Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 394
Filter
1.
Clin Exp Med ; 24(1): 152, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970690

ABSTRACT

Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer characterized by metabolic reprogramming. Glutamine metabolism is pivotal in metabolic reprogramming, contributing to the significant heterogeneity observed in ccRCC. Consequently, developing prognostic markers associated with glutamine metabolism could enhance personalized treatment strategies for ccRCC patients. This study obtained RNA sequencing and clinical data from 763 ccRCC cases sourced from multiple databases. Consensus clustering of 74 glutamine metabolism related genes (GMRGs)- profiles stratified the patients into three clusters, each of which exhibited distinct prognosis, tumor microenvironment, and biological characteristics. Then, six genes (SMTNL2, MIOX, TMEM27, SLC16A12, HRH2, and SAA1) were identified by machine-learning algorithms to develop a predictive signature related to glutamine metabolism, termed as GMRScore. The GMRScore showed significant differences in clinical prognosis, expression profile of immune checkpoints, abundance of immune cells, and immunotherapy response of ccRCC patients. Besides, the nomogram incorporating the GMRScore and clinical features showed strong predictive performance in prognosis of ccRCC patients. ALDH18A1, one of the GRMGs, exhibited elevated expression level in ccRCC and was related to markedly poorer prognosis in the integrated cohort, validated by proteomic profiling of 232 ccRCC samples from Fudan University Shanghai Cancer Center (FUSCC). Conducting western blotting, CCK-8, transwell, and flow cytometry assays, we found the knockdown of ALDH18A1 in ccRCC significantly promoted apoptosis and inhibited proliferation, invasion, and epithelial-mesenchymal transition (EMT) in two human ccRCC cell lines (786-O and 769-P). In conclusion, we developed a glutamine metabolism-related prognostic signature in ccRCC, which is tightly linked to the tumor immune microenvironment and immunotherapy response, potentially facilitating precision therapy for ccRCC patients. Additionally, this study revealed the key role of ALDH18A1 in promoting ccRCC progression for the first time.


Subject(s)
Carcinoma, Renal Cell , Glutamine , Kidney Neoplasms , Tumor Microenvironment , Humans , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/genetics , Glutamine/metabolism , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Kidney Neoplasms/genetics , Prognosis , Cell Line, Tumor , Male , Female , Gene Expression Regulation, Neoplastic , Cell Proliferation , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Nomograms , Middle Aged , Apoptosis , Gene Expression Profiling
2.
Adv Sci (Weinh) ; : e2403592, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023171

ABSTRACT

Endocrine-resistant ER+HER2- breast cancer (BC) is particularly aggressive and leads to poor clinical outcomes. Effective therapeutic strategies against endocrine-resistant BC remain elusive. Here, analysis of the RNA-sequencing data from ER+HER2- BC patients receiving neoadjuvant endocrine therapy and spatial transcriptomics analysis both show the downregulation of innate immune signaling sensing cytosolic DNA, which primarily occurs in endocrine-resistant BC cells, not immune cells. Indeed, compared with endocrine-sensitive BC cells, the activity of sensing cytosolic DNA through the cGAS-STING pathway is attenuated in endocrine-resistant BC cells. Screening of kinase inhibitor library show that this effect is mainly mediated by hyperactivation of AKT1 kinase, which binds to kinase domain of TBK1, preventing the formation of a trimeric complex TBK1/STING/IRF3. Notably, inactivation of cGAS-STING signaling forms a positive feedback loop with hyperactivated AKT1 to promote endocrine resistance, which is physiologically important and clinically relevant in patients with ER+HER2- BC. Blocking the positive feedback loop using the combination of an AKT1 inhibitor with a STING agonist results in the engagement of innate and adaptive immune signaling and impairs the growth of endocrine-resistant tumors in humanized mice models, providing a potential strategy for treating patients with endocrine-resistant BC.

