Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 24
1.
J Transl Med ; 22(1): 169, 2024 Feb 17.
Article En | MEDLINE | ID: mdl-38368407

BACKGROUND: Adenomatous polyps (APs) with inflammation are risk factors for colorectal cancer. However, the role of inflammation-related gut microbiota in promoting the progression of APs is unknown. METHODS: Sequencing of the 16S rRNA gene was conducted to identify characteristic bacteria in AP tissues and normal mucosa. Then, the roles of inflammation-related bacteria were clarified by Spearman correlation analysis. Furthermore, colorectal HT-29 cells, normal colon NCM460 cells, and azoxymethane-treated mice were used to investigate the effects of the characteristic bacteria on progression of APs. RESULTS: The expression levels of inflammation-related markers (diamine oxidase, D-lactate, C-reactive protein, tumor necrosis factor-α, interleukin-6 and interleukin-1ß) were increased, whereas the expression levels of anti-inflammatory factors (interleukin-4 and interleukin-10) were significantly decreased in AP patients as compared to healthy controls. Solobacterium moorei (S. moorei) was enriched in AP tissues and fecal samples, and significantly positively correlated with serum inflammation-related markers. In vitro, S. moorei preferentially attached to HT-29 cells and stimulated cell proliferation and production of pro-inflammatory factors. In vivo, the incidence of intestinal dysplasia was significantly increased in the S. moorei group. Gavage of mice with S. moorei upregulated production of pro-inflammatory factors, suppressed proliferation of CD4+ and CD8+cells, and disrupted the integrity of the intestinal barrier, thereby accelerating progression of APs. CONCLUSIONS: S. moorei accelerated the progression of AP in mice via activation of the NF-κB signaling pathway, chronic low-grade inflammation, and intestinal barrier disruption. Targeted reduction of S. moorei presents a potential strategy to prevent the progression of APs.


Adenomatous Polyps , Firmicutes , Humans , Animals , Mice , RNA, Ribosomal, 16S/genetics , Inflammation/complications , Adenomatous Polyps/complications
2.
Nat Commun ; 15(1): 227, 2024 Jan 03.
Article En | MEDLINE | ID: mdl-38172093

Current treatment for functional dyspepsia (FD) has limited and unsustainable efficacy. Probiotics have the sustainable potential to alleviate FD. This randomized controlled clinical trial (Chinese Clinical Trial Registry, ChiCTR2000041430) assigned 200 FD patients to receive placebo, positive-drug (rabeprazole), or Bifidobacterium animalis subsp. lactis BL-99 (BL-99; low, high doses) for 8-week. The primary outcome was the clinical response rate (CRR) of FD score after 8-week treatment. The secondary outcomes were CRR of FD score at other periods, and PDS, EPS, serum indicators, fecal microbiota and metabolites. The CRR in FD score for the BL-99_high group [45 (90.0%)] was significantly higher than that for placebo [29 (58.0%), p = 0.001], BL-99_low [37 (74.0%), p = 0.044] and positive_control [35 (70.0%), p = 0.017] groups after 8-week treatment. This effect was sustained until 2-week after treatment but disappeared 8-week after treatment. Further metagenomic and metabolomics revealed that BL-99 promoted the accumulation of SCFA-producing microbiota and the increase of SCFA levels in stool and serum, which may account for the increase of serum gastrin level. This study supports the potential use of BL-99 for the treatment of FD.


Bifidobacterium animalis , Dyspepsia , Probiotics , Humans , Dyspepsia/therapy , Probiotics/therapeutic use , Feces/microbiology , Double-Blind Method
3.
Shock ; 61(4): 549-556, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38010067

ABSTRACT: Purpose: Cystatin C (CysC) has been linked to the prognosis of corona virus disease 2019 (COVID-19). The study aims to investigate a predictor correlated with CysC screening for poor prognosis in COVID-19 patients combined with skeletal muscle (SKM) impairment and rhabdomyolysis (RM). Methods: A single-center retrospective cohort analysis was carried out. Demographic information, clinical data, laboratory test results, and clinical outcome data were gathered and analyzed. Results: According to the inclusion and exclusion criteria, 382 patients were included in this study. The subjects were divided into three groups based on CysC tertiles. Multivariate analysis revealed that SaO 2 (hazard ratio [HR], 0.946; 95% confidence interval [CI], 0.906-0.987; P = 0.011), CysC (HR, 2.124; 95% CI, 1.223-3.689; P = 0.008), aspartate aminotransferase (AST) (HR, 1.009; 95% CI, 1.000-1.018; P = 0.041), and hypersensitive C-reactive protein (HR, 1.005; 95% CI, 1.000-1.010; P = 0.045) were significantly associated with survivals. The area under curve (AUC) in the model characterized by RM incidence was 0.819 (0.698-0.941), as shown by CysC receiver operating characteristic curves. LDH*CysC and AST*CysC had better predictive values than CysC and the best prediction for RM, with an AUC of 0.880 (0.796,0.964) for LDH*CysC ( P < 0.05, vs CysC) and 0.925 (0.878,0.972) for AST*CysC ( P < 0.05, vs CysC). Conclusion: CysC is an essential evaluation indicator for COVID-19 patients' prognosis. AST*CysC and LDH*CysC have superior predictive value to CysC for SKM, RM, and death, and optimal classification for RM.


