Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biosens Bioelectron ; 263: 116615, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39106690

ABSTRACT

Circulating tumor DNA (ctDNA) is an emerging biomarker of liquid biopsy for cancer. But it remains a challenge to achieve simple, sensitive and specific detection of ctDNA because of low abundance and single-base mutation. In this work, an excitation/emission-enhanced heterostructure photonic crystal (PC) array synergizing with entropy-driven circuit (EDC) was developed for high-resolution and ultrasensitive analysis of ctDNA. The donor donor-acceptor FÖrster resonance energy transfer ("DD-A" FRET) was integrated in EDC based on the introduction of simple auxiliary strand, which exhibited higher sensitivity than that of traditional EDC. The heterostructure PC array was constructed with the bilayer periodic nanostructures of nanospheres. Because the heterostructure PC has the adjustable dual photonic band gaps (PBGs) by changing nanosphere sizes, and the "DD-A" FRET can offer the excitation and emission peak with enough distance, it helps the successful matches between the dual PBGs of heterostructure PC and the excitation/emission peaks of "DD-A" FRET; thus, the fluorescence from EDC can be enhanced effectively from both of excitation and emission processes on heterostructure PC array. Besides, high-resolution of single-base mutation was obtained through the strict recognition of EDC. Benefiting from the specific spectrum-matched and synergetic amplification of heterostructure PC and EDC with "DD-A" FRET, the proposed array obtained ultrasensitive detection of ctDNA with LOD of 12.9 fM, and achieved the analysis of mutation frequency as low as 0.01%. Therefore, the proposed strategy has the advantages of simple operation, mild conditions (enzyme-free and isothermal), high-sensitivity, high-resolution and high-throughput analysis, showing potential in bioassay and clinical application.


Subject(s)
Biosensing Techniques , Circulating Tumor DNA , Fluorescence Resonance Energy Transfer , Fluorescence Resonance Energy Transfer/methods , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Humans , Circulating Tumor DNA/blood , Circulating Tumor DNA/isolation & purification , Circulating Tumor DNA/genetics , Circulating Tumor DNA/analysis , Photons , Limit of Detection , Entropy , Neoplasms/blood , Biomarkers, Tumor/blood , Nanospheres/chemistry
2.
Talanta ; 277: 126428, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38897009

ABSTRACT

The development of sensitive and efficient analytical methods for multiple biomarkers is crucial for cancer screening at early stage. MicroRNAs (miRNAs) are a kind of biomarkers with diagnostic potential for cancer. However, the ultrasensitive and logical analysis of multiple miRNAs with simple operation still faces some challenges. Herein, a photonic crystal (PC)-enhanced fluorescence biosensor with logic gate operation based on one-pot cascade amplification DNA circuit was developed for enzyme-free and ultrasensitive analysis of two cancer-related miRNAs. The fluorescence biosensor was performed by biochemical recognition amplification module (BCRAM) and physical enhancement module (PEM) to achieve logical and sensitive detection. In the BCRAM, one-pot cascade amplification circuit consisted of the upstream parallel entropy-driven circuit (EDC) and the downstream shared catalytic hairpin assembly (CHA). The input of target miRNA would trigger each corresponding EDC, and the parallel EDCs released the same R strand for triggering subsequent CHA; thus, the OR logic gate was obtained with minimization of design and operation. In the PEM, photonic crystal (PC) array was prepared easily for specifically enhancing the fluorescence output from BCRAM by the optical modulation capabilities; meanwhile, the high-throughput signal readout was achieved by microplate analyzer. Benefiting from the integrated advantages of two modules, the proposed biosensor achieved ultrasensitive detection of two miRNAs with easy logic gate operation, obtaining the LODs of 8.6 fM and 6.7 fM under isothermal and enzyme-free conditions. Hence, the biosensor has the advantages of high sensitivity, easy operation, multiplex and high-throughput analysis, showing great potential for cancer screening at early stage.


