Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 276
Filter
1.
Front Cell Infect Microbiol ; 14: 1424554, 2024.
Article in English | MEDLINE | ID: mdl-39220288

ABSTRACT

Background: Mycoplasma pneumoniae (MP) is a significant cause of community-acquired pneumonia with high macrolide resistance rates. Various COVID-19 pandemic restrictions have impacted the prevalence of MP. Objective: To assess the changes in the pattern of MP infections among children before, during, and after the COVID-19 pandemic. Methods: A total of 36685 enrolled patients, aged 0-18 years, diagnosed with pneumonia and admitted to Children's Hospital of Chongqing Medical University from January 2019 to December 2023, were retrospectively reviewed in this study. The epidemiological characteristics of pediatric MP infection were analyzed. Results: Among 36685 patients, 7610 (20.74%) tested positive for MP. The highest positive rate was observed among children aged over 6 years (55.06%). There was no gender disparity in MP infection across the three phases of the COVID-19 pandemic. Hospital stays were longest for children during the COVID-19 pandemic (P <0.001). MP infection was most prevalent in the summer (29.64%). The lowest positive rate was observed during the pandemic, with the highest rate found after easing the measures across all age groups (P <0.001). There was a surge in the positive rate of MP in the third year after the COVID-19 pandemic. Regression analyses demonstrated a shift in the age range susceptible to MP infection, with children aged 3.8 to 13.5 years post-pandemic compared to the pre-pandemic range of 5.3 to 15.5 years old. Additionally, the average macrolide resistance rate was 79.84%. We observed a higher resistance rate during the pandemic than in the pre- and post-pandemic phases (P <0.001). Conclusion: The restrictive measures implemented during the COVID-19 pandemic have influenced the spread of MP to some extent and altered demographic and clinical characteristics, such as age, age group, season, length of stay, and macrolide resistance. We recommend continuous surveillance of the evolving epidemiological characteristics of MP infection in the post-pandemic period when restrictions are no longer necessary.


Subject(s)
COVID-19 , Mycoplasma pneumoniae , Pneumonia, Mycoplasma , SARS-CoV-2 , Humans , Child , COVID-19/epidemiology , Child, Preschool , China/epidemiology , Female , Male , Infant , Adolescent , Pneumonia, Mycoplasma/epidemiology , Mycoplasma pneumoniae/drug effects , Mycoplasma pneumoniae/isolation & purification , Retrospective Studies , Infant, Newborn , Prevalence , SARS-CoV-2/isolation & purification , Hospitalization/statistics & numerical data , Pandemics , Macrolides/therapeutic use , Drug Resistance, Bacterial , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Child, Hospitalized/statistics & numerical data , Seasons , Community-Acquired Infections/epidemiology , Community-Acquired Infections/microbiology
2.
Angew Chem Int Ed Engl ; : e202414180, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39312509

ABSTRACT

The fundamental challenge in electron-transporting organic mixed ionic-electronic conductors (OMIECs) is simultaneous optimization of electron and ion transport. Beginning from Y6-type/U-shaped non-fullerene solar cell acceptors, we systematically synthesize and characterize molecular structures that address the aforementioned challenge, progressively introducing increasing numbers of oligoethyleneglycol (OEG; g) sidechains from 1g to 3g, affording OMIECs 1gY, 2gY, and 3gY, respectively. The crystal structure of 1gY preserves key structural features of the Yn series: a U-shaped/planar core, close π-π molecular stacking, and interlocked acceptor groups. Versus inactive Y6 and Y11, all of the new glycolated compounds exhibit mixed ion-electron transport in both conventional organic electrochemical transistor (cOECT) and vertical OECT (vOECT) architectures. Notably, 3gY with the highest OEG density achieves a high normalized transconductance of 25.29 S cm-1, an on/off current ratio of ~106, and a turn-on/off response time of 94.7/5.7 ms in vOECTs. Systematic optoelectronic, electrochemical, architectural, and crystallographic analysis explains the superior 3gY-based OECT performance in terms of denser ngY OEG content, increased crystallite dimensions with decreased long-range crystalline order, and enhanced film hydrophilicity which facilitates ion transport and efficient redox processes. Finally, we demonstrate an efficient small-molecule-based complementary inverter using 3gY vOECTs, showcasing the bioelectronic applicability of these new small-molecule OMIECs.