COVID-19 , Rhabdomyolysis , Humans , Retrospective Studies , Cystatin C , Predictive Value of Tests , COVID-19/diagnosis , Biomarkers , Rhabdomyolysis/diagnosis , Creatinine
4.
Cell Rep ; 42(12): 113472, 2023 12 26.
Article En | MEDLINE | ID: mdl-37999975

Mitochondria are dynamic organelles that undergo fusion and fission events, in which the mitochondrial membrane and DNA (mtDNA) play critical roles. The spatiotemporal organization of mtDNA reflects and impacts mitochondrial dynamics. Herein, to study the detailed dynamics of mitochondrial membrane and mtDNA, we rationally develop a dual-color fluorescent probe, mtGLP, that could be used for simultaneously monitoring mitochondrial membrane and mtDNA dynamics via separate color outputs. By combining mtGLP with structured illumination microscopy to monitor mitochondrial dynamics, we discover the formation of nucleoid condensates in damaged mitochondria. We further reveal that nucleoid condensates promoted the peripheral fission of damaged mitochondria via asymmetric segregation. Through simulations, we find that the peripheral fission events occurred when the nucleoid condensates interacted with the highly curved membrane regions at the two ends of the mitochondria. Overall, we show that mitochondrial nucleoid condensates utilize peripheral fission to maintain mitochondrial homeostasis.


DNA, Mitochondrial , Mitochondria , Mitochondria/genetics , DNA, Mitochondrial/genetics , Mitochondrial Membranes , Mitochondrial Dynamics/genetics , Mitochondrial Proteins
5.
Biosens Bioelectron ; 239: 115604, 2023 Nov 01.
Article En | MEDLINE | ID: mdl-37607448

Two-photon absorbing fluorescent probes have emerged as powerful imaging tools for subcellular-level monitoring of biological substances and processes, offering advantages such as deep light penetration, minimal photodamage, low autofluorescence, and high spatial resolution. However, existing two-photon absorbing probes still face several limitations, such as small two-photon absorption cross-section, poor water solubility, low membrane permeability, and potentially high toxicity. Herein, we report three small-molecule probes, namely MSP-1arm, Lyso-2arm, and Mito-3arm, composed of a pyridinium center (electron-acceptor) and various methoxystyrene "arms" (electron-donor). These probes exhibit excellent fluorescence quantum yield and decent aqueous solubility. Leveraging the inherent intramolecular charge transfer and excitonic coupling effect, these complexes demonstrate excellent two-photon absorption in the near-infrared region. Notably, Lyso-2arm and Mito-3arm exhibit distinct targeting abilities for lysosomes and mitochondria, respectively. In two-photon microscopy experiments, Mito-3arm outperforms a commercial two-photon absorbing dye in 2D monolayer HeLa cells, delivering enhanced resolution, broader NIR light excitation window, and higher signal-to-noise ratio. Moreover, the two-photon bioimaging of 3D human forebrain organoids confirms the successful deep tissue imaging capabilities of both Lyso-2arm and Mito-3arm. Overall, this work presents a rational design strategy in developing competent two-photon-absorbing probes by varying the number of conjugated "arms" for bioimaging applications.


Biosensing Techniques , Microscopy , Humans , Fluorescent Dyes , HeLa Cells , Cell Membrane Permeability , Mitomycin
6.
Adv Drug Deliv Rev ; 199: 114978, 2023 Aug.
Article En | MEDLINE | ID: mdl-37385544

Optical microscopes are an important imaging tool that have effectively advanced the development of modern biomedicine. In recent years, super-resolution microscopy (SRM) has become one of the most popular techniques in the life sciences, especially in the field of living cell imaging. SRM has been used to solve many problems in basic biological research and has great potential in clinical application. In particular, the use of SRM to study drug delivery and kinetics at the subcellular level enables researchers to better study drugs' mechanisms of action and to assess the efficacy of their targets in vivo. The purpose of this paper is to review the recent advances in SRM and to highlight some of its applications in assessing subcellular drug dynamics.