3.
Int J Biol Sci ; 20(9): 3590-3620, 2024.
Article in English | MEDLINE | ID: mdl-38993563

ABSTRACT

Background: Renal cell carcinoma (RCC) is frequently accompanied by tumor thrombus in the venous system with an extremely dismal prognosis. The current Tumor Node Metastasis (TNM) stage and Mayo clinical classification do not appropriately identify preference-sensitive treatment. Therefore, there is an urgent need to develop a better ideal model for precision medicine. Methods: In this study, we developed a coagulation tumor thrombus signature for RCC with 10 machine-learning algorithms (101 combinations) based on a novel computational framework using multiple independent cohorts. Results: The established tumor thrombus coagulation-related risk stratification (TTCRRS) signature comprises 10 prognostic coagulation-related genes (CRGs). This signature could predict survival outcomes in public and in-house protein cohorts and showed high performance compared to 129 published signatures. Additionally, the TTCRRS signature was significantly related to some immune landscapes, immunotherapy response, and chemotherapy. Furthermore, we also screened out hub genes, transcription factors, and small compounds based on the TTCRRS signature. Meanwhile, CYP51A1 can regulate the proliferation and migration properties of RCC. Conclusions: The TTCRRS signature can complement the traditional anatomic TNM staging system and Mayo clinical stratification and provide clinicians with more therapeutic options.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Machine Learning , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Humans , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Thrombosis , Prognosis , Cohort Studies
4.
Int J Biol Sci ; 20(9): 3497-3514, 2024.
Article in English | MEDLINE | ID: mdl-38993569

ABSTRACT

Resistance to HER2-targeted therapy is the major cause of treatment failure in patients with HER2+ breast cancer (BC). Given the key role of immune microenvironment in tumor development, there is a lack of an ideal prognostic model that fully accounts for immune infiltration. In this study, WGCNA analysis was performed to discover the relationship between immune-related signaling and prognosis of HER2+ BC. After Herceptin-resistant BC cell lines established, transcriptional profiles of resistant cell line and RNA-sequencing data from GSE76360 cohort were analyzed for candidate genes. 85 samples of HER2+ BC from TCGA database were analyzed by the Cox regression, XGBoost and Lasso algorithm to generalize a credible immune-related prognostic index (IRPI). Correlations between the IRPI signature and tumor microenvironment were further analyzed by multiple algorithms, including single-cell RNA sequencing data analysis. Patients with high IRPI had suppressive tumor immune microenvironment and worse prognosis. The suppression of type I interferon signaling indicated by the IRPI in Herceptin-resistant HER2+ BC was validated. And we elucidated that the suppression of cGAS-STING pathway is the key determinant underlying immune escape in Herceptin-resistant BC with high IRPI. A combination of STING agonist and DS-8201 could serve as a new strategy for Herceptin-resistant HER2+ BC.


Subject(s)
Breast Neoplasms , Drug Resistance, Neoplasm , Membrane Proteins , Nucleotidyltransferases , Receptor, ErbB-2 , Trastuzumab , Tumor Microenvironment , Humans , Breast Neoplasms/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/immunology , Female , Trastuzumab/therapeutic use , Trastuzumab/pharmacology , Drug Resistance, Neoplasm/genetics , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Signal Transduction , Cell Line, Tumor , Prognosis , Gene Expression Regulation, Neoplastic
5.
J Dairy Sci ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39004135

ABSTRACT

Lifetime productivity is a trait of great importance to dairy cattle populations as it combines information from production and longevity variables. Therefore, we investigated the genetic background of lifetime productivity in high-producing dairy cattle by integrating genomics and transcriptomics data sets. A total of 3,365,612 test-day milk yield records from 134,029 Chinese Holstein cows were used to define 6 lifetime productivity traits, including lifetime milk yield covering full lifespan and 5 cumulative milk yield traits covering partial lifespan. Genetic parameters were estimated based on univariate and bivariate linear animal models and the Restricted Maximum Likelihood (REML) method. Genome-wide association studies (GWAS) and weighted gene co-expression network analyses (WGCNA) were performed to identify candidate genes associated with lifetime productivity based on genomic data from 3,424 cows and peripheral blood RNA-seq data from 23 cows, respectively. Lifetime milk yield averaged 24,800.8 ± 14,396.6 kg (mean ± SD) across an average of 2.4 parities in Chinese Holstein population. The heritability estimates for lifetime productivity traits ranged from 0.05 (±0.01 for SE) to 0.10 (±0.02 for SE). The estimate of genetic correlation between lifetime milk yield and productive life is 0.88 (±0.3 for SE) while the genetic correlation with 305d milk yield in the first lactation was 0.49 (±0.08 for SE). Absolute values for most genetic correlation estimates between lifetime productivity and type traits were lower than 0.30. Moderate genetic correlations were found between udder related traits and lifetime productivity, such as with udder depth (0.33), rear udder attachment height (0.33), and udder system (0.34). Some single nucleotide polymorphisms and gene co-expression modules significantly associated with lifetime milk yield were identified based on GWAS and WGCNA analyses, respectively. Functional enrichment analyses of the candidate genes identified revealed important pathways related to immune system, longevity, energy utilization and metabolism, and FoxO signaling. The genes NTMT1, FNBP1, and S1PR1 were considered to be the most important candidate genes influencing lifetime productivity in Holstein cows. Overall, our findings indicate that lifetime productivity is heritable in Chinese Holstein cattle and important candidate genes were identified by integrating genomic and transcriptomic data sets.

