Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
J Colloid Interface Sci ; 674: 852-861, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38955016

ABSTRACT

Lithium-selenium (Li-Se) batteries are considered promising alternatives to lithium-ion batteries due to their higher volumetric capacity and energy density. However, they still face limitations in efficiently utilizing the active selenium. Here, we develop surface-functionalized mesoporous hollow carbon nanospheres as the selenium host. By using KOH activation, the surface of the carbon nanospheres is functionalized with hydroxyl groups, which greatly improve the utilization of selenium and facilitate the conversion of lithium selenides, leading to much higher capacities compared to ZnCl2 activation and untreated carbon nanospheres. Theory and experimental evidence suggest that surface hydroxyl groups can enhance the reduction conversion of polyselenides to selenides and facilitate the oxidation reaction of selenides to elemental selenium. In-situ and ex-situ characterization techniques provided additional confirmation of the hydroxyl groups electrochemical durability in catalyzing selenium conversion. The meticulously engineered Se cathode demonstrates a high specific capacity of 594 mA h g-1 at 0.5C, excellent rate capability of 464 mA h g-1 at 2C, and a stable cycling performance of 500 cycles at 2C with a capacity retention of 84.8 %, corresponding to an ultra-low-capacity decay rate of 0.0144 % per cycle, surpassing many reported lithium-selenium battery technologies.

3.
Cell Death Dis ; 15(4): 288, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654006

ABSTRACT

Cancer stem cells (CSCs) are believed to be responsible for cancer metastasis and recurrence due to their self-renewal ability and resistance to treatment. However, the mechanisms that regulate the stemness of CSCs remain poorly understood. Recently, evidence has emerged suggesting that long non-coding RNAs (lncRNAs) play a crucial role in regulating cancer cell function in different types of malignancies, including gastric cancer (GC). However, the specific means by which lncRNAs regulate the function of gastric cancer stem cells (GCSCs) are yet to be fully understood. In this study, we investigated a lncRNA known as HNF1A-AS1, which is highly expressed in GCSC s and serves as a critical regulator of GCSC stemness and tumorigenesis. Our experiments, both in vitro and in vivo, demonstrated that HNF1A-AS1 maintained the stemness of GC cells. Further analysis revealed that HNF1A-AS1, transcriptionally activated by CMYC, functioned as a competing endogenous RNA by binding to miR-150-5p to upregulate ß-catenin expression. This in turn facilitated the entry of ß-catenin into the nucleus to activate the Wnt/ß-catenin pathway and promote CMYC expression, thereby forming a positive feedback loop that sustained the stemness of GCSCs. We also found that blocking the Wnt/ß-catenin pathway effectively inhibited the function of HNF1A-AS1, ultimately resulting in the inhibition of GCSC stemness. Taken together, our results demonstrated that HNF1A-AS1 is a regulator of the stemness of GCSCs and could serve as a potential marker for targeted GC therapy.


Subject(s)
Gene Expression Regulation, Neoplastic , Neoplastic Stem Cells , RNA, Long Noncoding , Stomach Neoplasms , Animals , Humans , Mice , beta Catenin/metabolism , Cell Line, Tumor , Hepatocyte Nuclear Factor 1-alpha/metabolism , Hepatocyte Nuclear Factor 1-alpha/genetics , Mice, Inbred BALB C , Mice, Nude , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Wnt Signaling Pathway/genetics
4.
Gels ; 10(4)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38667655