7.
Front Nutr ; 10: 1154996, 2023.
Article En | MEDLINE | ID: mdl-37266130

Background: To assess the association between 12 food groups intake and the risk of urologic cancers. Methods: We scanned PubMed and Web of Science databases up to April 1st, 2023, and 73 publications met the inclusion criteria in the meta-analysis. We used a random effects model to estimate the summary risk ratios (RRs) and 95% confidence intervals (95% CI). Results: In the linear dose-response meta-analysis, an inverse association was found between each additional daily 100 g of fruits [RR: 0.89, 95%CI = (0.83, 0.97)], 100 g of vegetables [RR: 0.92, 95%CI = (0.85, 0.99)], 12 g of alcohol [RR: 0.91, 95%CI = (0.88, 0.94)] and 1 cup of coffee [RR: 0.95, 95%CI = (0.83, 0.97)] intake and the risk of renal cell carcinoma. Conversely, each additional daily 100 g of red meat intake was positively associated with renal cell carcinoma [RR: 1.41, 95%CI = (1.03, 2.10)]. Inverse associations were observed between each additional daily 50 g of egg [RR: 0.73, 95%CI = (0.62, 0.87)] and each additional daily 1 cup of tea consumption and bladder cancer risk [RR: 0.97, 95%CI = (0.94, 0.99)]. There were no significant associations for nonlinear dose-response relationships between 12 food groups and urological cancers. Conclusion: Our meta-analysis strengthens the evidence that appropriate intake of specific food groups, such as fruits, vegetables, alcohol, tea, and coffee, is associated with the risk of renal cell carcinoma or bladder cancer. More studies are required to fill the knowledge gap on the links between various food groups and urologic cancers because the evidence was less credible in this meta-analysis. Systematic Review Registration: This study was registered on PROSPERO (CRD42022340336).

8.
Huan Jing Ke Xue ; 43(9): 4484-4496, 2022 Sep 08.
Article Zh | MEDLINE | ID: mdl-36096589

Refined characterization of volatile organic compound (VOCs) components and source apportionment can provide scientific and effective support for ozone (O3) pollution prevention and control. Using hourly-resolution VOCs online data monitored at urban sites in Beijing from July to August in 2020, the chemical characteristics of VOCs and ozone formation potential (OFP) in environmental receptors during high and low ozone concentration periods were analyzed, and refined source apportionment was conducted with a positive matrix factorization (PMF) model. The results showed that the average φ[total volatile organic compounds (TVOCs)] at the monitoring sites during the observation period was 12.65×10-9, and the φ(TVOCs) during the high and low ozone concentration periods were 13.44×10-9 and 12.33×10-9, respectively, with an OFP of 107.6 µg·m-3and 99.2 µg·m-3, respectively. Ozone production was controlled by VOCs, with the highest reactivity of aromatic hydrocarbons and the top three species contributing to OFP being isoprene, toluene, and m/p-xylene. The main sources of VOCs in environmental receptors during low O3 periods included vehicular emissions (26.4%), background emissions (15.7%), solvent using (13.0%), auto repair (12.8%), secondary generation sources (9.7%), biomass combustion (6.1%), printing industry (5.7%), LNG-fueled vehicles (5.5%), and vegetation emissions (5.0%), of which background emissions, secondary generation, and printing industry sources have been little discussed in recent studies of VOCs source apportionment in Beijing. The contribution of auto repair sources and secondary generation sources increased by 3.4% and 2.6%, respectively, during the high O3 periods compared to those during the low O3 periods, and vehicular emissions remained the most significant source of VOCs contribution in the urban area of Beijing. Vegetation emissions rose from 07:00 pm and reach a maximum in the late afternoon. The contribution of background emission sources was less variable; vehicular emissions and LNG-fueled vehicle sources showed a morning and evening peak, with a relatively low contribution in the afternoon.