Subject(s)
Biosensing Techniques , MicroRNAs , Nucleic Acid Amplification Techniques , Biosensing Techniques/methods , MicroRNAs/analysis , Humans , Nucleic Acid Amplification Techniques/methods , Fluorescence , DNA/chemistry , DNA/genetics , Limit of Detection , Photons , Logic , Spectrometry, Fluorescence
3.
Small Methods ; : e2301774, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874124

ABSTRACT

Diamond electrochemistry is primarily influenced by quantities of sp3-carbon, surface terminations, and crystalline structure. In this work, a new dimension is introduced by investigating the effect of using substrate-interlayers for diamond growth. Boron and nitrogen co-doped nanocrystalline diamond (BNDD) films are grown on Si substrate without and with Ti and Ta as interlayers, named BNDD/Si, BNDD/Ti/Si, and BNDD/Ta/Ti/Si, respectively. After detailed characterization using microscopies, spectroscopies, electrochemical techniques, and density functional theory simulations, the relationship of composition, interfacial structure, charge transport, and electrochemical properties of the interface between diamond and metal is investigated. The BNDD/Ta/Ti/Si electrodes exhibit faster electron transfer processes than the other two diamond electrodes. The interlayer thus determines the intrinsic activity and reaction kinetics. The reduction in their barrier widths can be attributed to the formation of TaC, which facilitates carrier tunneling, and simultaneously increases the concentration of electrically active defects. As a case study, the BNDD/Ta/Ti/Si electrode is further employed to assemble a redox-electrolyte-based supercapacitor device with enhanced performance. In summary, the study not only sheds light on the intricate relationship between interlayer composition, charge transfer, and electrochemical performance but also demonstrates the potential of tailored interlayer design to unlock new capabilities in diamond-based electrochemical devices.

4.
Int J Biol Macromol ; 274(Pt 1): 133391, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38917921

ABSTRACT

Leaf petiole or stem strength is an important agronomic trait affecting the growth of underground organs as a channel for material exchange and plays a vital role in the quality and yield of crops and vegetables. There are two different types of petioles in lotus, floating leaf petioles and vertical leaf petioles; however, the internal difference mechanism between these petioles is unclear. In this study, we investigated the differences between the initial vertical leaf petioles and the initial floating leaf petioles based on RNA sequencing (RNA-seq), and >2858 differentially expressed genes were annotated. These genes were chiefly enriched in phenylpropanoid biosynthesis, which is the source of the lignin and cellulose in petioles and stems. Lignin biology-related gene NnHCT1 was identified, and subsequent biological function validation demonstrated that the transient overexpression of NnHCT1 significantly increased the lignin and cellulose contents in lotus petioles and tobacco leaves. In contrast, silencing NnHCT1 through virus-induced gene silencing significantly reduced petiole lignin synthesis. Additionally, differentially up-regulated MYB family transcription factors were identified using RNA-seq. Yeast-one-hybrid and dual-luciferase reporter assays demonstrated that MYB4 could bind to the NnHCT1 promoter and up-regulate NnHCT1 expression. These findings demonstrate the significant potential of NnHCT1 to enhance lignin synthesis, thereby improving stem or petiole resistance to stunting and explaining the need for the study of differential petiole relationships in plants.


Subject(s)
Gene Expression Regulation, Plant , Lignin , Nelumbo , Plant Leaves , Plant Proteins , Lignin/biosynthesis , Lignin/genetics , Nelumbo/genetics , Nelumbo/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Cellulose/biosynthesis , Genes, Plant
5.
ACS Sens ; 9(3): 1290-1300, 2024 03 22.
Article in English | MEDLINE | ID: mdl-38478991

