Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 189
Filter
1.
Angew Chem Int Ed Engl ; : e202407551, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38881501

ABSTRACT

Phosphorene and fullerene are representative two-dimensional (2D) and zero-dimensional (0D) nanomaterials respectively, constructing their heterodimensional hybrid not only complements their physiochemical properties but also extends their applications via synergistic interactions. This is however challenging because of their diversities in dimension and chemical reactivity, and theoretical studies predicted that it is improbable to directly bond C60 onto the surface of phosphorene due to their strong repulsion. Here, we develop a facile electrosynthesis method to synthesize the first phosphorene-fullerene hybrid featuring fullerene surface bonding via P-C bonds. Few-layer black phosphorus nanosheets (BPNSs) obtained from electrochemical exfoliation react with C602- dianion prepared by electroreduction of C60, fulfilling formation of the "improbable" phosphorene-fullerene hybrid (BPNS-s-C60). Theoretical results reveal that the energy barrier for formation of [BPNS-s-C60]2- intermediate is significantly decreased by 1.88 eV, followed by an oxidization reaction to generate neutral BPNS-s-C60 hybrid. Surface bonding of C60 molecules not only improves significantly the ambient stability of BPNSs, but also boosts dramatically the visible light and near-infrared (NIR) photocatalytic hydrogen evolution rates, reaching 1466 and 1039 µmol h-1 g-1 respectively, which are both the highest values among all reported BP-based metal-free photocatalysts.

2.
Appl Opt ; 63(12): 3212-3218, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38856469

ABSTRACT

In this paper, a broadband terahertz metasurface dedicated to cross-polarization conversion was designed, fabricated, and assessed. The metasurface, comprising two nested double-split rings, features an inherent insensitivity to the angle of incidence. Simulations reveal that the converter achieves a >99% polarization conversion efficiency across the 90-140 GHz range. Moreover, it maintains a >90% polarization conversion ratio (PCR), even at a 50° incidence angle. The sample, featuring 50×70 arrays, was fabricated, and the relevant experimental results align closely with the simulated outcomes. The metasurface characteristics can markedly enhance the performance of cross-polarization converters operating in the terahertz range.

3.
Chem Sci ; 15(21): 8249, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38817575

ABSTRACT

[This corrects the article DOI: 10.1039/D4SC00735B.].

4.
Chem Sci ; 15(20): 7659-7666, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38779171

ABSTRACT

The development of high-quality organic scintillators encounters challenges primarily associated with the weak X-ray absorption ability resulting from the presence of low atomic number elements. An effective strategy involves the incorporation of halogen-containing molecules into the system through co-crystal engineering. Herein, we synthesized a highly fluorescent dye, 2,5-di(4-pyridyl)thiazolo[5,4-d]thiazole (Py2TTz), with a fluorescence quantum yield of 12.09%. Subsequently, Py2TTz was co-crystallized with 1,4-diiodotetrafluorobenzene (I2F4B) and 1,3,5-trifluoro-2,4,6-triiodobenzene (I3F3B) obtaining Py2TTz-I2F4 and Py2TTz-I3F3. Among them, Py2TTz-I2F4 exhibited exceptional scintillation properties, including an ultrafast decay time (1.426 ns), a significant radiation luminescence intensity (146% higher than Bi3Ge4O12), and a low detection limit (70.49 nGy s-1), equivalent to 1/78th of the detection limit for medical applications (5.5 µGy s-1). This outstanding scintillation performance can be attributed to the formation of halogen-bonding between I2F4B and Py2TTz. Theoretical calculations and single-crystal structures demonstrate the formation of halogen-bond-induced rather than π-π-induced charge-transfer cocrystals, which not only enhances the X-ray absorption ability and material conductivity under X-ray exposure, but also constrains molecular vibration and rotation, and thereby reducing non-radiative transition rate and sharply increasing its fluorescence quantum yields. Based on this, the flexible X-ray film prepared based on Py2TTz-I2F4 achieved an ultrahigh spatial resolution of 26.8 lp per mm, underscoring the superiority of this strategy in developing high-performance organic scintillators.

5.
J Med Chem ; 67(11): 9686-9708, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38809692

ABSTRACT

High extracellular concentrations of adenosine triphosphate (ATP) in the tumor microenvironment generate adenosine by sequential dephosphorylation of CD39 and CD73, resulting in potent immunosuppression to inhibit T cell and natural killer (NK) cell function. CD73, as the determining enzyme for adenosine production, has been shown to correlate with poor clinical tumor prognosis. Conventional inhibitors as analogues of adenosine 5'-monophosphate (AMP) may have a risk of further metabolism to adenosine analogues. Here, we report a new series of malonic acid non-nucleoside inhibitors coordinating with zinc ions of CD73. Compound 12f was found to be a superior CD73 inhibitor (IC50 = 60 nM) by structural optimization, and its pharmacokinetic properties were investigated. In mouse tumor models, compound 12f showed excellent efficacy and reversal of immunosuppression in combination with chemotherapeutic agents or checkpoint inhibitors, suggesting that it deserves further development as a novel CD73 inhibitor.


Subject(s)
5'-Nucleotidase , 5'-Nucleotidase/antagonists & inhibitors , 5'-Nucleotidase/metabolism , Animals , Humans , Mice , Malonates/pharmacology , Malonates/chemistry , Malonates/chemical synthesis , Zinc/chemistry , Zinc/metabolism , Structure-Activity Relationship , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , GPI-Linked Proteins/antagonists & inhibitors , GPI-Linked Proteins/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Drug Discovery , Cell Line, Tumor
6.
Front Pharmacol ; 15: 1374445, 2024.
Article in English | MEDLINE | ID: mdl-38650626

ABSTRACT

The death of cells can occur through various pathways, including apoptosis, necroptosis, mitophagy, pyroptosis, endoplasmic reticulum stress, oxidative stress, ferroptosis, cuproptosis, and disulfide-driven necrosis. Increasing evidence suggests that mitophagy and ferroptosis play crucial regulatory roles in the development of stroke. In recent years, the incidence of stroke has been gradually increasing, posing a significant threat to human health. Hemorrhagic stroke accounts for only 15% of all strokes, while ischemic stroke is the predominant type, representing 85% of all stroke cases. Ischemic stroke refers to a clinical syndrome characterized by local ischemic-hypoxic necrosis of brain tissue due to various cerebrovascular disorders, leading to rapid onset of corresponding neurological deficits. Currently, specific therapeutic approaches targeting the pathophysiological mechanisms of ischemic brain tissue injury mainly include intravenous thrombolysis and endovascular intervention. Despite some clinical efficacy, these approaches inevitably lead to ischemia-reperfusion injury. Therefore, exploration of treatment options for ischemic stroke remains a challenging task. In light of this background, advancements in targeted therapy for cerebrovascular diseases through mitophagy and ferroptosis offer a new direction for the treatment of such diseases. In this review, we summarize the progress of mitophagy and ferroptosis in regulating ischemia-reperfusion injury in stroke and emphasize their potential molecular mechanisms in the pathogenesis. Importantly, we systematically elucidate the role of medicinal plants and their active metabolites in targeting mitophagy and ferroptosis in ischemia-reperfusion injury in stroke, providing new insights and perspectives for the clinical development of therapeutic drugs for these diseases.

7.
Small ; : e2311351, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38453673

ABSTRACT

Supramolecular self-assembly has emerged as an efficient tool to construct well-organized nanostructures for biomedical applications by small organic molecules. However, the physicochemical properties of self-assembled nanoarchitectures are greatly influenced by their morphologies, mechanical properties, and working mechanisms, making it challenging to design and screen ideal building blocks. Herein, using a biocompatible firefly-sourced click reaction between the cyano group of 2-cyano-benzothiazole (CBT) and the 1,2-aminothiol group of cysteine (Cys), an amino-acid-encoded supramolecular self-assembly platform Cys(SEt)-X-CBT (X represents any amino acid) is developed to incorporate both covalent and noncovalent interactions for building diverse morphologies of nanostructures with bioinspired response mechanism, providing a convenient and rapid strategy to construct site-specific nanocarriers for drug delivery, cell imaging, and enzyme encapsulation. Additionally, it is worth noting that the biodegradation of Cys(SEt)-X-CBT generated nanocarriers can be easily tracked via bioluminescence imaging. By caging either the thiol or amino groups in Cys with other stimulus-responsive sites and modifying X with probes or drugs, a variety of multi-morphological and multifunctional nanomedicines can be readily prepared for a wide range of biomedical applications.

8.
Mar Pollut Bull ; 201: 116202, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38484537

ABSTRACT

In recent years, global attention has been extensively focused on the water pollution and health risks caused by microplastics(MPs), thereby making the treatment of microplastics a key area of research. Chemical removal and degradation present effective approaches to addressing this issue. Consequently, this review summarizes the latest research advancements in the chemical removal and degradation of microplastics in water, comparing the treatment efficacy and advantages and disadvantages of various removal/degradation techniques. It elucidates the chemical mechanisms underlying the removal/degradation of microplastics and identifies the primary influencing factors during the treatment process. A systematic analysis of the performance of microplastic treatment technologies is conducted, examining the impact of microplastic characteristics, operational conditions, and other parameters on the effectiveness of microplastic treatment.


Subject(s)
Microplastics , Water Pollutants, Chemical , Plastics , Water , Water Pollution , Environmental Monitoring
9.
Inorg Chem ; 63(7): 3572-3577, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38324777

ABSTRACT

Cuprous complex scintillators show promise for X-ray detection with abundant raw materials, diverse luminescent mechanisms, and adjustable structures. However, their synthesis typically requires a significant amount of organic solvents, which conflict with green chemistry principles. Herein, we present the synthesis of two high-performance cuprous complex scintillators using a simple mechanochemical method for the first time, namely [CuI(PPh3)2R] (R = 4-phenylpyridine hydroiodide (PH, Cu-1) and 4-(4-bromophenyl)pyridine hydroiodide (PH-Br, Cu-2). Both materials demonstrated remarkable scintillation performances, exhibiting radioluminescence (RL) intensities 1.52 times (Cu-1) and 2.52 times (Cu-2) greater than those of Bi4Ge3O12 (BGO), respectively. Compared to Cu-1, the enhanced RL performance of Cu-2 can be ascribed to its elevated quantum yield of 51.54%, significantly surpassing that of Cu-1 at 37.75%. This excellent luminescent performance is derived from the introduction of PH-Br, providing a more diverse array of intermolecular interactions that effectively constrain molecular vibration and rotation, further suppressing the nonradiative transition process. Furthermore, Cu-2 powder can be prepared into scintillator film with excellent X-ray imaging capabilities. This work establishes a pathway for the rapid, eco-friendly, and cost-effective synthesis of high-performance cuprous complex scintillators.

10.
J Phys Chem Lett ; 15(7): 1956-1961, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38346267

ABSTRACT

The study of molecular adsorption is crucial for understanding various chemical processes. Spectroscopy offers a convenient and non-invasive way of probing structures of adsorbed states and can be used for real-time observation of molecular binding profiles, including both structural and energetic information. However, deciphering atomic structures from spectral information using the first-principles approach is computationally expensive and time-consuming because of the sophistication of recording spectra, chemical structures, and their relationship. Here, we demonstrate the feasibility of a data-driven machine learning approach for predicting binding energy and structural information directly from vibrational spectra of the adsorbate by using CO adsorption on iron porphyrin as an example. Our trained machine learning model is not only interpretable but also readily transferred to similar metal-nitrogen-carbon systems with comparable accuracy. This work shows the potential of using structure-encoded spectroscopic descriptors in machine learning models for the study of adsorbed states of molecules on transition metal complexes.

11.
J Am Chem Soc ; 146(4): 2663-2672, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38240637

ABSTRACT

The structurally sensitive amide II infrared (IR) bands of proteins provide valuable information about the hydrogen bonding of protein secondary structures, which is crucial for understanding protein dynamics and associated functions. However, deciphering protein structures from experimental amide II spectra relies on time-consuming quantum chemical calculations on tens of thousands of representative configurations in solvent water. Currently, the accurate simulation of amide II spectra for whole proteins remains a challenge. Here, we present a machine learning (ML)-based protocol designed to efficiently simulate the amide II IR spectra of various proteins with an accuracy comparable to experimental results. This protocol stands out as a cost-effective and efficient alternative for studying protein dynamics, including the identification of secondary structures and monitoring the dynamics of protein hydrogen bonding under different pH conditions and during protein folding process. Our method provides a valuable tool in the field of protein research, focusing on the study of dynamic properties of proteins, especially those related to hydrogen bonding, using amide II IR spectroscopy.


Subject(s)
Amides , Artificial Intelligence , Amides/chemistry , Hydrogen Bonding , Spectrophotometry, Infrared/methods , Proteins/chemistry
12.
Natl Sci Rev ; 11(2): nwad269, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38213516

ABSTRACT

Hydrogen therapy shows great promise as a versatile treatment method for diseases associated with the overexpression of reactive oxygen and nitrogen species (RONS). However, developing an advanced hydrogen therapy platform that integrates controllable hydrogen release, efficient RONS elimination, and biodegradability remains a giant technical challenge. In this study, we demonstrate for the first time that the tungsten bronze phase H0.53WO3 (HWO) is an exceptionally ideal hydrogen carrier, with salient features including temperature-dependent highly-reductive atomic hydrogen release and broad-spectrum RONS scavenging capability distinct from that of molecular hydrogen. Moreover, its unique pH-responsive biodegradability ensures post-therapeutic clearance at pathological sites. Treatment with HWO of diabetic wounds in an animal model indicates that the solid-state atomic H promotes vascular formation by activating M2-type macrophage polarization and anti-inflammatory cytokine production, resulting in acceleration of chronic wound healing. Our findings significantly expand the basic categories of hydrogen therapeutic materials and pave the way for investigating more physical forms of hydrogen species as efficient RONS scavengers for clinical disease treatment.

13.
J Am Chem Soc ; 145(49): 26817-26823, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38019281

ABSTRACT

Generative artificial intelligence has depicted a beautiful blueprint for on-demand design in chemical research. However, the few successful chemical generations have only been able to implement a few special property values because most chemical descriptors are mathematically discrete or discontinuously adjustable. Herein, we use spectroscopic descriptors with machine learning to establish a quantitative spectral structure-property relationship for adsorbed molecules on metal monatomic catalysts. Besides catalytic properties such as adsorption energy and charge transfer, the complete spatial relative coordinates of the adsorbed molecule were successfully inverted. The spectroscopic descriptors and prediction models are generalized, allowing them to be transferred to several different systems. Due to the continuous tunability of the spectroscopic descriptors, the design of catalytic structures with continuous adsorption states generated by AI in the catalytic process has been achieved. This work paves the way for using spectroscopy to enable real-time monitoring of the catalytic process and continuous customization of catalytic performance, which will lead to profound changes in catalytic research.

14.
J Phys Chem Lett ; 14(44): 9900-9908, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37903101

ABSTRACT

Atomically dispersed metal-nitrogen-carbon (M-N-C) materials are deemed promising catalysts for the oxygen reduction reaction (ORR) in fuel cells. Yet the multilayer nature of M-N-C has been largely neglected in computational analysis. To bridge the gap, we conducted a first-principles investigation using bilayer M-N-C models (TMNx/G-TMNy/G, TM = Mn, Fe, Co, Ni, Cu, G = graphene, x, y = 3 or 4), where the TMs on the top serves as the active center. While in-plane TMN4 at the bottom has a minimal impact on the ORR, out-of-plane TMN3 substantially influences the adsorption free energy of OH through a strong interlayer bonding interaction. By leveraging interlayer interactions, we appreciably lowered the overpotential of selected TMN4 (TM = Co, Ni, Cu) and achieved a minimum of 0.40 V on CoN4/G-CuN3/G. Constant potential calculations revealed weak dependence of OH binding energy on external voltage and obtained results comparable to constant charge calculation. This study provided new physical insight into modulating naturally occurring multilayer M-N-C catalysts.

15.
Water Sci Technol ; 88(8): 2174-2188, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37906465

ABSTRACT

Four kinds of manganese oxides were successfully prepared by hydrothermal and redox precipitation methods, and the obtained oxides were used for CIP removal from water by activating PMS. The microstructure and surface properties of four oxides were systematically characterized. The results showed that ε-MnO2 prepared by the redox precipitation method had large surface area, low crystallinity, high surface Mn(III)/Mn(Ⅳ) ratio and the highest activation efficiency for PMS, that is, when the concentration of PMS was 0.6 g/L, 0.2 g/L ε-MnO2 could degrade 93% of CIP within 30 min. Multiple active oxygen species, such as sulfate radical, hydroxyl radical and singlet oxygen, were found in CIP degradation, among which sulfate radical was the most important one. The degradation reaction mainly occurred on the surface of the catalyst, and the surface hydroxyl group played an important role in the degradation. The catalyst could be regenerated in situ through the redox reaction between Mn4+ and Mn3+. The ε-MnO2 had the advantages of simple preparation, good stability and excellent performance, which provided the potential for developing new green antibiotic removal technology.


Subject(s)
Ciprofloxacin , Oxides , Oxides/chemistry , Ciprofloxacin/chemistry , Manganese Compounds/chemistry , Peroxides/chemistry , Oxidation-Reduction
16.
Sci Data ; 10(1): 711, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37848455

ABSTRACT

Vehicle trajectory data underpins various applications in intelligent transportation systems, such as traffic surveillance, traffic prediction, and traffic control. Traditional vehicle trajectory datasets, recorded by GPS devices or single cameras, are often biased towards specific vehicles (e.g., taxis) or incomplete (typically < 1 km), limiting their reliability for downstream applications. With the widespread deployment of traffic cameras across the city road network, we have the opportunity to capture all vehicles passing by. By collecting city-scale traffic camera video data, we apply a trajectory recovery framework that identifies vehicles across all cameras and reconstructs their paths in between. Leveraging this approach, we are the first to release a comprehensive vehicle trajectory dataset that covers almost full-amount of city vehicle trajectories, with approximately 5 million trajectories recovered from over 3000 traffic cameras in two metropolises. To assess the quality and quantity of this dataset, we evaluate the recovery methods, visualize specific cases, and compare the results with external road speed and flow statistics. The results demonstrate the consistency and reliability of the released trajectories. This dataset holds great promise for research in areas such as unveiling traffic dynamics, traffic network resilience assessment, and traffic network planning.

17.
J Stroke Cerebrovasc Dis ; 32(11): 107369, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37738917

ABSTRACT

OBJECTIVES: Tetramethylpyrazine (TEP) can protect the brain from ischemic damage, but it has defects such as short half-life, fast absorption, wide distribution, and rapid elimination, which limits its application. Exosomes (Exos) have the property of loading drugs and transporting signal substances. Here, we elucidated the effect of TEP-loaded bone marrow mesenchymal stem cell (BMSC)-derived Exos (Exo-TEP) on cerebral ischemic injury. MATERIALS AND METHODS: The Exos were extracted by ultracentrifugation and TEP was loaded into the Exos by electroporation. Oxygen-glucose deprivation (OGD) induced-primary cortical neurons and middle cerebral artery occlusion (MCAO)-induced mouse models were used to determine the effect of Exo-TEP on cerebral ischemic injury in vitro and in vivo. RESULTS: Exo-TEP exhibited a stable and sustained release pattern compared to free TEP. Exo-TEP treatment was more significant in improving OGD-mediated decrease in cell activity, as well as a elevation in apoptosis and ROS production in cortical neurons. In comparison with Exo and free TEP treatment, Exo-TEP treatment significantly improved pathological changes, shrunk cerebral infarction volume, as well reduced neurological deficit scores and neuronal apoptosis, and oxidative stress. CONCLUSIONS: Exo-TEP was superior to free TEP in improving cerebral ischemic injury by reducing neuronal apoptosis and oxidative stress.

18.
RSC Adv ; 13(39): 27590-27598, 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37720838

ABSTRACT

Hydrogen isotope separation is of prime significance in various scientific and industrial applications. Nevertheless, the existing technologies are often expensive and energy demanding. Two-dimensional carbon materials are regarded as promising candidates for cost-effective separation of different hydrogen isotopes. Herein, based on theoretical calculations, we have systematically investigated the proton penetration mechanism and the associated isotope separation behavior through two-dimensional biphenylene, a novel graphene allotrope. The unique non-uniform rings with different sizes in the biphenylene layer resemble the topological defects of graphene, serving as proton transmission channels. We found that a proton can readily pass through biphenylene with a low energy barrier in some specific patterns. Furthermore, large kinetic isotope effect ratios for proton-deuteron (13.58) and proton-triton (53.10) were observed in an aqueous environment. We thus conclude that biphenylene would be a potential carbon material used for hydrogen isotope separation. This subtle exploitation of the natural structural specificity of biphenylene provides new insight into the search for materials for hydrogen isotope separation.

19.
Chemosphere ; 339: 139678, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37527742

ABSTRACT

Organic pollutants pose a significant threat to water safety, and their degradation is of paramount importance. Photocatalytic technology has emerged as a promising approach for environmental remediation, and Bismuth ferrite (BiFeO3) has been shown to exhibit remarkable potential for photocatalytic degradation of water pollutants, with its excellent crystal structure properties and visible light photocatalytic activity. This review presents an overview of the crystal properties and photocatalytic mechanism of perovskite bismuth ferrite (BiFeO3), as well as a summary of various strategies for enhancing its efficiency in photocatalytic degradation of organic pollutants. These strategies include pure phase preparation, microscopic modulation, composite modification of BiFeO3, and the integration of Fenton-like reactions and external field-assisted methods to improve its photocatalytic performance. The review emphasizes the impact of each strategy on photocatalytic enhancement. By providing comprehensive strategies for improving the efficiency of BiFeO3 photocatalysis, this review inspires new insights for efficient degradation of organic pollutants using BiFeO3 photocatalysis and contributes to the development of photocatalysis in environmental remediation.


Subject(s)
Bismuth , Environmental Pollutants , Bismuth/chemistry , Catalysis , Environmental Pollutants/chemistry
20.
Opt Express ; 31(6): 9428-9436, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-37157514

ABSTRACT

This paper presents a novel sub-terahertz liquid crystal (LC) phase shifter based on digital coding metasurfaces. The proposed structure consists of metal gratings and resonant structures. They are both immersed in LC. The metal gratings function as reflective surfaces for electromagnetic waves and electrodes for controlling the LC layer. The proposed structure changes the state of the phase shifter by switching the voltage on every grating. It allows the deflection of LC molecules within a subregion of the metasurface structure. Four switchable coding states of the phase shifter are obtained experimentally. The phase of the reflected wave varies by 0°, 102°, 166°, and 233° at 120 GHz. Due to the presence of the transverse control electric field, modulation speed is approximately doubled compared to the free relaxation state. This work provides a novel idea for wavefront modulation of phase.

SELECTION OF CITATIONS
SEARCH DETAIL
...