3.
Biomacromolecules ; 25(8): 5260-5272, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39056889

ABSTRACT

Cancer stem cells (CSCs) make up a small population of cancer cells, primarily responsible for tumor initiation, metastasis, and drug resistance. They overexpress Arg-Gly-Asp (RGD) binding integrin receptors that play crucial roles in cell proliferation and stemness through interaction with the extracellular matrix. Here, we showed that monodisperse polymeric tadpole nanoparticles covalently coupled with different RGD densities regulated colon CSC proliferation and stemness in a RGD density-dependent manner. These tadpoles penetrated deeply and evenly into tumor spheroids and specifically entered cells with cancer stem markers CD24 and CD133. Low RGD density tadpoles triggered integrin α5 expression that further activated TGF-ß3 and TGF-ß2 signaling pathways, confirmed by the increase of pERK and Bcl-2 protein levels. This process is associated with the RGD cluster presentation controlled by the RGD density on the tadpole surface.


Subject(s)
Cell Proliferation , Neoplastic Stem Cells , Oligopeptides , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/metabolism , Oligopeptides/chemistry , Oligopeptides/pharmacology , Cell Proliferation/drug effects , Humans , Animals , Nanostructures/chemistry , Cell Line, Tumor , Nanoparticles/chemistry
5.
Oncol Rep ; 52(4)2024 Oct.
Article in English | MEDLINE | ID: mdl-39054956

ABSTRACT

Following the publication of this article, an interested reader drew to the authors' attention that the flow cytometric (FCM) plots in Fig. 2A on p. 2278 showing the 'Dasatinib' and 'CA­4' experiments were duplicates of each other. After having re­examined their original data, and due to the overall similarity of the data, the authors have realized that these data were inadvertently assembled incorrectly in the figure. They realize that they also made a further mistake regarding the writing of the ratios of mitochondrial membrane­depolarized HO­8910 cells for these FCM plots (essentially, these were written the wrong way around): The percentage of mitochondrial membrane­depolarized HO­8910 cells should have been written as 22.50% for the dasatinib­treated cells (the centre­left FCM plot) and 15.71% for the CA­4­treated cells (centre­right plot). A revised version of Fig. 2 now showing alternative data for the FCM experiments shown in Fig. 2A, is shown on the next page. Note that the errors made in terms of assembling the data in Fig. 2A did not greatly affect either the results or the conclusions reported in this paper, and all the authors agree with the publication of this corrigendum. The authors regret that these errors went unnoticed prior to the publication of their article, and are grateful to the Editor of Oncology Reports for granting them this opportunity to publish a corrigendum. Furthermore, they apologize to the readership for any inconvenience caused. [Oncology Reports 29: 2275­2282, 2013; DOI: 10.3892/or.2013.2405].

6.
Adv Sci (Weinh) ; 11(29): e2404400, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38845189

ABSTRACT

Mitogen-activated protein kinase (MAPK) cascade is the center of plant signal transduction system that amplify immune signals into cellular responses by phosphorylating diverse substrates. The MAPK cascade consisting of MAPK kinase kinases (MAPKKKs), MAPK kinases (MAPKKs), and MAPKs is well characterized in plants, in which Raf-like kinases are generally regarded as MAPKKKs. However, it is rarely reported that Raf-like MAPKKKs function as middle regulators to link MAPK and its downstream transcription factors in plant immunity. Verticillium wilt, caused by the soil-borne vascular fungus Verticillium dahliae, is a serious disease in many plants, including cotton. The previous studies showed that GhMPK9 (a MAPK) is involved in the response to Verticillium wilt. Here, the Raf-like kinase GhRAF39_1 is reported as helper regulates the phosphorylation of WRKY transcription factor GhWRKY40a by GhMPK9. The phosphorylated GhWRKY40a can further activate the transcription of GhERF1b to up-regulate defense-related genes while inhibit the transcription of GhABF2 to regulate the stomatal opening, thus improving the resistance to Verticillium wilt in cotton. This study reveals a new signaling module of GhMPK9-GhRAF39_1-GhWRKY40a to regulate GhERF1b- and GhABF2-mediated defense responses, which triggers plant defense against Verticillium wilt.