6.
Sci Transl Med ; 16(753): eadk0330, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38924427

ABSTRACT

Targeting ferroptosis for cancer therapy has slowed because of an incomplete understanding of ferroptosis mechanisms under specific pathological contexts such as tumorigenesis and cancer treatment. Here, we identify TRPML1-mediated lysosomal exocytosis as a potential anti-ferroptotic process through genome-wide CRISPR-Cas9 activation and kinase inhibitor library screening. AKT directly phosphorylated TRPML1 at Ser343 and inhibited K552 ubiquitination and proteasome degradation of TRPML1, thereby promoting TRPML1 binding to ARL8B to trigger lysosomal exocytosis. This boosted ferroptosis defense of AKT-hyperactivated cancer cells by reducing intracellular ferrous iron and enhancing membrane repair. Correlation analysis and functional analysis revealed that TRPML1-mediated ferroptosis resistance is a previously unrecognized feature of AKT-hyperactivated cancers and is necessary for AKT-driven tumorigenesis and cancer therapeutic resistance. TRPML1 inactivation or blockade of the interaction between TRPML1 and ARL8B inhibited AKT-driven tumorigenesis and cancer therapeutic resistance in vitro and in vivo by promoting ferroptosis. A synthetic peptide targeting TRPML1 inhibited AKT-driven tumorigenesis and enhanced the sensitivity of AKT-hyperactivated tumors to ferroptosis inducers, radiotherapy, and immunotherapy by boosting ferroptosis in vivo. Together, our findings identified TRPML1 as a therapeutic target in AKT-hyperactivated cancer.


Subject(s)
Ferroptosis , Neoplasms , Proto-Oncogene Proteins c-akt , Animals , Humans , Mice , ADP-Ribosylation Factors/metabolism , Carcinogenesis/pathology , Carcinogenesis/genetics , Cell Line, Tumor , Ferroptosis/drug effects , Lysosomes/metabolism , Neoplasms/pathology , Neoplasms/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Ubiquitination
7.
Macromol Rapid Commun ; : e2400193, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837543

ABSTRACT

Photo-responsive liquid crystal polymers (LCPs) have potential application value in flexible robots, artificial muscles, and microfluidic control. In recent years, significant progress has been made in the development of LCPs. However, the preparation of LCPs with continuous and controllable stepwise deformation capabilities remains a challenge. In this study, visible photo-responsive cyanostilbene monomer, UV photo-responsive azobenzene monomer, and multiple hydrogen bond crosslinker are used to prepare photo-responsive LCPs capable of achieving continuously and controllable stepwise deformation. The comprehensive investigation of the multiple light response ability and photo-induced deformation properties of these copolymers is conducted. The results reveal that in the first stage of photo-induced deformation under 470 nm blue light irradiation, the deformation angle decreases with a reduction in cyanostilbene content in the copolymer component, ranging from 40° in AZ0-CS4 to 0° in AZ4-CS0. In the second stage of photo-induced deformation under 365 nm UV irradiation, the deformation angle increases with the increase of azobenzene content, ranging from 0° of AZ0-CS4 to 89.4° of AZ4-CS0. Importantly, the deformation between these two stages occurs as a continuous process, allowing for a direct transition from the first-stage to the second-stage deformation by switching the light source from 470 to 365 nm.