ABSTRACT

The LD oilfield is one of the representative offshore oilfields. After weak gel flooding, the recovery rate is significantly improved. However, the oilfield is then in a medium- to high-water content stage, presenting a complex distribution of the remaining oil. The measures for further enhanced oil recovery (EOR) are uncertain. As a result, it is necessary to clarify the distribution pattern and development potential of the remaining oil during the high-water content period after weak gel flooding. In this study, an online nuclear magnetic resonance (NMR) oil displacement experiment and microscopic oil displacement experiment were conducted, and the mechanisms of weak gel flooding and the distribution pattern of the remaining oil were clarified in the LD oilfield. Additionally, high-multiple water flooding and numerical simulation experiments were conducted to analyze the development potential after weak gel flooding. The results show that the effect of weak gel flooding was more significant in the core of 1500 mD, with an increase in oil recovery of 9% compared to 500 mD. At a permeability of 500 mD, the degree of crude oil mobilization in micropores and small pores caused by weak gel flooding was improved by 29.64% and 23.48%, respectively, compared with water flooding. At 1500 mD, the degree of crude oil mobilization in small pores caused by weak gel flooding was increased by 37.79% compared to water flooding. After weak gel flooding, the remaining oil was primarily distributed in medium and large pores. Microscopically, the remaining oil was dominated by cluster residual oil, accounting for 16.49%, followed by columnar, membranous, and blind-end residual oil. High multiple water flooding experiments demonstrated that weak gel flooding could significantly reduce development time. The ultimate oil recovery efficiency of 500 mD and 1500 mD reached 71.85% and 80.69%, respectively. Numerical simulation results show that the ultimate oil recovery efficiency increased from 62.04% to 71.3% after weak gel flooding. This indicated that the LD oilfield still had certain development potential after weak gel flooding. The subsequent direction for enhanced oil recovery focuses mainly on mobilizing oil in medium pores or clustered remaining oil. This will play a crucial role in further exploring methods for utilizing the remaining oil and increasing the recovery rate.

5.
Adv Mater ; 36(21): e2313211, 2024 May.
Article in English | MEDLINE | ID: mdl-38339916

ABSTRACT

Biocompatible magnesium alloys represent revolutionary implantable materials in dentistry and orthopedics but face challenges due to rapid biocorrosion, necessitating protective coatings to mitigate dysfunction. Directly integrating durable protective coatings onto Mg surfaces is challenging because of intrinsic low coating compactness. Herein, inspired by tooth enamel, a novel highly compact dual-protection inorganic-protein (inorganicPro) coating is in situ constructed on Mg surfaces through bovine serum albumin (BSA) protein-boosted reaction between sodium fluoride (NaF) and Mg substrates. The association of Mg ions and BSA establishes a local hydrophobic domain that lowers the formation enthalpy of NaMgF3 nanoparticles. This process generates finer nanoparticles that function as "bricks," facilitating denser packing, consequently reducing voidage inside coatings by over 50% and reinforcing mechanical durability. Moreover, the incorporation of BSA in and on the coatings plays two synergistic roles: 1) acting as "mortar" to seal residual cracks within coatings, thereby promoting coating compactness and tripling anticorrosion performance, and 2) mitigating fouling-accelerated biocorrosion in complex biosystems via tenfold resistance against biofoulant attachments, including biofluids, proteins, and metabolites. This innovative strategy, leveraging proteins to alter inorganic reactions, benefits the future coating design for Mg-based and other metallic materials with tailored anticorrosion and antifouling performances.


Subject(s)
Biomineralization , Coated Materials, Biocompatible , Magnesium , Serum Albumin, Bovine , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Biomineralization/drug effects , Magnesium/chemistry , Animals , Cattle , Dental Enamel/chemistry , Dental Enamel/drug effects , Sodium Fluoride/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Corrosion , Surface Properties
6.
J Hazard Mater ; 465: 133480, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38219589

ABSTRACT

Hazardous biological pathogens in the air pose a significant public environmental health concern as infected individuals emit virus-laden aerosols (VLAs) during routine respiratory activities. Mask-wearing is a key preventive measure, but conventional filtration methods face challenges, particularly in high humidity conditions, where electrostatic charge decline increases the risk of infection. This study introduces a bio-based air filter comprising glycine ionic liquids (GILs) and malleable polymer composite (GILP) with high polarity and functional group density, which are wrapped around a melamine-formaldehyde (MF) resin skeleton, forming a conductive, porous GIL functionized ionic network air filter (GILP@MF). When subjected to low voltage, the GILP@MF composite efficiently captures VLAs including nanoscale virus particles through the enhanced electrostatic attraction, especially in facing high humidity bioaerosols exhaled by human body. The filtration/collection efficiency and quality factor can reach 98.3% and 0.264 Pa-1 at 0.1 m s-1, respectively. This innovative filter provides effective VLA protection and offers potential for non-invasive respiratory virus sampling, advancing medical diagnosis efforts.