Subject(s)
Disease Resistance , Gossypium , Plant Diseases , Gossypium/genetics , Gossypium/microbiology , Gossypium/metabolism , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Signal Transduction/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Verticillium
7.
Front Genet ; 15: 1395988, 2024.
Article in English | MEDLINE | ID: mdl-38863445

ABSTRACT

Inborn errors of metabolism (IEMs) are uncommon. Although some studies have explored the distribution and characteristics of IEMs in newborns, the impact of these disorders on hospitalized newborns remains unclear. In this study, we gathered data from 21,840 newborn patients admitted for various medical conditions at the Children's Hospital of Chongqing Medical University from January 2017 and December 2022. Liquid chromatography-tandem mass spectrometry (LC-MS/MS), gas chromatography-mass spectrometry (GC-MS/MS), and genetic analysis were used to elucidate the disease spectrum, incidence rate, and genetic characteristics of IEMs in hospitalized newborns. The results revealed that the incidence of IEMs in hospitalized newborns was 1/377 (58/21,840), with a higher incidence in full-term infants (1/428) than in premature infants (1/3,120). Among the diagnosed genetic metabolic diseases, organic acid metabolism disorders (1/662), amino acid metabolism disorders (1/950), and fatty acid oxidation disorders (1/10,920) were the most prevalent. Methylmalonic acidemia (MMA), especially the isolated form, emerged as the most common IEM, while neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) and ornithine transcarbamylase deficiency (OTCD) were prevalent in premature infants. Of the 58 confirmed cases of IEMs, 72 variants were identified, of which 31.94% (23/72) had not been reported previously. This study contributes to understanding the incidence and clinical features of IEMs in hospitalized newborns, offering more efficient strategies for screening and diagnosing these disorders.

8.
Kidney Blood Press Res ; 49(1): 410-429, 2024.
Article in English | MEDLINE | ID: mdl-38901404

ABSTRACT

INTRODUCTION: Vesicular transport (VT) has a complex relationship with tumor progression and immunity. But prognostic significance of VT in clear cell renal cell carcinoma (ccRCC) is unclear. Thus, we aimed to establish a prognostic model according to VT to predict overall survival of ccRCC patients. METHODS: We used patient data from TCGA database and built a prognostic model with 13 VT-related genes (VTRGs) by differential expression analysis, LASSO regression, and univariate/multivariate Cox analysis. The model was validated internally and externally, and survival analysis and ROC curves depicted excellent predictive ability. Furthermore, higher modeled riskscores corresponded to more advanced tumor progression. To further understand the potential reasons for different prognoses in patients, we did enrichment analysis on differentially expressed genes identified by the model in risk groups. The expression levels and roles of SAA1 and KIF18B in ccRCC were verified by qRT-PCR and cell function experiments. RESULTS: Humoral immune response and cAMP signaling pathway may be the biological processes and pathways leading to poor prognosis. Further analysis of immune microenvironment presented that ccRCC patients with poor prognoses had highly immune-infiltrated characteristics. We compared the drug response data of samples from different prognostic patients in the GDSC database and identified drug sensitivity differences associated with prognosis. Finally, we demonstrated that SAA1 and KIF18B could increase the proliferation, migration, and invasion ability of ccRCC cells using cellular experiments. CONCLUSION: In summary, we further revealed the importance of VTRGs in ccRCC prognosis.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/mortality , Humans , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/mortality , Prognosis , Female , Male , Tumor Microenvironment/genetics , Kinesins/genetics , Middle Aged , Clinical Relevance
9.
J Trace Elem Med Biol ; 85: 127483, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38878467