ABSTRACT

With the emergence of microRNA (miRNA) as a promising biomarker in cancer diagnosis, it is significant to develop multiple analyses of miRNAs. However, it still faces difficulties in ensuring the sensitivity and accuracy during multiplex detection owing to the low abundance and experimental deviation of miRNAs. In this work, a flexible-arranged biomimetic array integrated with parallel entropy-driven circuits (EDCs) was developed for ultrasensitive, multiplex, reliable, and high-throughput detection of miRNAs. The biomimetic array was fabricated by arrangement of various photonic crystals (PCs) for adjustable photonic band gaps (PBGs) and specific fluorescence enhancement. Meanwhile, two cancer-related miRNAs and one reference miRNA were introduced as multiple analytes as a proof-of-concept. The parallel EDCs with negligible crosstalk were designed based on the modular property. Because of the one-to-one match between the emitted fluorescence of parallel EDCs and the PBGs of the flexible-arranged biomimetic array, the generated fluorescence signal triggered by target miRNAs can be enhanced on the corresponding domain of the array. Furthermore, the amplified signal of the array was detected with high-throughput scanning, which could reveal specific information on cancer-related miRNAs as well as reference miRNA, enhancing the abundance and reliability of the analysis. The proposed array has the merits of a modular design, flexible deployment, simple operation (nonenzymatic and isothermal), improved accuracy, high sensitivity, and multiplex analysis, showing potential in disease diagnosis.


Subject(s)
MicroRNAs , Neoplasms , Humans , MicroRNAs/analysis , Entropy , Reproducibility of Results , Biomimetics , Neoplasms/diagnosis
6.
Nanomaterials (Basel) ; 14(3)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38334514

ABSTRACT

Developing non-precious metal-based electrocatalysts operating in high-current densities is highly demanded for the industry-level electrochemical hydrogen evolution reaction (HER). Here, we report the facile preparation of binder-free Mo2C-Mo2N heterostructures on carbon nanowalls/diamond (CNWs/D) via ultrasonic soaking followed by an annealing treatment. The experimental investigations and density functional theory calculations reveal the downshift of the d-band center caused by the heterojunction between Mo2C/Mo2N triggering highly active interfacial sites with a nearly zero ∆GH* value. Furthermore, the 3D-networked CNWs/D, as the current collector, features high electrical conductivity and large surface area, greatly boosting the electron transfer rate of HER occurring on the interfacial sites of Mo2C-Mo2N. Consequently, the self-supporting Mo2C-Mo2N@CNWs/D exhibits significantly low overpotentials of 137.8 and 194.4 mV at high current densities of 500 and 1000 mA/cm2, respectively, in an alkaline solution, which far surpass the benchmark Pt/C (228.5 and 359.3 mV) and are superior to most transition-metal-based materials. This work presents a cost-effective and high-efficiency non-precious metal-based electrocatalyst candidate for the electrochemical hydrogen production industry.

7.
Small ; 20(28): e2310523, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38295042

ABSTRACT

Electrochemical capacitors (ECs) show great perspective in alternate current (AC) filtering once they simultaneously reach ultra-fast response and high capacitance density. Nevertheless, the structure-design criteria of the two key properties are often mutually incompatible in electrode construction. Herein, it is proposed that combining vertically oriented porous carbon with enhanced interfacial capacitance (Ci) can efficiently solve this issue. Theoretically, the density function theory calculation shows that the Ci of a carbon electrode can be enhanced by boron doping due to the corresponding compact induced charge layer. Experimentally, the vertical-oriented boron-doped graphene nanowalls (BGNWs) electrodes, whose Ci is enhanced from 4.20 to 10.16 µF cm-2 upon boron doping, are prepared on a large scale (480 cm2) using a hot-filament chemical vapor deposition technique (HFCVD). Owing to the high Ci and vertically oriented porous structure, BGNWs-based EC has a high capacitance density of 996 µF cm-2 with a phase angle of - 79.4° at 120 Hz in aqueous electrolyte and a high energy density of 1953 µFV2 cm-2 in organic electrolyte. As a result, the EC is capable of smoothing 120 Hz ripples for 60 Hz AC filtering. These results provide enlightening insights on designing high-performance ECs for high-frequency applications.

SELECTION OF CITATIONS
SEARCH DETAIL