Subject(s)
Ionic Liquids , Humans , Static Electricity , Particle Size , Filtration , Aerosols
7.
Environ Res ; 247: 118199, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38246303

ABSTRACT

Accurate detection of pollutant levels in water bodies using fusion algorithms combined with spectral data has become a critical issue for water conservation. However, the number of samples is too small and the model is unstable, which often leads to poor prediction and fails to achieve the measurement goal well. To address these challenges, this paper proposes a practical and effective method to precisely predict the concentrations of nitrite pollution in aquatic environments. The proposed method consists of three steps. Firstly, the dimension of the spectral data is reduced using Kernel Principal Component Analysis (KPCA), followed by sample augmentation using Generative Adversarial Network (GAN) to reduce calculation cost and increase the diversity and scale of the data. Secondly, several improvement strategies, including multi-cluster competitive and adaptive parameter updating, are introduced to enhance the capability of the Particle Swarm Optimization (PSO) algorithm. The improved PSO algorithm is then applied to optimize the initialization weights and biases of the Back Propagation neural network, thereby improving the model fitting and training performance. Finally, the developed prediction model is employed to predict the test set samples. The result suggests that the R2, RMSE, and MAE values are 0.976290, 0.008626, and 0.006617, which outperform the state-of-the-art and provided a promising model for the prediction of nitrite concentration in water.


Subject(s)
Nitrites , Water , Neural Networks, Computer , Algorithms , Principal Component Analysis
8.
Chem Commun (Camb) ; 60(9): 1168-1171, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38193242

ABSTRACT

We report an electrochemical device for portable on-site detection of gaseous CH3I based on PVIm-F for the first time. The device achieves detection of gaseous CH3I with a significant selectivity and a low detection limit (0.474 ppb) in 20 min at 50 °C and 50% relative humidity, which is of great significance for achieving real-time on-site monitoring of radioactive hazardous environments.

9.
Adv Mater ; 36(14): e2311990, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38154086

ABSTRACT

Along with the development of nuclear power, concerns about radioactive emissions and the potential for nuclear leakage have been widely raised, particularly of harmful iodine isotopes. However, as a significant component of nuclear air waste, the enrichment and detection of air-dispersed gaseous iodine remain a challenge. In this work, it is focused on developing an attraction-immobilization-detection strategy-based fluorescence method for the on-site detection of volatile iodine, by employing a photoluminescent ionic polyimine network-polyvinylpyrrolidone (IPIN-PVP) composite membrane. This strategy synergizes ion-induced dipole interactions from IPIN and complexation effects from PVP, allowing effective iodine enrichment and immobilization. As a result, the optimized IPIN-PVP membrane exhibits rapid response times of 5 s and a low detection limit of 4.087 × 10-8 m for gaseous iodine. It also introduces a portable handheld detection device that utilizes the composite membrane, offering a practical solution for real-time on-site detection of volatile iodine. This innovation enhances nuclear safety measures and disaster management by providing rapid and reliable iodine detection capabilities.

10.
Sci Total Environ ; 912: 169438, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38135082

ABSTRACT

Shewanella putrefaciens (S. putrefaciens) is one of the main microorganisms in soil bioreactors, which mainly immobilizes uranium through reduction and mineralization processes. However, the effects of elements such as phosphorus and ZVI, which may be present in the actual environment, on the mineralization and reduction processes are still not clearly understood and the environment is mostly in the absence of oxygen. In this study, we ensure that all experiments are performed in an anaerobic glove box, and we elucidate through a combination of macroscopic experimental findings and microscopic characterization that the presence of inorganic phosphates enhances the mineralization of uranyl ions on the surface of S. putrefaciens, while zero-valent iron (ZVI) facilitates the immobilization of uranium by promoting the reduction of uranium by S. putrefaciens. Interestingly, when inorganic phosphates and ZVI co-exist, both the mineralization and reduction of uranium on the bacterial surface are simultaneously enhanced. However, these two substances exhibit a certain degree of antagonism in terms of uranium immobilization by S. putrefaciens. Furthermore, it is found that the influence of pH on the mineralization and reduction of uranyl ions is far more significant than that of inorganic phosphates and ZVI. This study contributes to a better understanding of the environmental fate of uranium in real-world settings and provides valuable theoretical support for the bioremediation and risk assessment of uranium contamination.