ABSTRACT

INTRODUCTION: As an essential trace element, Copper (Cu) participates in numerous physiological and biological reactions in the body. Cu is closely related to heart health, and an imbalance of Cu will cause cardiac dysfunction. The research aims to examine how Cu deficiency affects the heart, assess mitochondrial function in the hearts, and disclose possible mechanisms of its influence. METHODS: Weaned mice were fed Cu-deficient diets and intraperitoneally given copper sulfate (CuSO4) to correct the Cu deficiency. The pathological change of the heart was assessed using histological inspection. Cardiac function and oxidative stress levels were evaluated by biochemical assay kits. ELISA and ATP detection kits were used to detect the levels of complexes I-IV in the mitochondrial respiratory chain (MRC) and ATP, respectively. Real time PCR was utilized to determine mRNA expressions, and Western blotting was adopted to determine protein expressions, of molecules related to mitochondrial fission and fusion. RESULTS: Cu deficiency gave rise to elevated heart index, cardiac histological alterations and oxidation injury, increased serum levels of creatine kinase (CK), lactic dehydrogenase (LDH), and creatine kinase isoenzyme MB (CK-MB) together with increased malondialdehyde (MDA) production, decreased the glutathione (GSH), Superoxide Dismutase (SOD), and Catalase (CAT) activities or contents. Besides, Cu deficiency caused mitochondrial damage characterized by decreased contents of complexes I-IV in the MRC and ATP in the heart. In the meantime, Cu deficiency also reduced protein and mRNA expressions of factors associated with mitochondrial fusion, including Mfn1 and Mfn2, while significantly increased factors Drip1 and Fis1 related to mitochondrial fission. However, adding CuSO4 improved the above changes significantly. CONCLUSION: According to research results, Cu deficiency can cause heart damage in mice, along with oxidative damage and mitochondrial dysfunction, which are closely related to mitochondrial fusion and fission disorders.


Subject(s)
Copper , Mitochondrial Dynamics , Oxidative Stress , Animals , Copper/deficiency , Copper/metabolism , Mice , Male , Myocardium/metabolism , Myocardium/pathology , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology
10.
Plant J ; 119(3): 1386-1399, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38843154

ABSTRACT

Ghost introgression, or the transfer of genetic material from extinct or unsampled lineages to sampled species, has attracted much attention. However, conclusive evidence for ghost introgression, especially in plant species, remains scarce. Here, we newly assembled chromosome-level genomes for both Carya sinensis and Carya cathayensis, and additionally re-sequenced the whole genomes of 43 C. sinensis individuals as well as 11 individuals representing 11 diploid hickory species. These genomic datasets were used to investigate the reticulation and bifurcation patterns within the genus Carya (Juglandaceae), with a particular focus on the beaked hickory C. sinensis. By combining the D-statistic and BPP methods, we obtained compelling evidence that supports the occurrence of ghost introgression in C. sinensis from an extinct ancestral hickory lineage. This conclusion was reinforced through the phylogenetic network analysis and a genome scan method VolcanoFinder, the latter of which can detect signatures of adaptive introgression from unknown donors. Our results not only dispel certain misconceptions about the phylogenetic history of C. sinensis but also further refine our understanding of Carya's biogeography via divergence estimates. Moreover, the successful integration of the D-statistic and BPP methods demonstrates their efficacy in facilitating a more precise identification of introgression types.