8.
Trials ; 25(1): 299, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698436

ABSTRACT

OBJECTIVE: To evaluate mindfulness-based intervention for hypertension with depression and/or anxiety. METHODS: 10-week mindfulness-based intervention, including health education for hypertension, exclusively for the control group, was administered to the intervention group to assist sixty hypertension patients with depression/anxiety. Among them, the intervention group comprised 8 men and 22 women, with a mean age of 60.02 years and a mean duration of hypertension of 6.29 years. The control group consisted of 14 men and 16 women with a mean age of 57.68 years and a mean duration of hypertension of 6.32 years. The severity of depressive and/or anxiety symptoms was assessed using the 9-item Patient Health Questionnaire (PHQ-9) and the 7-item Generalized Anxiety Disorder scale (GAD-7), along with blood pressure (BP) measurements taken twice daily. The study utilized a self-made self-efficacy scale and awareness of physical and mental health to evaluate mental health and state. RESULTS: The depression PHQ-9 or GAD-7 scores reduced by 21.1% or 17.8% in the mindfulness-based intervention group, compared to the control (Z = -2.040, P = 0.041) post 10-week period, suggesting significant reduction in anxiety/stress. These results were consistent with a reduction in systolic BP of 12.24 mm Hg (t = 6.041, P = 0.000). The self-efficacy score of the mindfulness intervention group significantly improved compared to the control (t = 7.818, P < 0.001), while the awareness of physical and mental health in the mindfulness intervention group significantly improved compared to the control (χ2 = 5.781, P = 0.016). CONCLUSION: Mindfulness-based, short-term focused interventions provide modest relief for depression and/or anxiety and are effective in lowering blood pressure and improving self-efficacy scores. TRIAL REGISTRATION: Chinese Clinical Trial Registry, ChiCTR1900028258. Registered 16 December 2019, https://www.chictr.org.cn/showproj.html?proj=43627 .


Subject(s)
Anxiety , Depression , Hypertension , Mindfulness , Humans , Male , Mindfulness/methods , Female , Middle Aged , Hypertension/therapy , Hypertension/psychology , Depression/therapy , Depression/psychology , Anxiety/therapy , Anxiety/psychology , Aged , Treatment Outcome , Blood Pressure , Self Efficacy , Time Factors , Mental Health
9.
Carbohydr Polym ; 335: 122048, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38616087

ABSTRACT

Although conductive hydrogels have been widely developed currently, their low sensitivity and poor stability severely limited their practical application in flexible wearable devices. Herein, a green "stencil" anchoring strategy was proposed in this study to engineer an ultra-stable and supersensitive hydrogel by virtue of polydopamine decorating sodium alginate molecular chains as "stencil" to anchor polyaniline as conductive component. The dispersion of polyaniline was significantly improved by the sodium alginate "stencil" in the conductive hydrogel. The developed conductive hydrogel exhibited outstanding properties that outperformed most conventional ones, including extraordinary sensitivity with a gauge factor of 38.2 and excellent stability with negligible shifting upon long-term cyclic stretching. Moreover, the conductive hydrogel displayed great self-adhesion and reliable self-healing performance endowed by its abundant catechol groups, hydrogen bondings and π-π stackings, respectively. Furthermore, the prepared hydrogel was also assembled as flexible strain and self-powered sensors, which displayed excellent sensing performance, indicating great potential in human-machine interactions, information transmission and road transportation.

10.
Int J Med Sci ; 21(5): 904-913, 2024.
Article in English | MEDLINE | ID: mdl-38617002

ABSTRACT

Dysregulation of cellular metabolism is a key marker of cancer, and it is suggested that metabolism should be considered as a targeted weakness of colorectal cancer. Increased polyamine metabolism is a common metabolic change in tumors. Thus, targeting polyamine metabolism for anticancer therapy, particularly polyamine blockade therapy, has gradually become a hot topic. Quercetin-3-methyl ether is a natural compound existed in various plants with diverse biological activities like antioxidant and antiaging. Here, we reported that Quercetin-3-methyl ether inhibits colorectal cancer cell viability, and promotes apoptosis in a dose-dependent and time-dependent manner. Intriguingly, the polyamine levels, including spermidine and spermine, in colorectal cancer cells were reduced upon treatment of Quercetin-3-methyl ether. This is likely resulted from the downregulation of SMOX, a key enzyme in polyamine metabolism that catalyzes the oxidation of spermine to spermidine. These findings suggest Quercetin-3-methyl ether decreases cellular polyamine level by suppressing SMOX expression, thereby inducing colorectal cancer cell apoptosis. Our results also reveal a correlation between the anti-tumor activity of Quercetin-3-methyl ether and the polyamine metabolism modulation, which may provide new insights into a better understanding of the pharmacological activity of Quercetin-3-methyl ether and how it reprograms cellular polyamine metabolism.