Subject(s)
Shewanella putrefaciens , Uranium , Iron/chemistry , Uranium/chemistry , Phosphates , Anaerobiosis , Ions
11.
Rev Sci Instrum ; 94(4)2023 Apr 01.
Article in English | MEDLINE | ID: mdl-38081234

ABSTRACT

The DC-link capacitor, whose operating voltage is a periodic irregular waveform, is a key device in the converter. A large-capacity DC/AC superimposed experimental power supply above 100 kVA is an important piece of equipment that must be used in the aging research of DC-link capacitors. The irregular periodic operating voltage of the DC support capacitor is equivalent in the form of DC voltage superimposed with multiple harmonics based on the Fast Fourier transform analysis. The power supply is mainly divided into four parts: an AC module, a DC module, a protection module, and an isolation component. The composited harmonics are output by the IGBT (Insulated Gate Bipolar Transistor) inverter of the AC module. The soft start method is applied to the AC module in order to ensure the long-term reliable operation of the power supply. The kV-level high-voltage is output by four inverter units connected in series. The amplitude and phase control of harmonic decomposition is adopted, and the inverter is controlled by Sinusoidal Pulse Width Modulation. The output voltage of the power supply is close to the operating voltage of the capacitor. Based on the designed power supply, the degradation experiment was carried out. The temperature rise and aging characteristics of DC-link capacitors under different AC/DC ratios were studied.

12.
Nat Commun ; 14(1): 8181, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38081805

ABSTRACT

Covalent organic frameworks show great potential in gas adsorption/separation, biomedicine, device, sensing, and printing arenas. However, covalent organic frameworks are generally not dispersible in common solvents resulting in the poor processability, which severely obstruct their application in practice. In this study, we develop a convenient top-down process for fabricating solution-processable covalent organic frameworks by introducing intermolecular hydrogen bonding and π-π interactions from ionic liquids. The bulk powders of imine-linked, azine-linked, and ß-ketoenamine linked covalent organic frameworks can be dispersed homogeneously in optimal ionic liquid 1-methyl-3-octylimidazolium bromide after heat treatment. The resulting high-concentration colloids are utilized to create the covalent organic framework inks that can be directly printed onto the surface. Molecular dynamics simulations and the quantum mechanical calculations suggest that C‒H···π and π-π interaction between ionic liquid cations and covalent organic frameworks may promote the formation of colloidal solution. These findings offer a roadmap for preparing solution-processable covalent organic frameworks, enabling their practical applications.

13.
Microbiol Spectr ; 11(6): e0232023, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37889044

ABSTRACT

IMPORTANCE: This study combines quantitative polymerase chain reaction (qPCR) and microfluidics to introduce MONITOR, a portable field detection system for multiple pathogens causing influenza-like illness. MONITOR can be rapidly deployed to enable simultaneous sample-in-result-out detection of eight common influenza-like illness (ILI) pathogens with heightened sensitivity and specificity. It is particularly well suited for communities and regions without centralized laboratories, offering robust technical support for the prompt and accurate monitoring and detection of ILI. It holds the potential to be a potent tool in the early detection and prevention of infectious diseases.


Subject(s)
Influenza, Human , Virus Diseases , Humans , Real-Time Polymerase Chain Reaction , Influenza, Human/diagnosis , Microfluidics , Sensitivity and Specificity
14.
J Clin Invest ; 133(21)2023 11 01.
Article in English | MEDLINE | ID: mdl-37707957

ABSTRACT

The metastasis of cancer cells is the main cause of death in patients with gastric cancer (GC). Mounting evidence has demonstrated the vital importance of tumor-associated macrophages in promoting tumor invasion and metastasis; however, the interaction between tumor cells and macrophages in GC is largely unknown. In this study, we demonstrated that cyclase-associated protein 2 (CAP2) was upregulated in GC, especially in cases with lymph node metastasis, and was correlated with a poorer prognosis. The transcription factor JUN directly bound to the promoter region of CAP2 and activated CAP2 transcription. The N-terminal domain of CAP2 bound to the WD5 to WD7 domains of receptor for activated C kinase 1 (RACK1) and induced M2 macrophage polarization by activating the SRC/focal adhesion kinase (FAK)/ERK signaling pathway, which resulted in IL-4 and IL-10 secretion. Polarized M2 macrophages induced premetastatic niche formation and promoted GC metastasis by secreting TGFB1, which created a TGFB1/JUN/CAP2 positive-feedback loop to activate CAP2 expression continuously. Furthermore, we identified salvianolic acid B as an inhibitor of CAP2, which effectively inhibited GC cell invasion capabilities by suppressing the SRC/FAK/ERK signaling pathway. Our data suggest that CAP2, a key molecule mediating the interaction between GC cells and tumor-associated macrophages, may be a promising therapeutic target for suppressing tumor metastasis in GC.


Subject(s)
Stomach Neoplasms , Tumor-Associated Macrophages , Humans , Stomach Neoplasms/metabolism , Signal Transduction , Lymphatic Metastasis/pathology , MAP Kinase Signaling System , Cell Line, Tumor , Neoplasm Metastasis/pathology , Membrane Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism
15.
Opt Lett ; 48(16): 4296-4299, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37582016

ABSTRACT

In this work, we propose an efficient approach to controlling the directional excitation of surface plasmon polaritons (SPPs) by dynamically modulating the real-part perturbation in a passive parity-time symmetric metasurface. This non-Hermitian system can experience two exceptional points that can induce two unidirectional excitation states of SPPs along opposite directions. Empowered by its superior modulation depth, the energy ratio and energy intensities of two excited SPP states can be effectively manipulated by this non-Hermitian metasurface. To demonstrate these findings, we design and numerically verify non-Hermitian metasurfaces integrated with an Sb2Se3 phase-change material. Our work provides a promising platform for the controllable engineering of SPP excitations, holding significant potential for the development of new plasmonic devices, including on-chip SPP sources, routers and sorters, and integrated optical circuits.

16.
Cell Death Dis ; 14(8): 507, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37550275

ABSTRACT

Long non-coding RNAs (lncRNAs) are key regulators during the development of breast cancer (BC) and thus may be viable treatment targets. In this study, we found that the expression of the long intergenic non-coding RNA 01016 (LINC01016) was significantly higher in BC tissue samples with positive lymph node metastasis. LINC01016, which is activated by the transcription factor ETS-1, contributes to the overt promotion of cell proliferation activity, enhanced cell migratory ability, S phase cell cycle arrest, and decreased apoptosis rate. By RNA pull-down assays and mass spectrometry analyses, we determined that LINC01016 competitively bound and stabilized DHX9 protein by preventing the E3 ubiquitin ligase RFFL from binding to DHX9, thereby inhibiting DHX9 proteasomal degradation. This ultimately led to an increase in intracellular DHX9 expression and activated PI3K/AKT signaling, with p-AKT, Bcl-2, and MMP-9 involvement. This is the first study to reveal that the LINC01016/DHX9/PI3K/AKT axis plays a critical role in the progression of BC, and thus, LINC01016 may serve as a potential therapeutic target for patients with BC.


Subject(s)
Breast Neoplasms , Proto-Oncogene Protein c-ets-1 , RNA, Long Noncoding , Female , Humans , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Gene Expression Regulation, Neoplastic , Neoplasm Proteins/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Ubiquitination , Proto-Oncogene Protein c-ets-1/metabolism , Ubiquitin-Protein Ligases/metabolism
17.
Virol Sin ; 38(4): 620-626, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37406815

ABSTRACT

A rapid and accurate COVID-19 diagnosis is a prerequisite for blocking the source of infection as soon as possible and taking the appropriate medical action. Herein, we developed GeneClick, a device for nucleic acid self-testing of SARS-CoV-2, consisting of three modules: a sampling kit, a microfluidic chip-based disposable cartridge, and an amplification reader. In addition, we evaluated the clinical performance of GeneClick using 2162 nasal swabs collected at three medical institutions, using three commercial RT-qPCR kits and an antigen self-test as references. Compared to RT-qPCR, the sensitivity and specificity of the GeneClick assay were 97.93% and 99.72%, respectively, with a kappa value of 0.979 (P â€‹< â€‹0.01). Of the 2162 samples, 2076 were also tested for SARS-CoV-2 antigens. Among the 314 positive samples identified by GeneClick assay, 63 samples were undetected by antigen tests. Overall, the GeneClick nucleic acid self-test demonstrated higher accuracy than the antigen-based detection. Based on the additional features, including simple operation, affordable price, portable device, and reliability of smartphone APP-driven sampling and result reporting, GeneClick offers a powerful tool for field-based SARS-CoV-2 detection in primary healthcare institutions or at-home use.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19 Testing , Self-Testing , Reproducibility of Results , Sensitivity and Specificity
18.
Small ; 19(39): e2302570, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37229752

ABSTRACT

Adsorption, storage, and conversion of gases (e.g., carbon dioxide, hydrogen, and iodine) are the three critical topics in the field of clean energy and environmental mediation. Exploring new methods to prepare high-performance materials to improve gas adsorption is one of the most concerning topics in recent years. In this work, an ionic liquid solution process (ILSP), which can greatly improve the adsorption kinetic performance of covalent organic framework (COF) materials for gaseous iodine, is explored. Anionic COF TpPaSO3 H is modified by amino-triazolium cation through the ILSP method, which successfully makes the iodine adsorption kinetic performance (K80% rate) of ionic liquid (IL) modified COF AC4 tirmTpPaSO3 quintuple compared with the original COF. A series of experimental characterization and theoretical calculation results show that the improvement of adsorption kinetics is benefited from the increased weak interaction between the COF and iodine, due to the local charge separation of the COF skeleton caused by the substitution of protons by the bulky cations of ILs. This ILSP strategy has competitive help for COF materials in the field of gas adsorption, separation, or conversion, and is expected to expand and improve the application of COF materials in energy and environmental science.

19.
J Am Chem Soc ; 145(11): 6177-6183, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36857470

ABSTRACT

Adaptive bionic self-correcting behavior offers an attractive property for chemical systems. Here, based on the dynamic feature of imine formation, we propose a solvent-responsive strategy for smart switching between an amorphous ionic polyimine membrane and a crystalline organic molecule cage without the addition of other building blocks. To adapt to solvent environmental constraints, the aldehyde and amine components undergo self-correction to form a polymer network or a molecular cage. Studies have shown that the amorphous film can be switched in acetonitrile to generate a discrete cage with bright birefringence under polarized light. Conversely, the membrane from the cage crystal conversion can be regained in ethanol. Such a membrane-cage interconversion can be cycled continuously at least 5 times by switching the two solvents. This work builds a bridge between the polymer network and crystalline molecules and offers prospects for smart dynamic materials.

20.
ACS Appl Mater Interfaces ; 15(10): 13637-13643, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36877534

ABSTRACT

The inevitable usage of toxic lead impedes the commercialization of lead halide perovskite solar cells, especially considering lead ions potentially unseals from the discarded and damaged devices and consequently contaminates the environment. In this work, we proposed a poly(ionic liquid) (PIL) cohered sandwich structure (PCSS) to realize lead sequestration in perovskite solar cells by a water-proof and adhesive poly([1-(3-propionic acid)-3-vinylimidazolium] bis(trifluoromethanesulphonyl)imide (PPVI-TFSI). A transparent ambidextrous protective shield manufactured from PPVI-TFSI was achieved and applied in lead sequestration for perovskite solar cells. PCSS provides robustness and water-resistance, which improves device stability toward water erosion and extreme situations (such as acid, base, salty water, and hot water). PPVI-TFSI exhibited excellent affinity toward lead with adsorption capacity of 516 mg·g-1, which assisted to prevent lead leakage in abandoned devices as proved in the test of wheat germination vividly. PCSS provides a promising solution for complex lead sequestration and management issues, which contribute to the commercialization of perovskite solar cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...