Air Pollutants , Ozone , Volatile Organic Compounds , Air Pollutants/analysis , Beijing , Environmental Monitoring , Ozone/analysis , Vehicle Emissions/analysis , Volatile Organic Compounds/analysis
9.
Int J Mol Sci ; 23(18)2022 Sep 14.
Article En | MEDLINE | ID: mdl-36142635

Doxorubicin (DOXO) is a potent chemotherapeutic drug widely used to treat various cancers. However, its clinical application is limited due to serious adverse effects on dose-dependent cardiotoxicity. Although the underlying mechanism has not been fully clarified, DOXO-induced cardiotoxicity has been mainly attributed to the accumulation of reactive oxygen species (ROS) in cardiomyocytes. Fucoidan, as a kind of sulphated polysaccharide existing in numerous brown seaweed, has potent anti-oxidant, immune-regulatory, anti-tumor, anti-coagulate and anti-viral activities. Here, we explore the potential protective role and mechanism of fucoidan in DOXO-induced cardiotoxicity in mice. Our results show that oral fucoidan supplement exerts potent protective effects against DOXO-induced cardiotoxicity by reducing oxidative stress and preventing mitochondrial function injury. The improved effect of fucoidan on DOXO-induced cardiotoxicity was evaluated by echocardiography, cardiac myocytes size and cardiac fibrosis analysis, and the expression of genes related to cardiac dysfunction and remodeling. Fucoidan reduced the ROS content and the MDA levels but enhanced the activity of antioxidant enzymes GSH-PX and SOD in the mouse serum in a DOXO-induced cardiotoxicity model. In addition, fucoidan also increased the ATP production capacity and restored the levels of a mitochondrial respiratory chain complex in heart tissue. Collectively, this study highlights fucoidan as a potential polysaccharide for protecting against DOXO-induced cardiovascular diseases.


Antioxidants , Cardiotoxicity , Adenosine Triphosphate/metabolism , Animals , Antioxidants/metabolism , Cardiotoxicity/drug therapy , Cardiotoxicity/etiology , Cardiotoxicity/prevention & control , Doxorubicin/pharmacology , Mice , Mitochondria/metabolism , Myocytes, Cardiac/metabolism , Oxidative Stress , Polysaccharides/metabolism , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism
10.
Nutrients ; 14(4)2022 Feb 21.
Article En | MEDLINE | ID: mdl-35215555

Doxorubicin (DOXO) can be used to treat a variety of human tumors, but its clinical application is limited due to severe cardiotoxic side effect. Here, we explore the role of ß-glucan in DOXO-induced cardiotoxicity in mice and study its underlying mechanism. When co-administered with DOXO, ß-glucan was observed to prevent left ventricular dilation and fibrosis. In fact, DOXO reduces the activity of mitochondrial respiratory chain complex and enhances oxidative stress, which in turn impairs heart function. DOXO decreases the ATP production capacity of the heart and increases the ROS content, while ß-glucan can restore the heart capacity and reduce oxidative stress. ß-glucan also increases the activity of antioxidant enzymes GSH-PX and SOD, and reduces the level of MDA in the serum. In addition, the mRNAs of cardiac dysfunction marker genes ANP, BNP and Myh7 were significantly increased after DOXO induction, however, they did not increase when combined with ß-glucan administration. In conclusion, our results indicate that ß-glucan can improve the antioxidant capacity of the heart, thereby serving as a potential therapeutic strategy to prevent DOXO-induced cardiotoxicity.


Cardiotoxicity , beta-Glucans , Animals , Cardiotoxicity/prevention & control , Doxorubicin/toxicity , Mice , Myocytes, Cardiac , Oxidative Stress , Polysaccharides/metabolism , Polysaccharides/pharmacology , beta-Glucans/metabolism , beta-Glucans/pharmacology
11.
Shock ; 57(4): 469-478, 2022 04 01.
Article En | MEDLINE | ID: mdl-35066515

ABSTRACT: Crush syndrome (CS), also known as traumatic rhabdomyolysis, is the leading cause of death following extrication from structural collapse due to earthquakes. Due to the unfeasibility of human studies, animal models are used to study crush syndrome pathophysiology, including biochemistry and treatment regimes. The aim of this systematic literature review was to identify the differences and benefits of various animal models used in the study of CS and provide valuable information for design of future research. A systematic search was conducted in two methods: with the filters "(crush syndrome) AND (crush muscle injury)" and with the keywords "(crush syndrome) AND (animal model)" covering all articles in the PubMed databases. The search generated 378 articles. After screening abstracts, 91 articles were retrieved and read, then 11 repeated articles were removed and 2 reference papers were included. We finally reviewed 82 original articles. There appear to be two primary methods employed for inducing crush syndrome in animal models, which are chemically induced injury and physically induced injury. Chemical method mainly includes intramuscular (IM) injection of tissue extract solution and IM injection of 50% glycerine. Physical method can be classified into invasive and non-invasive physical compression by elasticated material, inflatable band and heavy load. Various species of animals have been used to study CS, including mice (13.4%), rats (68.3%), rabbits (11.0%), canines (4.9%), goats (1.2%), and pigs (1.2%). Small animals are suitable for researches exploring the mechanism of disease or drug efficacy while large animals can work better with clinical application-related researches. In regard to the choice of modeling method, compressing the certain muscle of animals by heavy things is superior to others to cause systemic trauma-related rhabdomyolysis signs. In addition, due to the significant burden of crush injuries on animals, further attention shall be paid to the selection of the most suitable anesthetics and appropriate analgesics.


