radiol ; 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38485749

OBJECTIVES: To evaluate the performance of multiparametric neurite orientation dispersion and density imaging (NODDI) radiomics in distinguishing between glioblastoma (Gb) and solitary brain metastasis (SBM). MATERIALS AND METHODS: In this retrospective study, NODDI images were curated from 109 patients with Gb (n = 57) or SBM (n = 52). Automatically segmented multiple volumes of interest (VOIs) encompassed the main tumor regions, including necrosis, solid tumor, and peritumoral edema. Radiomics features were extracted for each main tumor region, using three NODDI parameter maps. Radiomics models were developed based on these three NODDI parameter maps and their amalgamation to differentiate between Gb and SBM. Additionally, radiomics models were constructed based on morphological magnetic resonance imaging (MRI) and diffusion imaging (diffusion-weighted imaging [DWI]; diffusion tensor imaging [DTI]) for performance comparison. RESULTS: The validation dataset results revealed that the performance of a single NODDI parameter map model was inferior to that of the combined NODDI model. In the necrotic regions, the combined NODDI radiomics model exhibited less than ideal discriminative capabilities (area under the receiver operating characteristic curve [AUC] = 0.701). For peritumoral edema regions, the combined NODDI radiomics model achieved a moderate level of discrimination (AUC = 0.820). Within the solid tumor regions, the combined NODDI radiomics model demonstrated superior performance (AUC = 0.904), surpassing the models of other VOIs. The comparison results demonstrated that the NODDI model was better than the DWI and DTI models, while those of the morphological MRI and NODDI models were similar. CONCLUSION: The NODDI radiomics model showed promising performance for preoperative discrimination between Gb and SBM. CLINICAL RELEVANCE STATEMENT: The NODDI radiomics model showed promising performance for preoperative discrimination between Gb and SBM, and radiomics features can be incorporated into the multidimensional phenotypic features that describe tumor heterogeneity. KEY POINTS: • The neurite orientation dispersion and density imaging (NODDI) radiomics model showed promising performance for preoperative discrimination between glioblastoma and solitary brain metastasis. • Compared with other tumor volumes of interest, the NODDI radiomics model based on solid tumor regions performed best in distinguishing the two types of tumors. • The performance of the single-parameter NODDI model was inferior to that of the combined-parameter NODDI model.

2.
J Magn Reson Imaging ; 2024 Jan 18.
Article En | MEDLINE | ID: mdl-38236577

BACKGROUND: Nigrosome 1 (N1), the largest nigrosome region in the ventrolateral area of the substantia nigra pars compacta, is identifiable by the "N1 sign" in long echo time gradient echo MRI. The N1 sign's absence is a vital Parkinson's disease (PD) diagnostic marker. However, it is challenging to visualize and assess the N1 sign in clinical practice. PURPOSE: To automatically detect the presence or absence of the N1 sign from true susceptibility weighted imaging by using deep-learning method. STUDY TYPE: Prospective. POPULATION/SUBJECTS: 453 subjects, including 225 PD patients, 120 healthy controls (HCs), and 108 patients with other movement disorders, were prospectively recruited including 227 males and 226 females. They were divided into training, validation, and test cohorts of 289, 73, and 91 cases, respectively. FIELD STRENGTH/SEQUENCE: 3D gradient echo SWI sequence at 3T; 3D multiecho strategically acquired gradient echo imaging at 3T; NM-sensitive 3D gradient echo sequence with MTC pulse at 3T. ASSESSMENT: A neuroradiologist with 5 years of experience manually delineated substantia nigra regions. Two raters with 2 and 36 years of experience assessed the N1 sign on true susceptibility weighted imaging (tSWI), QSM with high-pass filter, and magnitude data combined with MTC data. We proposed NINet, a neural model, for automatic N1 sign identification in tSWI images. STATISTICAL TESTS: We compared the performance of NINet to the subjective reference standard using Receiver Operating Characteristic analyses, and a decision curve analysis assessed identification accuracy. RESULTS: NINet achieved an area under the curve (AUC) of 0.87 (CI: 0.76-0.89) in N1 sign identification, surpassing other models and neuroradiologists. NINet localized the putative N1 sign within tSWI images with 67.3% accuracy. DATA CONCLUSION: Our proposed NINet model's capability to determine the presence or absence of the N1 sign, along with its localization, holds promise for enhancing diagnostic accuracy when evaluating PD using MR images. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 1.

3.
Arthritis Rheumatol ; 76(1): 92-99, 2024 01.
Article En | MEDLINE | ID: mdl-37530745

OBJECTIVE: Autoantibodies are clinically useful in phenotyping patients with systemic sclerosis (SSc). Gastrointestinal (GI) function is regulated by the enteric nervous system (ENS) and commonly impaired in SSc, suggesting that the SSc autoimmune response may target ENS antigens. We sought to identify novel anti-ENS autoantibodies with an aim to clinically phenotype SSc GI dysfunction. METHODS: Serum from a patient with SSc with GI dysfunction but without defined SSc-associated autoantibodies was used for autoantibody discovery. Immunoprecipitations performed with murine myenteric plexus lysates were on-bead digested, and autoantigens were identified by mass spectrometry. Prevalence was determined, and clinical features associated with novel autoantibodies were evaluated in a SSc cohort using regression analyses. The expression of gephyrin in human GI tract tissue was examined by immunohistochemistry. RESULTS: We identified gephyrin as a novel SSc autoantigen. Anti-gephyrin antibodies were present in 9% of patients with SSc (16/188) and absent in healthy controls (0/46). Anti-gephyrin antibody-positive patients had higher constipation scores (1.00 vs 0.50, P = 0.02) and were more likely to have severe constipation and severe distention/bloating (46% vs 15%, P = 0.005; 54% vs 25%, P = 0.023, respectively). Anti-gephyrin antibody levels were significantly higher among patients with severe constipation (0.04 vs 0.00; P = 0.001) and severe distention and bloating (0.03 vs 0.004; P = 0.010). Severe constipation was associated with anti-gephyrin antibodies even in the adjusted model. Importantly, gephyrin was expressed in the ENS, which regulates gut motility. CONCLUSION: Gephyrin is a novel ENS autoantigen that is expressed in human myenteric ganglia. Anti-gephyrin autoantibodies are associated with the presence and severity of constipation in patients with SSc.


Autoantibodies , Membrane Proteins , Scleroderma, Systemic , Membrane Proteins/metabolism , Autoantigens/metabolism , Scleroderma, Systemic/immunology , Scleroderma, Systemic/metabolism , Scleroderma, Systemic/pathology , Scleroderma, Systemic/physiopathology , Autoantibodies/analysis , Gastrointestinal Tract/innervation , Gastrointestinal Tract/physiopathology , Humans , Animals , Mice , Neurons/metabolism , Enteric Nervous System/metabolism , Enteric Nervous System/physiopathology
4.
Elife ; 122023 Dec 18.
Article En | MEDLINE | ID: mdl-38108810

The enteric nervous system (ENS), a collection of neural cells contained in the wall of the gut, is of fundamental importance to gastrointestinal and systemic health. According to the prevailing paradigm, the ENS arises from progenitor cells migrating from the neural crest and remains largely unchanged thereafter. Here, we show that the lineage composition of maturing ENS changes with time, with a decline in the canonical lineage of neural-crest derived neurons and their replacement by a newly identified lineage of mesoderm-derived neurons. Single cell transcriptomics and immunochemical approaches establish a distinct expression profile of mesoderm-derived neurons. The dynamic balance between the proportions of neurons from these two different lineages in the post-natal gut is dependent on the availability of their respective trophic signals, GDNF-RET and HGF-MET. With increasing age, the mesoderm-derived neurons become the dominant form of neurons in the ENS, a change associated with significant functional effects on intestinal motility which can be reversed by GDNF supplementation. Transcriptomic analyses of human gut tissues show reduced GDNF-RET signaling in patients with intestinal dysmotility which is associated with reduction in neural crest-derived neuronal markers and concomitant increase in transcriptional patterns specific to mesoderm-derived neurons. Normal intestinal function in the adult gastrointestinal tract therefore appears to require an optimal balance between these two distinct lineages within the ENS.


Enteric Nervous System , Glial Cell Line-Derived Neurotrophic Factor , Adult , Humans , Gastrointestinal Motility , Gene Expression Profiling , Mesoderm
5.
Sci Rep ; 13(1): 15586, 2023 09 20.
Article En | MEDLINE | ID: mdl-37730961

Early acquired resistance (EAR) to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) in lung adenocarcinomas before radiographic advance cannot be perceived by the naked eye. This study aimed to discover and validate a CT radiomic model to precisely identify the EAR. Training cohort (n = 67) and internal test cohort (n = 29) were from the First Affiliated Hospital of Fujian Medical University, and external test cohort (n = 29) was from the Second Affiliated Hospital of Xiamen Medical College. Follow-up CT images at three different times of each patient were collected: (1) baseline images before EGFR-TKIs therapy; (2) first follow-up images after EGFR-TKIs therapy (FFT); (3) EAR images, which were the last follow-up images before radiographic advance. The features extracted from FFT and EAR were used to construct the classic radiomic model. The delta features which were calculated by subtracting the baseline from either FFT or EAR were used to construct the delta radiomic model. The classic radiomic model achieved AUC 0.682 and 0.641 in training and internal test cohorts, respectively. The delta radiomic model achieved AUC 0.730 and 0.704 in training and internal test cohorts, respectively. Over the external test cohort, the delta radiomic model achieved AUC 0.661. The decision curve analysis showed that when threshold of the probability of the EAR to the EGFR-TKIs was between 0.3 and 0.82, the proposed model was more benefit than treating all patients. Based on two central studies, the delta radiomic model derived from the follow-up non-enhanced CT images can help clinicians to identify the EAR to EGFR-TKIs in lung adenocarcinomas before radiographic advance and optimize clinical outcomes.


Adenocarcinoma of Lung , Lung Neoplasms , Humans , Adenocarcinoma of Lung/diagnostic imaging , Adenocarcinoma of Lung/drug therapy , Hospitals , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/drug therapy , ErbB Receptors , Tomography, X-Ray Computed
6.
BMC Pulm Med ; 23(1): 339, 2023 Sep 11.
Article En | MEDLINE | ID: mdl-37697337

BACKGROUND: The purpose of this study was to develop a radiomic nomogram to predict T790M mutation of lung adenocarcinoma base on non-enhanced CT lung images. METHODS: This retrospective study reviewed demographic data and lung CT images of 215 lung adenocarcinoma patients with T790M gene test results. 215 patients (including 52 positive) were divided into a training set (n = 150, 36 positive) and an independent test set (n = 65, 16 positive). Multivariate logistic regression was used to select demographic data and CT semantic features to build clinical model. We extracted quantitative features from the volume of interest (VOI) of the lesion, and developed the radiomic model with different feature selection algorithms and classifiers. The models were trained by a 5-fold cross validation strategy on the training set and assessed on the test set. ROC was used to estimate the performance of the clinical model, radiomic model, and merged nomogram. RESULTS: Three demographic features (gender, smoking, emphysema) and ten radiomic features (Kruskal-Wallis as selection algorithm, LASSO Logistic Regression as classifier) were determined to build the models. The AUC of the clinical model, radiomic model, and nomogram in the test set were 0.742(95%CI, 0.619-0.843), 0.810(95%CI, 0.696-0.907), 0.841(95%CI, 0.743-0.938), respectively. The predictive efficacy of the nomogram was better than the clinical model (p = 0.042). The nomogram predicted T790M mutation with cutoff value was 0.69 and the score was above 130. CONCLUSION: The nomogram developed in this study is a non-invasive, convenient, and economical method for predicting T790M mutation of lung adenocarcinoma, which has a good prospect for clinical application.


Adenocarcinoma of Lung , Lung Neoplasms , Humans , ErbB Receptors , Nomograms , Retrospective Studies , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/genetics , Mutation , Protein Kinase Inhibitors , Adenocarcinoma of Lung/diagnostic imaging , Adenocarcinoma of Lung/genetics
7.
Radiother Oncol ; 182: 109489, 2023 05.
Article En | MEDLINE | ID: mdl-36706957

PURPOSE: This study is purposed to establish a predictive model for acute severe hematologic toxicity (HT) during radiotherapy in patients with cervical or endometrial cancer and investigate whether the integration of clinical features and computed tomography (CT) radiomics features of the pelvic bone marrow (BM) could define a more precise model. METHODS: A total of 207 patients with cervical or endometrial cancer from three cohorts were retrospectively included in this study. Forty-one clinical variables and 2226 pelvic BM radiomic features that were extracted from planning CT scans were included in the model construction. Following feature selection, model training was performed on the clinical and radiomics features via machine learning, respectively. The radiomics score, which was the output of the final radiomics model, was integrated with the variables that were selected by the clinical model to construct a combined model. The performance of the models was evaluated using the area under the receiver operating characteristic curve (AUC). RESULTS: The best-performing prediction model comprised two clinical features (FIGO stage and cycles of postoperative chemotherapy) and radiomics score and achieved an AUC of 0.88 (95% CI, 0.81-0.93) in the training set, 0.80 (95% CI, 0.62-0.92) in the internal-test set and 0.85 (95% CI, 0.71-0.94) in the external-test dataset. CONCLUSION: The proposed model which incorporates radiomics signature and clinical factors outperforms the models based on clinical or radiomics features alone in terms of the AUC. The value of the pelvic BM radiomics in chemoradiotherapy-induced HT is worthy of further investigation.


Endometrial Neoplasms , Radiation Oncology , Humans , Female , Retrospective Studies , Endometrial Neoplasms/diagnostic imaging , Endometrial Neoplasms/radiotherapy , Chemoradiotherapy , Neck
8.
J Magn Reson Imaging ; 57(5): 1352-1364, 2023 05.
Article En | MEDLINE | ID: mdl-36222324

BACKGROUND: The high level of expertise required for accurate interpretation of prostate MRI. PURPOSE: To develop and test an artificial intelligence (AI) system for diagnosis of clinically significant prostate cancer (CsPC) with MRI. STUDY TYPE: Retrospective. SUBJECTS: One thousand two hundred thirty patients from derivation cohort between Jan 2012 and Oct 2019, and 169 patients from a publicly available data (U-Net: 423 for training/validation and 49 for test and TrumpeNet: 820 for training/validation and 579 for test). FIELD STRENGTH/SEQUENCE: 3.0T/scanners, T2 -weighted imaging (T2 WI), diffusion-weighted imaging, and apparent diffusion coefficient map. ASSESSMENT: Close-loop AI system was trained with an Unet for prostate segmentation and a TrumpetNet for CsPC detection. Performance of AI was tested in 410 internal and 169 external sets against 24 radiologists categorizing into junior, general and subspecialist group. Gleason score >6 was identified as CsPC at pathology. STATISTICAL TESTS: Area under the receiver operating characteristic curve (AUC-ROC); Delong test; Meta-regression I2 analysis. RESULTS: In average, for internal test, AI had lower AUC-ROC than subspecialists (0.85 vs. 0.92, P < 0.05), and was comparable to junior (0.84, P = 0.76) and general group (0.86, P = 0.35). For external test, both AI (0.86) and subspecialist (0.86) had higher AUC than junior (0.80, P < 0.05) and general reader (0.83, P < 0.05). In individual, it revealed moderate diagnostic heterogeneity in 24 readers (Mantel-Haenszel I2  = 56.8%, P < 0.01), and AI outperformed 54.2% (13/24) of readers in summary ROC analysis. In multivariate test, Gleason score, zonal location, PI-RADS score and lesion size significantly impacted the accuracy of AI; while effect of data source, MR device and parameter settings on AI performance is insignificant (P > 0.05). DATA CONCLUSION: Our AI system can match and to some case exceed clinicians for the diagnosis of CsPC with prostate MRI. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 2.


Magnetic Resonance Imaging , Prostatic Neoplasms , Male , Humans , Magnetic Resonance Imaging/methods , Prostatic Neoplasms/pathology , Artificial Intelligence , Retrospective Studies , Diffusion Magnetic Resonance Imaging/methods
9.
Acad Radiol ; 30(8): 1667-1677, 2023 08.
Article En | MEDLINE | ID: mdl-36470734

RATIONALE AND OBJECTIVES: To use radiomics to detect the subtle changes of cartilage and subchondral bone in chronic lateral ankle instability (CLAI) patients based on MRI PD-FS images. MATERIALS AND METHODS: A total of 215 CLAI patients and 186 healthy controls were included and randomly split into a training set (n=281, patients/controls=151/130) and an independent test set (n=120, patients/controls=64/56). They underwent ankle MRI examinations. On sagittal PD-FS images, eight cartilage regions and their corresponding subchondral bone regions were drawn. Radiomics models of cartilage, subchondral bone and combined cartilage and subchondral bone were built to differentiate CLAI patients from controls. A receiver operating characteristic curve (ROC) was used to assess the model's performance. RESULTS: In the test dataset, the cartilage model yielded an area under the curve (AUC) of 0.0.912 (95% confidence interval (CI): 0.858-0.965, p<0.001), a sensitivity of 0.859, a specificity of 0.893, a negative predictive value (NPV) of 0.848, and a positive predictive value (PPV) of 0.902. The subchondral bone model yielded an AUC of 0.837 (95% CI: 0.766-0.907, p<0.001), a sensitivity of 0.875, a specificity of 0.714, an NPV of 0.833, and a PPV of 0.778. For the combined model, the AUC was 0.921 (95% CI: 0.863-0.972, p<0.001), sensitivity was 0.844, specificity was 0.911, NPV was 0.836, and PPV was 0.915, whose AUC was higher than those of both the cartilage model and the subchondral bone model. CONCLUSION: The combined radiomics model achieved satisfying performance in detecting potential early architectural changes in cartilage and subchondral bone for CLAI patients.