Subject(s)
Genetic Introgression , Genome, Plant , Phylogeny , Genome, Plant/genetics , Genomics , Asia, Eastern , East Asian People
11.
J Med Chem ; 67(13): 10743-10773, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38919032

ABSTRACT

Beta-1,3-glucuronosyltransferase (B3GAT3), overexpressed in hepatocellular carcinoma (HCC) and negatively correlated to prognosis, is a promising target for cancer therapy. Currently, no studies have reported small molecule inhibitors of B3GAT3. In this study, we designed and synthesized a series of small-molecule inhibitors of B3GAT3 through virtual screening and structure optimization. The lead compound TMLB-C16 exhibited potent B3GAT3 inhibitory activity (KD = 3.962 µM) by effectively suppressing proliferation and migration, and inducing cell cycle arrest and apoptosis in MHCC-97H (IC50= 6.53 ± 0.18 µM) and HCCLM3 (IC50= 6.22 ± 0.23 µM) cells. Furthermore, compound TMLB-C16 demonstrated favorable pharmacokinetic properties with a relatively high bioavailability of 68.37%. It significantly inhibited tumor growth in both MHCC-97H and HCCLM3 xenograft tumor models without causing obvious toxicity. These results indicate that compound TMLB-C16 is an effective small molecule inhibitor of B3GAT3, providing a basis for the future development of B3GAT3-targeted drugs.


Subject(s)
Acetamides , Antineoplastic Agents , Carcinoma, Hepatocellular , Cell Proliferation , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemical synthesis , Cell Proliferation/drug effects , Cell Line, Tumor , Acetamides/chemistry , Acetamides/pharmacology , Acetamides/chemical synthesis , Acetamides/therapeutic use , Mice , Structure-Activity Relationship , Apoptosis/drug effects , Mice, Nude , Drug Discovery , Mice, Inbred BALB C , Xenograft Model Antitumor Assays , Molecular Docking Simulation , Male , Cell Movement/drug effects , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/therapeutic use , Enzyme Inhibitors/chemical synthesis
12.
Opt Lett ; 49(11): 3102-3105, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824338

ABSTRACT

In this Letter, a novel, to the best of our knowledge, vertical directional coupling waveguide grating (VDCWG) architecture is proposed to increase the length of waveguide grating antennas for large aperture on-chip optical phased arrays (OPAs). In this new architecture, the grating emission strength is engineered by the vertical directional coupler, which provides additional degrees of design freedom. Theoretical analysis and numerical simulation show that the VDCWG can adjust the grating strength in the range of more than two orders of magnitude, corresponding to an effective grating length more than a centimeter. For proof-of-concept, a VDCWG antenna with a length of 1.5 mm is experimentally demonstrated. The grating strength is measured to be 0.17 mm-1, and the far-field divergence angle is 0.061°. A 16-channel OPA is also developed based on the proposed VDCWG, which proves the potential of the new architecture for large aperture OPAs.

13.
Data Brief ; 54: 110502, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38774240

ABSTRACT

Extreme climate events have become more frequent and have had serious impacts on the global community. Consequently, the risk associated with climate change has gained increasing attention and has been considered as a new source of risk factors. To understand the socio-economic impacts of this new risk, systematically measuring risk around the world is critical for researchers and policymakers. Building on daily observations from meteorological stations, a Climate Physical Risk Index (CPRI) dataset is constructed for 170 countries, paying special attention to four extreme climate events: extreme low temperature (LTD), extreme high temperature (HTD), extreme rainfall (ERD), and extreme drought (EDD). A comprehensive index of climate physical risk for each country has also been constructed, covering the period from 1993 to 2023. The dataset will be updated regularly. Subnational indices or more detailed regional indices are available upon request.