Crush Syndrome , Muscular Diseases , Rhabdomyolysis , Animals , Disease Models, Animal , Dogs , Mice , Rabbits , Rats , Swine
12.
Theranostics ; 11(16): 7767-7778, 2021.
Article En | MEDLINE | ID: mdl-34335963

Background: Lipid droplets (LDs) establish a considerable number of contact sites with mitochondria to enable energy transfer and communication. In this study, we developed a fluorescent biosensor to image LD-mitochondria interactions at the nanoscale and further explored the function of LD-mediated matrix transmission in processes involving multi-organelle interactions. Methods: A fluorescent probe called C-Py (C21H19N3O2, 7-(diethylamino) coumarin-3-vinyl-4-pyridine acetonitrile) was designed and synthesized. Colocalization of C-Py and the commercial LD stain Nile Red was analyzed in HeLa cells. The fluorescence stability and signal to background ratio of C-Py under structured illumination microscopy (SIM) were compared to those of the commercial probe BODIPY493/503. The cytotoxicity of C-Py was assessed using CCK-8 assays. The uptake pattern of C-Py in HeLa cells was then observed under various temperatures, metabolic levels, and endocytosis levels. Contact sites between LDs and various organelles, such as mitochondria, nuclei, and cell membrane, were imaged and quantitated using SIM. Physical changes to the contact sites between LDs and mitochondria were monitored after lipopolysaccharide induction. Results: A LD-targeted fluorescent biosensor, C-Py, with good specificity, low background signal, excellent photostability, low cytotoxicity, and high cellular permeability was developed for tracking LD contact sites with multiple organelles using SIM. Using C-Py, the subcellular distribution and dynamic processes of LDs in living cells were observed under SIM. The formation of contact sites between LDs and multiple organelles was visualized at a resolution below ~200 nm. The number of LD-mitochondria contact sites formed was decreased by lipopolysaccharide treatment inducing an inflammatory environment. Conclusions: C-Py provides strategies for the design of ultra-highly selective biosensors and a new tool for investigating the role and regulation of LDs in living cells at the nanoscale.


Lipid Droplets/metabolism , Mitochondria/metabolism , Single Molecule Imaging/methods , Biosensing Techniques/methods , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/metabolism , HeLa Cells , Humans , Lipid Metabolism/physiology
13.
Adv Sci (Weinh) ; 8(17): e2004566, 2021 09.
Article En | MEDLINE | ID: mdl-34197052

Oncosis, depending on DNA damage and mitochondrial swelling, is an important approach for treating cancer and other diseases. However, little is known about the behavior of mitochondria during oncosis, due to the lack of probes for in situ visual illumination of the mitochondrial membrane and mtDNA. Herein, a mitochondrial lipid and mtDNA dual-labeled probe, MitoMN, and a continuous add-on assay, are designed to image the dynamic process of mitochondria in conditions that are unobservable with current mitochondrial probes. Meanwhile, the MitoMN can induce oncosis in a light-activated manner, which results in the enlargement of mitochondria and the death of cancer cells. Using structured illumination microscopy (SIM), MitoMN-stained mitochondria with a dual-color response reveals, for the first time, how swelled mitochondria interacts and fuses with each other for a nonlinear enlargement to accelerate oncosis into an irreversible stage. With this sign of irreversible oncosis revealed by MitoMN, oncosis can be segregated into three stages, including before oncosis, initial oncosis, and accelerated oncosis.


Cell Death/physiology , DNA, Mitochondrial/metabolism , Equipment Design/methods , Microscopy/instrumentation , Microscopy/methods , Mitochondria/metabolism , Cells, Cultured , Light , Mitochondrial Membranes/metabolism
14.
Food Funct ; 11(9): 8259-8272, 2020 Sep 23.
Article En | MEDLINE | ID: mdl-32966479