Subject(s)
Biological Products , Colorectal Neoplasms , Quercetin/analogs & derivatives , Humans , Polyamines , Spermidine , Spermine , Apoptosis , Colorectal Neoplasms/drug therapy
11.
J Dairy Sci ; 107(7): 4772-4792, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38428498

ABSTRACT

Hematological parameters refer to the assessment of changes in the number and distribution of blood cells, including leukocytes (LES), erythrocytes (ERS), and platelets (PLS), which are essential for the early diagnosis of hematological system disorders and other systemic diseases in livestock. In this context, the primary objectives of this study were to investigate the genomic background of 19 hematological parameters in Holstein cattle, focusing on LES, ERS, and PLS blood components. Genetic and phenotypic (co)variances of hematological parameters were calculated based on the average information restricted maximum likelihood method and 1,610 genotyped individuals and 5,499 hematological parameter records from 4,543 cows. Furthermore, we assessed the genetic relationship between these hematological parameters and other economically important traits in dairy cattle breeding programs. We also carried out genome-wide association studies and candidate gene analyses. Blood samples from 21 primiparous cows were used to identify candidate genes further through RNA sequencing (RNA-seq) analyses. Hematological parameters generally exhibited low-to-moderate heritabilities ranging from 0.01 to 0.29, with genetic correlations between them ranging from -0.88 ± 0.09 (between mononuclear cell ratio and lymphocyte cell ratio) to 0.99 ± 0.01 (between white blood cell count and granulocyte cell count). Furthermore, low-to-moderate approximate genetic correlations between hematological parameters with one longevity, 4 fertility, and 5 health traits were observed. One hundred ninety-nine significant SNP located primarily on the Bos taurus autosomes (BTA) BTA4, BTA6, and BTA8 were associated with 16 hematological parameters. Based on the RNA-seq analyses, 6,687 genes were significantly downregulated and 4,119 genes were upregulated when comparing 2 groups of cows with high and low phenotypic values. By integrating genome-wide association studies (GWAS), RNA-seq, and previously published results, the main candidate genes associated with hematological parameters in Holstein cattle were ACRBP, ADAMTS3, CANT1, CCM2L, CNN3, CPLANE1, GPAT3, GRIP2, PLAGL2, RTL6, SOX4, WDFY3, and ZNF614. Hematological parameters are heritable and moderately to highly genetically correlated among themselves. The large number of candidate genes identified based on GWAS and RNA-seq indicate the polygenic nature and complex genetic determinism of hematological parameters in Holstein cattle.


Subject(s)
Genome-Wide Association Study , Sequence Analysis, RNA , Animals , Cattle/genetics , Genome-Wide Association Study/veterinary , Sequence Analysis, RNA/veterinary , Phenotype , Genetic Background , Genotype , Breeding , Female
12.
Sensors (Basel) ; 24(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38544023

ABSTRACT

The Jones matrix and the Mueller matrix of the coherent Rayleigh backscattering (RB) in single-mode fibers (SMFs) have been derived recently. It has been shown that both matrices depict two polarization effects-birefringence and polarization-dependent loss (PDL)-although the SMF under investigation is purely birefringent, having no PDL. In this paper, we aim to perform a theoretical analysis of both matrices using polar decomposition. The derived sub-Jones/Mueller matrices, representing birefringence and PDL, respectively, can be used to investigate the polarization properties of the coherent RB. As an application of the theoretical results, we use the derived formulas to investigate the polarization properties of the optical signals in phase-sensitive optical time-domain reflectometry (φ-OTDR). For the first time, to our knowledge, by using the derived birefringence-Jones matrix, the common optical phase of the optical signal in φ-OTDR is obtained as the function of the forward phase and birefringence distributions. By using the derived PDL-Mueller matrix, the optical intensity of the optical signal in φ-OTDR is obtained as the function of the forward phase and birefringence distributions as well as the input state of polarization (SOP). Further theoretical predictions show that, in φ-OTDR, the common optical phase depends on only the local birefringence in the first half of the fiber section, which is occupied by the sensing pulse, irrelevant of the input SOP. However, the intensity of the φ-OTDR signal is not a local parameter, which depends on the input SOP and the birefringence distribution along the entire fiber section before the optical pulse. Moreover, the PDL measured in φ-OTDR is theoretically proven to be a local parameter, which is determined by the local birefringence and local optical phase distributions.

13.
Heliyon ; 10(3): e25023, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38317931

ABSTRACT

Non-invasive external energy triggered efficient tumor therapy is a promising specific treatment strategy. Herein, a composite material of bismuth sodium titanate (BNT) and molybdenum disulfide (MoS2) with piezoelectric effect was designed for the synergistic treatment of breast cancer with near-infrared-II (NIR-II) light and ultrasound (US) activation. The BNT@MoS2 exhibit excellent photothermal and acoustic properties upon excitation by 1060 nm NIR-II laser and US, respectively. The synergistic effect of hyperthermia and reactive oxygen species (ROS) under photoacoustic action endows the BNT@MoS2 with remarkable anti-tumor activities, enabling them to eradicate breast cancer cells within 10 min. The work could provide new insights into the treatment of breast cancer.

14.
ACS Appl Mater Interfaces ; 16(7): 9323-9332, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38334091

ABSTRACT

Chiral luminescent liquid crystals have attracted widespread attention from researchers due to their unique advantages in constructing circularly polarized luminescent (CPL) materials with large luminescent asymmetry factor (glum) values. However, how to effectively prepare nondoped CPL chiral liquid crystals remains a challenge. In this article, we developed an effective and universal method to prepare nondoped CPL chiral liquid crystal materials. To achieve our strategy, we copolymerized chiral monomer M0Mt with α-cyanostilbene-based luminescent monomers MmPVPCN (m = 6, 8, 10) bearing different flexible spacer lengths to obtain a series of CPL chiral liquid crystal copolymers poly(MmPVPCN(x)-co-M0Mt(y)). Under the induction of the chiral component, the α-cyanostilbene component assembles to form chiral liquid crystals. Meanwhile, α-cyanostilbene also exhibits aggregation-induced emission enhancement characteristics. Therefore, with the help of the selective reflection effect of chiral liquid crystals, the copolymer films can emit efficient CPL. For poly(M8PVPCN(0.85)-co-M0Mt(0.15)), the glum and solid luminescence quantum yield can achieve -2.61 × 10-2 and 25.04%, respectively. In addition, by altering the chemical structure of the copolymers, the phase structure of the copolymers can be effectively controlled, thereby regulating their CPL properties.

15.
J Nanobiotechnology ; 22(1): 13, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38167034

ABSTRACT

In recent years, the environmental health issue of microplastics has aroused an increasingly significant concern. Some studies suggested that exposure to polystyrene microplastics (PS-MPs) may lead to renal inflammation and oxidative stress in animals. However, little is known about the essential effects of PS-MPs with high-fat diet (HFD) on renal development and microenvironment. In this study, we provided the single-cell transcriptomic landscape of the kidney microenvironment induced by PS-MPs and HFD in mouse models by unbiased single-cell RNA sequencing (scRNA-seq). The kidney injury cell atlases in mice were evaluated after continued PS-MPs exposure, or HFD treated for 35 days. Results showed that PS-MPs plus HFD treatment aggravated the kidney injury and profibrotic microenvironment, reshaping mouse kidney cellular components. First, we found that PS-MPs plus HFD treatment acted on extracellular matrix organization of renal epithelial cells, specifically the proximal and distal convoluted tubule cells, to inhibit renal development and induce ROS-driven carcinogenesis. Second, PS-MPs plus HFD treatment induced activated PI3K-Akt, MAPK, and IL-17 signaling pathways in endothelial cells. Besides, PS-MPs plus HFD treatment markedly increased the proportions of CD8+ effector T cells and proliferating T cells. Notably, mononuclear phagocytes exhibited substantial remodeling and enriched in oxidative phosphorylation and chemical carcinogenesis pathways after PS-MPs plus HFD treatment, typified by alterations tissue-resident M2-like PF4+ macrophages. Multispectral immunofluorescence and immunohistochemistry identified PF4+ macrophages in clear cell renal cell carcinoma (ccRCC) and adjacent normal tissues, indicating that activate PF4+ macrophages might regulate the profibrotic and pro-tumorigenic microenvironment after renal injury. In conclusion, this study first systematically revealed molecular variation of renal cells and immune cells in mice kidney microenvironment induced by PS-MPs and HFD with the scRNA-seq approach, which provided a molecular basis for decoding the effects of PS-MPs on genitourinary injury and understanding their potential profibrotic and carcinogenesis in mammals.


Subject(s)
Microplastics , Polystyrenes , Mice , Animals , Microplastics/toxicity , Plastics , Single-Cell Gene Expression Analysis , Diet, High-Fat/adverse effects , Endothelial Cells , Phosphatidylinositol 3-Kinases , Kidney , Carcinogenesis , Mammals , Tumor Microenvironment
16.
MedComm (2020) ; 5(1): e461, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38222314

ABSTRACT

Tertiary lymphoid structures (TLS) are organized aggregates of immune cells that form under pathological conditions. However, the predictive value of TLS in clear cell renal cell carcinoma (ccRCC) for immunotherapies remains unclear. We comprehensively assessed the implications for prognosis and immunological responses of the TLS spatial and maturation heterogeneity in 655 ccRCC patients. A higher proportion of early-TLS was found in peritumoral TLS, while intratumoral TLS mainly comprised secondary follicle-like TLS (SFL-TLS), indicating markedly better survival. Notably, presence of TLS, especially intratumoral TLS and SFL-TLS, significantly correlated with better survival and objective reflection rate for ccRCC patients receiving anti-Programmed Cell Death Protein-1 (PD-1)/Programmed Cell Death-Ligand-1 (PD-L1) immunotherapies. In peritumoral TLS cluster, primary follicle-like TLS, the proportion of tumor-associated macrophages, and Treg infiltration in the peritumoral regions increased prominently, suggesting an immunosuppressive tumor microenvironment. Interestingly, spatial transcriptome annotation and multispectral fluorescence showed that an abundance of mature plasma cells within mature TLS has the capacity to produce IgA and IgG, which demonstrate significantly higher objective response rates and a superior prognosis for ccRCC patients subjected to immunotherapy. In conclusion, this study revealed the implications of TLS spatial and maturation heterogeneity on the immunological status and clinical responses, allowing the improvement of precise immunotherapies of ccRCC.

17.
J Dairy Sci ; 107(3): 1535-1548, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37690717

ABSTRACT

Disease-related milk losses directly affect dairy herds' profitability and the production efficiency of the dairy industry. Therefore, this study aimed to quantify phenotypic variability in milk fluctuation periods related to diseases and to explore milk fluctuation traits as indicators of disease resilience. By combining high-frequency daily milk yield data with disease records of cows that were treated and recovered from the disease, we estimated milk variability trends within a fixed period around the treatment day of each record for 5 diseases: udder health, reproductive disorders, metabolic disorders, digestive disorders, and hoof health. The average milk yield decreased rapidly from 6 to 8 d before the treatment day for all diseases, with the largest milk reduction observed on the treatment day. Additionally, we assessed the significance of milk fluctuation periods highly related to diseases by defining milk fluctuations as a period of at least 10 consecutive days in which milk yield fell below 90% of the expected milk production values at least once. We defined the development and recovery phases of milk fluctuations using 3,847 milk fluctuation periods related to disease incidences, and estimated genetic parameters of milk fluctuation traits, including milk losses, duration of the fluctuation, variation rate in daily milk yield, and standard deviation of milk deviations for each phase and their genetic correlation with several important traits. In general, the disease-related milk fluctuation periods lasted 21.19 ± 10.36 d with a milk loss of 115.54 ± 92.49 kg per lactation. Compared with the development phase, the recovery phase lasted an average of 3.3 d longer, in which cows produced 11.04 kg less milk and exhibited a slower variation rate in daily milk yield of 0.35 kg/d. There were notable differences in milk fluctuation traits depending on the disease, and greater milk losses were observed when multiple diseases occurred simultaneously. All milk fluctuation traits evaluated were heritable with heritability estimates ranging from 0.01 to 0.10, and moderate to high genetic correlations with milk yield (0.34 to 0.64), milk loss throughout the lactation (0.22 to 0.97), and resilience indicator (0.39 to 0.95). These results indicate that cows with lower milk losses and higher resilience tend to have more stable milk fluctuations, which supports the potential for breeding for more disease-resilient cows based on milk fluctuation traits. Overall, this study confirms the high effect of diseases on milk yield variability and provides insightful information about their relationship with relevant traits in Holstein cattle. Furthermore, this study shows the potential of using high-frequency automatic monitoring of milk yield to assist on breeding practices and health management in dairy cows.


Subject(s)
Milk , Resilience, Psychological , Female , Cattle , Animals , Lactation , Mammary Glands, Animal , Phenotype
18.
Immunol Rev ; 321(1): 181-198, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37403660

ABSTRACT

Immunogenic cell death (ICD) is a special pattern of tumor cell death, enabling to elicit tumor-specific immune response via the release of damage-associated molecular patterns and tumor-associated antigens in the tumor microenvironment. ICD-induced immunotherapy holds the promise for completely eliminating tumors and long-term protective antitumor immune response. Increasing ICD inducers have been discovered for boosting antitumor immunity via evoking ICD. Nonetheless, the utilization of ICD inducers remains insufficient owing to serious toxic reactions, low localization efficiency within the tumor microenvironmental niche, etc. For overcoming such limitations, stimuli-responsive multifunctional nanoparticles or nanocomposites with ICD inducers have been developed for improving immunotherapeutic efficiency via lowering toxicity, which represent a prospective scheme for fostering the utilization of ICD inducers in immunotherapy. This review outlines the advances in near-infrared (NIR)-, pH-, redox-, pH- and redox-, or NIR- and tumor microenvironment-responsive nanodelivery systems for ICD induction. Furthermore, we discuss their clinical translational potential. The progress of stimuli-responsive nanoparticles in clinical settings depends upon the development of biologically safer drugs tailored to patient needs. Moreover, an in-depth comprehending of ICD biomarkers, immunosuppressive microenvironment, and ICD inducers may accelerate the advance in smarter multifunctional nanodelivery systems to further amplify ICD.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Nanoparticle Drug Delivery System , Immunogenic Cell Death , Prospective Studies , Antineoplastic Agents/therapeutic use , Immunotherapy , Tumor Microenvironment
20.
Environ Sci Technol ; 58(3): 1589-1600, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38154035

ABSTRACT

Hydroxymethanesulfonate (HMS) has been found to be an abundant organosulfur aerosol compound in the Beijing-Tianjin-Hebei (BTH) region with a measured maximum daily mean concentration of up to 10 µg per cubic meter in winter. However, the production medium of HMS in aerosols is controversial, and it is unknown whether chemical transport models are able to capture the variations of HMS during individual haze events. In this work, we modify the parametrization of HMS chemistry in the nested-grid GEOS-Chem chemical transport model, whose simulations provide a good account of the field measurements during winter haze episodes. We find the contribution of the aqueous aerosol pathway to total HMS is about 36% in winter in Beijing, due primarily to the enhancement effect of the ionic strength on the rate constants of the reaction between dissolved formaldehyde and sulfite. Our simulations suggest that the HMS-to-inorganic sulfate ratio will increase from the baseline of 7% to 13% in the near future, given the ambitious clean air and climate mitigation policies for the BTH region. The more rapid reductions in emissions of SO2 and NOx compared to NH3 alter the atmospheric acidity, which is a critical factor leading to the rising importance of HMS in particulate sulfur species.


Subject(s)
Air Pollutants , Air Pollution , Beijing , Air Pollutants/analysis , Air Pollution/analysis , Particulate Matter/analysis , Environmental Monitoring , China , Aerosols/analysis , Water
SELECTION OF CITATIONS
SEARCH DETAIL