14.
BMC Infect Dis ; 24(1): 430, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649842

ABSTRACT

BACKGROUND: Adenovirus (ADV) is a prevalent infective virus in children, accounting for around 5-10% of all cases of acute respiratory illnesses and 4-15% of pneumonia cases in children younger than five years old. Without treatment, severe ADV pneumonia could result in fatality rates of over 50% in cases of emerging strains or disseminated disease. This study aims to uncover the relationship of clinical indicators with primary ADV infection severity, regarding duration of hospitalization and liver injury. METHODS: In this retrospective study, we collected and analyzed the medical records of 1151 in-patients who met the inclusion and exclusion criteria. According to duration of hospitalization, all patients were divided into three groups. Then the difference and correlation of clinical indicators with ADV infection were analyzed, and the relationship among liver injury, immune cells and cytokines was evaluated. RESULTS: The study revealed that patients with a duration of hospitalization exceeding 14 days had the highest percentage of abnormalities across most indicators. This was in contrast to the patients with a hospitalization duration of either less than or equal to 7 days or between 7 and 14 days. Furthermore, correlation analysis indicated that a longer duration of body temperature of ≥ 39°C, bilateral lung lobes infiltration detected by X ray, abnormal levels of AST, PaO2, and SPO2, and a lower age were all predictive of longer hospital stays. Furthermore, an elevated AST level and reduced liver synthesis capacity were related with a longer hospital stay and higher ADV copy number. Additionally, AST/ALT was correlated positively with IFN-γ level and IFN-γ level was only correlated positively with CD4+ T cells. CONCLUSIONS: The study provided a set of predicting indicators for longer duration of hospitalization, which responded for primary severe ADV infection, and elucidated the possible reason for prolonged duration of hospitalization attributing to liver injury via higher ADV copy number, IFN-γ and CD4+ T cells, which suggested the importance of IFN-γ level and liver function monitoring for the patients with primary severe ADV infection.


Subject(s)
Length of Stay , Humans , Male , Female , Retrospective Studies , Child, Preschool , Infant , Length of Stay/statistics & numerical data , Severity of Illness Index , Hospitalization/statistics & numerical data , Adenovirus Infections, Human/virology , Child , Liver/pathology , Liver/virology , Adenoviridae Infections
15.
Article in English | MEDLINE | ID: mdl-38659248

ABSTRACT

Flexible organic photodetectors (OPDs) hold immense promise in health monitoring sensors, flexible imaging sensors, and portable optical communication. Nevertheless, the actualization of high-performance flexible electronics has been hindered by rigid electrodes such as metals or metal oxides. In this work, we constructed a flexible broadband organic photodetector using a solution-processed polymeric electrode, which exhibits flexibility surpassing that of conventional indium tin oxide (ITO) electrodes. Additionally, we employed a planar-mixed heterojunction (PMHJ) through a sequential deposition method and introduced PC71BM as the third constituent into the PM6/Y6 binary active layer, resulting in enhanced photodetection performance and a broadend spectral range. The optimized OPDs demonstrated remarkable detectivity (D*) exceeding 1012 Jones in brodband from 300 to 900 nm, with a champion D* of 6.31 × 1012 Jones at 790 nm. Furthermore, after undergoing 500 cycles of bending, the D* retained approximately 78% of its original performance, highlighting the outstanding mechanical stability. This work presents a promising pathway toward the development of flexible broadband OPDs using a straightforward method, offering enhanced compatibility in diverse application scenarios and propelling the frontier of flexible optoelectronic research.

16.
Polymers (Basel) ; 16(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38475317

ABSTRACT

Specialized epoxy resin, capable of achieving room-temperature profound curing and sustaining prolonged exposure to high-temperature environments, stands as a pivotal material in modern high-end manufacturing sectors including aerospace, marine equipment fabrication, machinery production, and the electronics industry. Herein, a silicon-hybridized epoxy resin, amenable to room-temperature curing and designed for high-temperature applications, was synthesized using a sol-gel methodology with silicate esters and silane coupling agents serving as silicon sources. Resin characterization indicates a uniform distribution of silicon elements in the obtained silicon hybrid epoxy resin. In comparison to the non-hybridized epoxy resin, notable improvements are observed in room-temperature curing performance, heat resistance, and mechanical strength.