Homology of medicine and food-zizyphi spinosi semen (ZSS) exhibits abundant pharmacological activities, such as sedation, hypnosis and anti-depression. In the present study, the water soluble polyphenols extracted from ZSS via the acid digestion method were named ZSSP, and exhibited significant anti-colorectal cancer (CRC) activity, characterized by restraining cell proliferation, promoting cell apoptosis and increasing chemo-sensitivity of CRC cells. The potential of ZSSP in vivo was further evaluated in an AOM/DSS-induced colitis-associated carcinogenesis (CAC) mouse model. Intriguingly, ZSSP diminished the number and volume of CAC polyps in mice in a dose-dependent manner, and effectively limited the damage of mice organs induced by AOM/DSS. The immunohistochemistry result showed that the elevated CRC early markers in CAC mice, such as COX-II, EMR1, and Ki67, were potently prevented by the ZSSP treatment. Further, the component in ZSSP with the anti-CRC activity was identified as spinosin by the macroporous resin of SP207 and RP-HPLC-MS/MS. Interestingly, during the extraction process, sodium ions were introduced forming spinosin·Na+, which had better water solubility and more remarkable anti-CRC activity than the spinosin. This study provides a new pharmacological property of spinosin derived from ZSS, inhibiting the growth of human CRC cells and colitis-associated CRC in mice, which indicates its potential use as a natural agent against CRC.


Colitis-Associated Neoplasms/drug therapy , Colonic Neoplasms/drug therapy , Flavonoids/administration & dosage , Plant Extracts/administration & dosage , Polyphenols/administration & dosage , Ziziphus/chemistry , Animals , Apoptosis/drug effects , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Cell Line, Tumor , Colitis-Associated Neoplasms/genetics , Colitis-Associated Neoplasms/metabolism , Colitis-Associated Neoplasms/physiopathology , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Colonic Neoplasms/physiopathology , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Disease Models, Animal , Flavonoids/chemistry , Humans , Male , Mice , Mice, Inbred C57BL , Plant Extracts/chemistry , Polyphenols/chemistry , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism
15.
Gut ; 69(12): 2131-2142, 2020 12.
Article En | MEDLINE | ID: mdl-32241904

OBJECTIVE: Patients with renal failure suffer from symptoms caused by uraemic toxins, possibly of gut microbial origin, as deduced from studies in animals. The aim of the study is to characterise relationships between the intestinal microbiome composition, uraemic toxins and renal failure symptoms in human end-stage renal disease (ESRD). DESIGN: Characterisation of gut microbiome, serum and faecal metabolome and human phenotypes in a cohort of 223 patients with ESRD and 69 healthy controls. Multidimensional data integration to reveal links between these datasets and the use of chronic kidney disease (CKD) rodent models to test the effects of intestinal microbiome on toxin accumulation and disease severity. RESULTS: A group of microbial species enriched in ESRD correlates tightly to patient clinical variables and encode functions involved in toxin and secondary bile acids synthesis; the relative abundance of the microbial functions correlates with the serum or faecal concentrations of these metabolites. Microbiota from patients transplanted to renal injured germ-free mice or antibiotic-treated rats induce higher production of serum uraemic toxins and aggravated renal fibrosis and oxidative stress more than microbiota from controls. Two of the species, Eggerthella lenta and Fusobacterium nucleatum, increase uraemic toxins production and promote renal disease development in a CKD rat model. A probiotic Bifidobacterium animalis decreases abundance of these species, reduces levels of toxins and the severity of the disease in rats. CONCLUSION: Aberrant gut microbiota in patients with ESRD sculpts a detrimental metabolome aggravating clinical outcomes, suggesting that the gut microbiota will be a promising target for diminishing uraemic toxicity in those patients. TRIAL REGISTRATION NUMBER: This study was registered at ClinicalTrials.gov (NCT03010696).


Gastrointestinal Microbiome , Kidney Failure, Chronic/metabolism , Metabolome , Animals , Bile Acids and Salts/metabolism , Case-Control Studies , Disease Models, Animal , Feces/microbiology , Female , Humans , Male , Mice , Oxidative Stress , Rats , Toxins, Biological/metabolism , Uremia/metabolism
16.
Int J Biol Macromol ; 141: 756-764, 2019 Dec 01.
Article En | MEDLINE | ID: mdl-31479666

For a more insightful investigation into the specificity of bacterial heparinase I, a series of structurally well-defined heparin oligosaccharides was synthesized using a highly efficient chemoenzymatic strategy. Apart from the primary cleavage site, five glycosidic linkages of oligosaccharides with varying modifications to obtain secondary cleavage sites were degraded by a high concentration of heparinase I. The reactivity of linkages toward heparinase I was not entirely dependent on the 2-O-sulfated iduronic acid being cleaved or the neighboring 6-O-sulfated glucosamine residues, but it was dependent on higher degrees of sulfation of oligosaccharides and indispensable N-substituted glucosamine adjacent to the cleavable linkage. Moreover, the enzyme demonstrated less preferential cleavage toward glycosidic linkages containing glucuronic acid than those containing iduronic acid of the counterpart oligosaccharides. Biolayer interferometry revealed differences in reactivity that are not completely consistent with different affinities of substrates to enzyme. Our study presented accurate information on the cleavage promiscuity of heparinase I that is crucial for heparin depolymerization.


Heparin Lyase/metabolism , Heparin/chemistry , Heparin/metabolism , Oligosaccharides/chemistry , Binding Sites , Carbohydrate Sequence , Glycosylation , Kinetics , Molecular Weight , Substrate Specificity
17.
J Control Release ; 307: 139-149, 2019 08 10.
Article En | MEDLINE | ID: mdl-31233775

Nonalcoholic fatty liver disease (NAFLD) is the early stage of many metabolic syndromes. The intervention of NAFLD can prevent its further development into severe metabolic syndromes. Given the inefficiency and side effects of chemical drugs for treating NAFLD, the hepatic-targeted nanocarriers loaded with bioactive compounds may offer a more effective and acceptable strategy for eliminating NAFLD. Here we developed hepatic-targeted oxidized starch-lysozyme (OSL) nanocarriers to specifically deliver resveratrol (Res) to liver tissue in order to maximize its therapeutic efficiency. The hepatic targeting was achieved using covalently conjugated galactose (Gal), which is recognized by the asialoglycoprotein receptors specifically expressed in hepatocytes. In steatotic HepG2 cell model, treatment with hepatic-targeted Gal-OSL/Res nanocarriers enhanced the cellular Res uptake and anti-lipogenesis capabilities, and effectively decreased triglyceride accumulation by modulating AMP-activated protein kinase (AMPK)/silent information regulation 2 homolog 1(SIRT1)/fatty acid synthase (FAS)/sterol regulatory element-binding protein-1c (SREBP1c) signaling pathway. In mice, Gal-OSL increased Res delivery into liver tissues and increased their hepatic effective concentration in liver. Most importantly, Gal-OSL/Res nanocarriers effectively reversed NAFLD and recovered hepatic insulin sensitivity of NAFLD mice to the healthy state. Furthermore, Gal-OSL/Res efficiently ameliorated lipid deposition and insulin resistance by modulating AMPK/SIRT1/FAS/SREBP1c signaling pathway and downregulated insulin receptor substrate-1 (IRS-1) phosphorylation at serine 307 in liver. These findings suggested that the hepatic-targeted Gal-OSL nanocarriers delivering Res could potentially serve as a safe and promising platform for NAFLD and other liver related diseases.


Liver/metabolism , Nanoparticles/administration & dosage , Non-alcoholic Fatty Liver Disease/drug therapy , Resveratrol/administration & dosage , Animals , Diet, High-Fat , Galactose/administration & dosage , Galactose/chemistry , Galactose/pharmacokinetics , Galactose/toxicity , Hep G2 Cells , Humans , Male , Mice, Inbred C57BL , Micelles , Muramidase/administration & dosage , Muramidase/chemistry , Muramidase/pharmacokinetics , Muramidase/toxicity , Nanoparticles/toxicity , Non-alcoholic Fatty Liver Disease/metabolism , Starch/administration & dosage , Starch/chemistry , Starch/pharmacokinetics , Starch/toxicity
18.
Kidney Int ; 90(6): 1357-1367, 2016 12.
Article En | MEDLINE | ID: mdl-27745701

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by overproduction of numerous autoantibodies. Many studies have sought to identify such biomarkers to distinguish patients with active lupus nephritis from SLE patients without renal involvement. Because antibodies to complement C1q appear to be prevalent in patients with active lupus nephritis, we analyzed the frequency of antigenic epitopes of C1q and their clinical significance in a large multicenter study of Chinese patients. The lupus cohort consisted of 210 patients with active lupus nephritis as a discovery cohort, 130 active patients as a validation cohort along with 130 SLE patients without clinical renal involvement, and 100 healthy controls. Serum antibodies to intact C1q, the collagen-like region, the globular head region, and the new linear A08 epitope to C1q were screened by specific ELISA. The frequency of antibodies to intact C1q, the C1q-collagen-like region, and the A08 antibodies in the discovery cohort were significantly higher than that in patients without renal involvement or healthy controls. Antibodies to the globular head region were not prevalent enough for further study. The results were confirmed in the validation cohort. The area under the curve for anti-A08 antibodies was significantly greater than those for both the intact and collagen-like region antibodies to discriminate between active lupus nephritis and active SLE without clinical renal involvement. The A08 antibodies were all negative at remission. The serum A08 antibody level correlated better with disease relapse than that of antibodies to either the intact or the collagen-like region, significantly predicting renal prognosis. Thus, serum levels of A08 C1q antibodies are closely associated with disease activity and prognosis in lupus nephritis.


Complement C1q/immunology , Lupus Nephritis/immunology , Adult , Case-Control Studies , China , Cohort Studies , Female , Humans , Lupus Nephritis/diagnosis , Male , Prognosis , Young Adult
19.
Cell Physiol Biochem ; 39(3): 1187-95, 2016.
Article En | MEDLINE | ID: mdl-27577116

BACKGROUND/AIMS: Ginsenoside Rb1 (GS-Rb1) is one of the most important active pharmacological extracts of the Traditional Chinese Medicine ginseng, with extensive evidence of its cardioprotective properties. Mir-208 has been shown to act as a biomarker of acute myocardial infarction in vivo studies including man. However the impact of miR-208 on the protective effect of GS-Rb1 in hypoxia/ischemia injured cardiomyocytes remains unclear. The current study aims to investigate the target gene of miR-208 and the impact on the protective effect of GS-Rb1 in hypoxia/ischemia (H/I) injuried cardiomyocytes. MATERIALS AND METHODS: Primary cultures of neonatal rat cardiomyocytes (NRCMs) was subjected to the H/I conditions with or without GS-Rb1. Cell viability was calculated by MTT assay and confirmed by flow cytometry analysis. Mir-208 was then detected by qRT-PCR. Luciferase reporter assay was carried out to detect the target gene of Mir-208. Then the NRCMs were transfected with miR-208 mimics and inhibitors to evaluate the impact on cardioprotective properties of Rb1. RESULTS: The miR-208 expression level was clearly upregulated in the H/I treated NRCMs accompanied by the percentage of the apoptotic cells which could be reversed by GS-Rb1 pretreatment. The nemo-like kinase (NLK) mRNA and protein expression levels were decreased in H/I group measured by RT-PCR and western blotting. Luciferase activity assay was then carried out to identify that NLK may be a direct target of mir-208. MTT assay showed that miR-208 inhibitor slightly decreased the protective effect of Rb1 on the H/I impaired NRCMs. However, results showed no statistical difference. CONCLUSIONS: These findings proved that NLK was a direct target of mir-208 and miR-208 act indirectly during Rb1 protecting H/I impaired NRCMs and further researches were needed to explore the relationship that microRNAs and other signal pathways in the protective effect of GS-Rb1 on the hypoxia/ischemia injuries in cardiomyocytes.


Cardiotonic Agents/pharmacology , Ginsenosides/pharmacology , MicroRNAs/genetics , Myocytes, Cardiac/drug effects , Protein Serine-Threonine Kinases/genetics , Animals , Animals, Newborn , Apoptosis/drug effects , Apoptosis/genetics , Base Sequence , Binding Sites , Cell Hypoxia , Gene Expression Regulation , Genes, Reporter , Luciferases/genetics , Luciferases/metabolism , MicroRNAs/antagonists & inhibitors , MicroRNAs/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/metabolism , Protein Serine-Threonine Kinases/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction
20.
Cell Physiol Biochem ; 39(1): 205-16, 2016.
Article En | MEDLINE | ID: mdl-27336675

BACKGROUND/AIMS: Myocardial infarction (MI) is a serious complication of atherosclerosis associated with increasing mortality attributable to heart failure. This study is aimed to assess the global changes in and characteristics of the transcriptome of circular RNAs (circRNAs) in heart tissue during MI induced heart failure (HF). METHODS: Using a post-myocardial infarction (MI) model of HF in mice, we applied microarray assay to examine the transcriptome of circRNAs deregulated in the heart during HF. We confirmed the changes in circRNAs by quantitative PCR. RESULTS: We revealed and confirmed a number of circRNAs that were deregulated during HF, which suggests a potential role of circRNAs in HF. CONCLUSIONS: The distinct expression patterns of circulatory circRNAs during HF indicate that circRNAs may actively respond to stress and thus serve as biomarkers of HF diagnosis and treatment.


Gene Expression Profiling/methods , Heart Failure/genetics , Myocardial Infarction/complications , Myocardium/metabolism , RNA/genetics , Animals , Cluster Analysis , Heart Failure/etiology , Male , Mice, Inbred C57BL , MicroRNAs/genetics , Myocardium/pathology , Oligonucleotide Array Sequence Analysis/methods , RNA/classification , RNA, Circular , Reverse Transcriptase Polymerase Chain Reaction
...