Ankle , Joint Instability , Humans , Bone and Bones , Cartilage , Joint Instability/diagnostic imaging , Magnetic Resonance Imaging/methods , Retrospective Studies , ROC Curve
10.
Front Oncol ; 12: 900049, 2022.
Article En | MEDLINE | ID: mdl-36033463

Objective: To investigate whether radiomics can help radiologists and thoracic surgeons accurately predict invasive adenocarcinoma (IAC) manifesting as part-solid nodules (PSNs) with solid components <6 mm and provide a basis for rational clinical decision-making. Materials and Methods: In total, 1,210 patients (mean age ± standard deviation: 54.28 ± 11.38 years, 374 men and 836 women) from our hospital and another hospital with 1,248 PSNs pathologically diagnosed with adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), or IAC were enrolled in this study. Among them, 1,050 cases from our hospital were randomly divided into a derivation set (n = 735) and an internal validation set (n = 315), 198 cases from another hospital were used for external validation. Each labeled nodule was segmented, and 105 radiomics features were extracted. Least absolute shrinkage and selection operator (LASSO) was used to calculate Rad-score and build the radiomics model. Multivariable logistic regression was conducted to identify the clinicoradiological predictors and establish the clinical-radiographic model. The combined model and predictive nomogram were developed based on identified clinicoradiological independent predictors and Rad-score using multivariable logistic regression analysis. The predictive performances of the three models were compared via receiver operating characteristic (ROC) curve analysis. Decision curve analysis (DCA) was performed on both the internal and external validation sets to evaluate the clinical utility of the nomogram. Results: The radiomics model showed superior predictive performance than the clinical-radiographic model in both internal and external validation sets (Az values, 0.884 vs. 0.810, p = 0.001; 0.924 vs. 0.855, p < 0.001, respectively). The combined model showed comparable predictive performance to the radiomics model (Az values, 0.887 vs. 0.884, p = 0.398; 0.917 vs. 0.924, p = 0.271, respectively). The clinical application value of the nomogram developed based on the Rad-score, maximum diameter, and lesion shape was confirmed, and DCA demonstrated that application of the Rad-score would be beneficial for radiologists predicting invasive lesions. Conclusions: Radiomics has the potential as an independent diagnostic tool to predict the invasiveness of PSNs with solid components <6 mm.

11.
Eur Radiol ; 32(9): 6196-6206, 2022 Sep.
Article En | MEDLINE | ID: mdl-35364712

OBJECTIVES: To implement a pipeline to automatically segment the ROI and to use a nomogram integrating the MRI-based radiomics score and clinical variables to predict responses to neoadjuvant chemotherapy (NAC) in osteosarcoma patients. METHODS: A total of 144 osteosarcoma patients treated with NAC were separated into training (n = 101) and test (n = 43) groups. After normalisation, ROIs for the preoperative MRI were segmented by a deep learning segmentation model trained with nnU-Net by using two independent manual segmentations as labels. Radiomics features were extracted using automatically segmented ROIs. Feature selection was performed in the training dataset by five-fold cross-validation. The clinical, radiomics, and clinical-radiomics models were built using multiple machine learning methods with the same training dataset and validated with the same test dataset. The segmentation model was evaluated by the Dice coefficient. AUC and decision curve analysis (DCA) were employed to illustrate the model performance and clinical utility. RESULTS: 36/144 (25.0%) patients were pathological good responders (pGRs) to NAC, while 108/144 (75.0%) were non-pGRs. The segmentation model achieved a Dice coefficient of 0.869 on the test dataset. The clinical and radiomics models reached AUCs of 0.636 with a 95% confidence interval (CI) of 0.427-0.860 and 0.759 (95% CI, 0.589-0.937), respectively, in the test dataset. The clinical-radiomics nomogram demonstrated good discrimination, with an AUC of 0.793 (95% CI, 0.610-0.975), and accuracy of 79.1%. The DCA suggested the clinical utility of the nomogram. CONCLUSION: The automatic nomogram could be applied to aid radiologists in identifying pGRs to NAC. KEY POINTS: • The nnU-Net trained by manual labels enables the use of an automatic segmentation tool for ROI delineation of osteosarcoma. • A pipeline using automatic lesion segmentation and followed by a radiomics classifier could aid the evaluation of NAC response of osteosarcoma. • A predictive nomogram composed of clinical variables and MRI-based radiomics score provides support for individualised treatment planning.


Bone Neoplasms , Deep Learning , Osteosarcoma , Bone Neoplasms/diagnostic imaging , Bone Neoplasms/drug therapy , Humans , Magnetic Resonance Imaging/methods , Neoadjuvant Therapy , Nomograms , Osteosarcoma/diagnostic imaging , Osteosarcoma/drug therapy , Retrospective Studies
12.
Biomed Res Int ; 2021: 4351499, 2021.
Article En | MEDLINE | ID: mdl-34552985

OBJECTIVES: To introduce a new implementation of radiomics analysis for cartilage and subchondral bone of the knee and to compare the performance of the proposed models to classic T2 relaxation time in distinguishing knees predisposed to posttraumatic osteoarthritis (PTOA) after anterior cruciate ligament reconstruction (ACLR) and healthy controls. METHODS: 114 patients following ACLR after at least 2 years and 43 healthy controls were reviewed and allocated to training (n = 110) and testing (n = 47) cohorts. Radiomics models are built for cartilage and subchondral bone regions of different compartments: lateral femur (LF), lateral tibia (LT), medial femur (MF), and medial tibia (MT) and combined models of four compartments on T2 mapping images. The model performance of discrimination between patients and controls was illustrated with the receiver operating characteristic curve and compared with a classic T2 value-based model. RESULTS: The T2 value model of cartilage yielded moderate predictive performance in discerning patients and controls, with an AUC of 0.731 (95% confidence interval, 0.556-0.875) in the testing cohort, while the radiomics signature of cartilage and subchondral bone of different compartments demonstrated excellent performance, with AUCs of 0.864-0.979. Furthermore, the combined model reported an even better performance, with AUCs of 0.977 (95% confidence interval, 0.919-1.000) for the cartilage and 0.934 (95% confidence interval, 0.865-0.994) for the subchondral bone in the testing cohort. CONCLUSION: The radiomics features of the cartilage and subchondral bone may be able to provide powerful tools with more sensitive detection than T2 values in differentiating knees at risk for PTOA after ACLR from healthy knees.


Anterior Cruciate Ligament Reconstruction/adverse effects , Bone and Bones/diagnostic imaging , Cartilage, Articular/diagnostic imaging , Knee Joint/diagnostic imaging , Knee Joint/pathology , Osteoarthritis/etiology , Adult , Case-Control Studies , Cohort Studies , Female , Humans , Magnetic Resonance Imaging , Male , Osteoarthritis/diagnostic imaging , ROC Curve , Young Adult
13.
J Ultrasound Med ; 28(11): 1527-34, 2009 Nov.
Article En | MEDLINE | ID: mdl-19854968

OBJECTIVE: This study was designed to validate the feasibility of wideband high-frequency ultrasound imaging to resolve in vivo the degree, location, and morphologic changes of myocardial infarction (MI) in a rat model. METHODS: The left anterior descending coronary artery was ligated in the test group (n = 41), and the sham control group did not have ligation (n = 7). The rats were examined with 10- to 22-MHz echocardiography to evaluate the MI size, location, and geometric formation. RESULTS: The endocardial chamber shape was deformed, with enlargement of the anteroposterior dimension and fractional shortening, and was comparable with the degree of MI both in short- and long-axis sections of the left ventricle. Histologic analysis showed remodeling to different extents corresponding to different MI sizes (small, medium, and large). CONCLUSIONS: The results suggest that this technique can be used in vivo to evaluate the MI location, size, and morphologic changes corresponding to the extent of the injury.


Disease Models, Animal , Image Enhancement/methods , Myocardial Infarction/diagnostic imaging , Animals , Humans , Male , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Sensitivity and Specificity , Ultrasonography
...