18.
J Med Chem ; 67(5): 3909-3934, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38377560

ABSTRACT

Targeting tumor stemness is an innovative approach to cancer treatment. Zinc Finger Protein 207 (ZNF207) is a promising target for weakening the stemness of glioma cells. Here, a series of novel N-(anthracen-9-ylmethyl) benzamide derivatives against ZNF207 were rationally designed and synthesized. The inhibitory activity was evaluated, and their structure-activity relationships were summarized. Among them, C16 exhibited the most potent inhibitory activity, as evidenced by its IC50 values ranging from 0.5-2.5 µM for inhibiting sphere formation and 0.5-15 µM for cytotoxicity. Furthermore, we found that C16 could hinder tumorigenesis and migration and promote apoptosis in vitro. These effects were attributed to the downregulation of stem-related genes. The in vivo evaluation demonstrated that C16 exhibited efficient permeability across the blood-brain barrier and potent efficacy in both subcutaneous and orthotopic glioma tumor models. Hence, C16 may serve as a potential lead compound targeting ZNF207 and has promising therapeutic potential for glioma.


Subject(s)
Antineoplastic Agents , Glioma , Humans , Glioma/drug therapy , Glioma/pathology , Structure-Activity Relationship , Apoptosis , Benzamides/pharmacology , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Proliferation , Microtubule-Associated Proteins
19.
PLoS One ; 19(2): e0298199, 2024.
Article in English | MEDLINE | ID: mdl-38359066

ABSTRACT

The Yangtze River Delta urban agglomeration (YRDUA) is China's most representative region with remarkable economic development vitality. The purpose of this study is to provide valuable data analysis to actively respond to the population aging in China. We mainly focus on the spatial and temporal evolution of population aging in YRDUA from 2000 to 2020 using city-level population data. This study constructs a multi-dimensional index system to measure population aging including population aging degree, speed, and density. It finds out: (1) the elderly population rate (EPR), the elder-child ratio (ECR), and the elderly dependency ratio (EDR) in the YRDUA area are gradually increasing from 2000 to 2020. In addition, the trends of these indicators in various cities and regions are relatively consistent. All 27 cities in YRDUA entered an aging society, from the primary to the moderate aging stage from 2000 to 2010 and from the moderate to the hyper aging stage from 2010 to 2020. (2) the absolute and relative growth rate of EPR is increasing from 2000 to 2020. However, the absolute and relative growth rate of ECR is increasing from 2000 to 2010 and then decreasing from 2010 to 2020. These results indicate that the two-child policy adopted by the Chinese government plays a positive role. (3) the density level of the elderly population in the YRDUA evolved from low in 2000 to middle in 2010 and then to high in 2020. (4) There are remarkable differences in the process of population aging among three provinces and one city. The contribution of this study is mainly reflected in two aspects: firstly, it constructs a multi-dimensional index system to measure population aging; secondly, using this multi-dimensional index system, it systematically observes the spatial and temporal evolution of population aging from 2000 to 2020 in the Yangtze River Delta Urban Agglomeration.


Subject(s)
Rivers , Urbanization , Aged , Humans , Cities , China , Economic Development
20.
Bioresour Technol ; 395: 130372, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38278454

ABSTRACT

A green approach of Desmodesmus sp. to Achromobacter pulmonis (1:1) coculture ratios was optimized to improve the removal efficiency of dibutyl phthalate (DBP) from simulated wastewater. High DBP resistance bacterial strains and microalgae was optimized from plastic contaminated water and acclimation process respectively. The influence of various factors on DBP removal performance was comprehensively investigated. Highest DBP removal 93 % was recorded, when the ratios algae-bacteria 1:1, with sodium acetate, pH-6, shaking speed-120 rpm and lighting periods L:D-12:12. Enough nutrient (TN/TP/TOC) availability and higher protein-108 mg/L and sugar-40 mg/L were observed in presences of 50 mg/L DBP. The degradation and sorption were calculated 81,12; 27,39 & 43,12 % in algae-bacteria, only algae and only bacteria system respectively. The degradation kinetics t1/2 3.74,22.15,12.86 days were evaluated, confirming that algae-bacteria effectively degrade the DBP. This outcome leading to promote a green sustainable approach to remove the emerging contamination from wastewater.


Subject(s)
Achromobacter , Dibutyl Phthalate , Dibutyl Phthalate/metabolism , Wastewater , Achromobacter/metabolism , Bacteria/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL