Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
Opt Express ; 32(9): 15862-15869, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38859226

ABSTRACT

Tunneling ionization is a crucial process in the interaction between strong laser fields and matter which initiates numerous nonlinear phenomena including high-order harmonic generation, photoelectron holography, etc. Both adiabatic and nonadiabatic tunneling ionization are well understood in atomic systems. However, the tunneling dynamics in solids, especially nonadiabatic tunneling, has not yet been fully understood. Here, we study the sub-cycle resolved strong-field tunneling dynamics in solids via a complex saddle-point method. We compare the instantaneous momentum at the moment of tunneling and the tunneling distances over a range of Keldysh parameters. Our results demonstrate that for nonadiabatic tunneling, tunneling ionization away from Γ point is possible. When this happens the electron has a nonzero initial velocity when it emerges in the conduction band. Moreover, consistent with atomic tunneling, a reduced tunneling distance as compared to the quasi-static case is found. Our results provide remarkable insight into the basic physics governing the sub-cycle electron tunneling dynamics with significant implications for understanding subsequent strong-field nonlinear phenomena in solids.

3.
Biomedicines ; 11(7)2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37509566

ABSTRACT

Polycystic ovary syndrome (PCOS) is an endocrine disorder and metabolic syndrome. Ovarian fibrosis pathological change in PCOS has gradually attracted people's attention. In this study, we constructed a PCOS mouse model through the use of dehydroepiandrosterone. Sirius red staining showed that the ovarian tissues in PCOS mice had obvious fibrosis. Prolyl oligopeptidase (POP) is a serine protease and N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is its catalytic product. Studies show that abnormal expression and activity of POP and Ac-SDKP are closely related to tissue fibrosis. It was found that the expression of POP and Ac-SDKP was decreased in the ovaries of PCOS mice. Further studies showed that POP and Ac-SDKP promoted the expression of matrix metalloproteinases 2 (MMP-2) expression and decreased the expression of transforming growth factor beta 1 (TGF-ß1) in granulosa cells. Hyperandrogenemia is a typical symptom of PCOS. We found that testosterone induced the low expression of POP and MMP2 and high expression of TGF-ß1 in granulosa cells. POP overexpression and Ac-SDKP treatment inhibited the effect of testosterone on TGF-ß1 and MMP2 in vitro and inhibited ovarian fibrosis in the PCOS mouse model. In conclusion, PCOS ovarian tissue showed obvious fibrosis. Low expression of POP and Ac-SDKP and changes in fibrotic factors contribute to the ovarian pathological fibrosis induced by androgen.

4.
Environ Sci Pollut Res Int ; 30(36): 85578-85591, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37389749

ABSTRACT

As an emerging flame retardant, organic phosphate flame retardants have been extensively used worldwide. The aim of this study is to determine the effects of TnBP on neurobehavior of Caenorhabditis elegans (C. elegans) and its mechanisms. L1 larvae of wild-type nematodes (N2) were exposed to TnBP of 0, 0.1, 1, 10, and 20 mg/L for 72 hours. Then, we observed that the body length and body width were inhibited, the head swings were increased, the pump contractions and chemical trend index were reduced, the production of reactive oxygen species (ROS) was increased, and the expression of mitochondrial oxidative stress related genes (mev-1 and gas-1) and P38 MAPK signal pathway-related genes (pmk-1, sek-1, and nsy-1) was altered. After reporter gene strains BZ555, DA1240, and EG1285 were exposed to TnBP of 0, 0.1, 1, 10, and 20 mg/L for 72 hours, the synthesis of dopamine, glutamate, and Gamma-Amino Butyric Acid (GABA) was increased. In addition, the pmk-1 mutants (KU25) led to the sensitivity of C. elegans to TnBP in terms of head swings. The results showed that TnBP had harmful effects on the neurobehavior of C. elegans, oxidative stress might be one of the mechanisms of its neurotoxicity, and P38 MAPK signal pathway might play an important regulatory role in this process. The results revealed the potential adverse effects of TnBP on the neurobehavior of C. elegans.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism , Organophosphates/pharmacology
5.
Article in English | MEDLINE | ID: mdl-37106514

ABSTRACT

INTRODUCTION: Studies have indicated that the conservative Notch pathway contributes to steroid hormone synthesis in the ovaries; however, its role in hormone synthesis of the testis remains unclear. We have previously reported Notch 1, 2, and 3 to be expressed in murine Leydig cells and that inhibition of Notch signaling caused G0/G1 arrest in TM3 Leydig cells. METHOD: In this study, we have further explored the effect of different Notch signal pathways on key steroidogenic enzymes in murine Leydig cells. TM3 cells were treated with Notch signaling pathway inhibitor MK-0752, and different Notch receptors were also overexpressed in TM3 cells. RESULT: We evaluated the expression of key enzymes of steroid synthesis, including p450 cholesterol side-chain cleavage enzyme (P450Scc), 3ß-hydroxysteroid dehydrogenase (3ß-HSD) and steroidogenic acute regulatory protein (StAR), and key transcriptional factors for steroid synthesis, including steroidogenic factor 1 (SF1), GATA-binding protein 4 (GATA4) and GATA6. CONCLUSION: We found the level of P450Scc, 3ß-HSD, StAR and SF1 to be decreased after treatment with MK-0752, while overexpression of Notch1 up-regulated the expression of 3ß-HSD, P450Scc, StAR and SF1. MK-0752 and overexpression of different Notch members had no influence on the expression of GATA4 and GATA6. In conclusion, Notch1 signaling may contribute to the steroid synthesis in Leydig cells through regulating SF1 and downstream steroidogenic enzymes (3ß-HSD, StAR and P450Scc).

6.
Cell Biosci ; 12(1): 175, 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36258228

ABSTRACT

BACKGROUND: The human endometrium is a highly regenerative tissue that is believed to have two main types of stem cells: endometrial mesenchymal/stromal stem cells (eMSCs) and endometrial epithelial stem cells (eESCs). So far, eMSCs have been extensively studied, whereas the studies of eESCs are constrained by the inability to culture and expand them in vitro. The aim of this study is to establish an efficient method for the production of eESCs from human endometrium for potential clinical application in intrauterine adhesion (IUA). RESULTS: Here we developed a culture condition with a combination of some small molecules for in vitro culturing and expansion of human SSEA-1+ cells. The SSEA-1+ cells exhibited stem/progenitor cell activity in vitro, including clonogenicity and differentiation capacity into endometrial epithelial cell-like cells. In addition, the SSEA-1+ cells, embedded in extracellular matrix, swiftly self-organized into organoid structures with long-term expansion capacity and histological phenotype of the human endometrial epithelium. Specifically, we found that the SSEA-1+ cells showed stronger therapeutic potential than eMSCs for IUA in vitro. In a rat model of IUA, in situ injection of the SSEA-1+ cells-laden chitosan could efficiently reduce fibrosis and facilitate endometrial regeneration. CONCLUSIONS: Our work demonstrates an approach for isolation and expansion of human eESCs in vitro, and an appropriate marker, SSEA-1, to identify eESCs. Furthermore, the SSEA-1+ cells-laden chitosan might provide a novel cell-based approach for IUA treatment. These findings will advance the understanding of pathophysiology during endometrial restoration which may ultimately lead to more rational clinical practice.

7.
Front Oncol ; 12: 902966, 2022.
Article in English | MEDLINE | ID: mdl-35837096

ABSTRACT

Background and purpose: Head and neck cancer (HNC) patients usually present with malnutrition during radiotherapy, leading to loss of skeletal muscle mass (SMM) and poor clinical outcomes. CT has been used in clinical practice for measuring SMM in cancer patients. However, its clinical application for monitoring SMM is limited by the expensive price and high radiation exposure. This study aimed to investigate the feasibility of cone-beam computed tomography (CBCT) for assessing SMM and its changes in HNC patients undergoing radiotherapy. Materials and methods: This study was divided into two parts. In part 1 (n = 32), the cross-sectional of skeletal muscle area (SMA) at the third cervical vertebra (C3) based on CBCT and computed tomography (CT) was assessed. In part 2 (n = 30), CT and CBCT were performed, and patients' weight was measured before and at four different time points during radiotherapy. SMAs at C3 were independently identified by three senior radiation oncologists. The interobserver agreement of SMA on CBCT (SMACBCT) findings was analyzed using the intraclass correlation coefficient (ICC). One-way analysis of variance was used to evaluate the interobserver variability and statistical significance for SMA measurements. CBCT and CT measurement differences and correlations were analyzed using paired sample t-test and Pearson correlation analysis, respectively. The Krouwer variant of the Bland-Altman plot was used to analyze the agreement of SMA measurements between CBCT and CT. A simple linear regression model was used to analyze the relationship of SMA measurements between the two imaging techniques, and the equation was established. A repeated-measures ANOVA was performed to evaluate the effects and interactions between weight loss, SMA loss, and time. Results: SMACBCT demonstrated excellent interobserver reliability; no significant difference between SMACBCT and SMA on CT (SMACT) at C3 was observed in all patients. The SMACBCT and SMACT were highly correlated (r = 0.966; 95% confidence interval = 0.955-0.975; p < 0.001). Bland-Altman analysis revealed that SMACBCT was generally higher than SMACT. The predicted SMA value at C3 on CT using CBCT was similar to the actual value. Moreover, significant differences between SMA and weight loss (F =10.99, p = 0.002), groups (weight loss and SMA loss) and times (4 time points) (F = 3.93, p = 0.013), and mean percent loss over time (F = 7.618, p < 0.001) were noted. Conclusion: CBCT may be used as an alternative for CT to measure SMA in HNC patients during radiotherapy.

8.
Front Pharmacol ; 13: 871059, 2022.
Article in English | MEDLINE | ID: mdl-35721202

ABSTRACT

Background: Mitochondria are the main sites of reactive sulfur species (RSS) production in living cells. RSS in mitochondria play an important role in physiological and pathological processes of life. In this study, a dual-labeling probe that could simultaneously label the mitochondrial membrane and matrix was designed to quantitatively detect RSS of mitochondria in living cells using nano-level super-resolution imaging. Methods: A fluorescent probe CPE was designed and synthesized. The cytotoxicity of CPE was determined and co-localization of CPE with a commercial mitochondrial probe was analyzed in HeLa cells. Then, the uptake patterns of CPE in HeLa cells at different temperatures and endocytosis levels were investigated. The staining characteristics of CPE under different conditions were imaged and quantitated under structured illumination microscopy. Results: A fluorescence probe CPE reacting to RSS was developed, which could simultaneously label the mitochondrial membrane with green fluorescence and the mitochondrial matrix with red fluorescence. CPE was able to demonstrate the mitochondrial morphology and detect the changes of RSS in mitochondria. With the increase of mitochondrial RSS concentration, the light of the red matrix will be quenched. Conclusion: CPE provides a strategy for the design of probes and an attractive tool for accurate examination to changes of mitochondrial morphology and RSS in mitochondria in living cells at the nanoscale.

9.
Toxicology ; 474: 153211, 2022 05 30.
Article in English | MEDLINE | ID: mdl-35595029

ABSTRACT

As a new type of flame retardant, Organic Phosphate Flame Retardant has been widely used worldwide. The purpose of our research is to determine the neurotoxicity of Tris (1,3-dichloroisopropyl) phosphate (TDCPP) to Caenorhabditis elegans and its mechanism. L1 larvae wild-type C. elegans were exposed to different concentrations of TDCPP, and the effects on motor behavior (head thrashes, body bends, pumping times, chemotaxis index), ROS levels, and p38MAPK signaling pathway-related gene expression levels were measured. Three transgenic nematode strains, BZ555, DA1240, and EG1285, were also used to study the effects of TDCPP on nematode dopamine neurons, glutamate neurons, and GABA neurons. The results showed that TDCPP can inhibit the head thrashes and body bends of the nematode, reduce dopamine production, increase the level of ROS in the body, and affect the expression of genes related to the p38MAPK signaling pathway. We next employed ROS production and motor behavior as toxicity assessment endpoints to determine the involvement of p38 MAPK signaling in the regulation of response to TDCPP. The results showed that the nematodes with low expression of pmk-1 were less sensitive to the TDCPP. It was suggested that TDCPP had neurotoxicity and regulated neurotoxicity to C. elegans by activating the p38-MAPK signaling pathway. The research in this article provides important information for revealing the environmental health risks of organophosphorus flame retardants and their toxic mechanism of action.


Subject(s)
Flame Retardants , Neurotoxicity Syndromes , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Flame Retardants/metabolism , Flame Retardants/toxicity , Organophosphates/toxicity , Organophosphorus Compounds/toxicity , Phosphates , Reactive Oxygen Species
10.
Int J Mol Med ; 49(4)2022 04.
Article in English | MEDLINE | ID: mdl-35179217

ABSTRACT

Models considering hepatocellular carcinoma (HCC) complexity cannot be accurately replicated in routine cell lines or animal models. We aimed to evaluate the practicality of tissue slice culture by combining it with a cryopreservation technique. We prepared 0.3­mm­thick tissue slices by a microtome and maintained their cell viability using a cryopreservation technique. Slices were cultured individually in the presence or absence of regorafenib (REG) for 72 h. Alterations in morphology and gene expression were assessed by histological and genetic analysis. Overall viability was also analyzed in tissue slices by CCK­8 quantification assay and fluorescent staining. Tissue morphology and cell viability were evaluated to quantify drug effects. Histological and genetic analyses showed that no significant alterations in morphology and gene expression were induced by the vitrification­based cryopreservation method. The viability of warmed HCC tissues was up to 90% of the fresh tissues. The viability and proliferation could be retained for at least four days in the filter culture system. The positive drug responses in precision­cut slice culture in vitro were evaluated by tissue morphology and cell viability. In summary, the successful application of precision­cut HCC slice culture combined with a cryopreservation technique in a systematic drug screening demonstrates the feasibility and utility of slice culture method for assessing drug response.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Cell Survival , Cryopreservation , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics
11.
Front Med (Lausanne) ; 8: 774344, 2021.
Article in English | MEDLINE | ID: mdl-34901091

ABSTRACT

Background: In recent years, deep learning has been widely used in a variety of ophthalmic diseases. As a common ophthalmic disease, meibomian gland dysfunction (MGD) has a unique phenotype in in-vivo laser confocal microscope imaging (VLCMI). The purpose of our study was to investigate a deep learning algorithm to differentiate and classify obstructive MGD (OMGD), atrophic MGD (AMGD) and normal groups. Methods: In this study, a multi-layer deep convolution neural network (CNN) was trained using VLCMI from OMGD, AMGD and healthy subjects as verified by medical experts. The automatic differential diagnosis of OMGD, AMGD and healthy people was tested by comparing its image-based identification of each group with the medical expert diagnosis. The CNN was trained and validated with 4,985 and 1,663 VLCMI images, respectively. By using established enhancement techniques, 1,663 untrained VLCMI images were tested. Results: In this study, we included 2,766 healthy control VLCMIs, 2,744 from OMGD and 2,801 from AMGD. Of the three models, differential diagnostic accuracy of the DenseNet169 CNN was highest at over 97%. The sensitivity and specificity of the DenseNet169 model for OMGD were 88.8 and 95.4%, respectively; and for AMGD 89.4 and 98.4%, respectively. Conclusion: This study described a deep learning algorithm to automatically check and classify VLCMI images of MGD. By optimizing the algorithm, the classifier model displayed excellent accuracy. With further development, this model may become an effective tool for the differential diagnosis of MGD.

12.
Front Bioeng Biotechnol ; 9: 738081, 2021.
Article in English | MEDLINE | ID: mdl-34858956

ABSTRACT

Globally, about two million people die from liver diseases every year. Liver transplantation is the only reliable therapy for severe end-stage liver disease, however, the shortage of organ donors is a huge limitation. Human hepatocytes derived liver progenitor-like cells (HepLPCs) have been reported as a novel source of liver cells for development of in vitro models, cell therapies, and tissue-engineering applications, but their functionality as transplantation donors is unclear. Here, a 3-dimensional (3D) co-culture system using HepLPCs and human umbilical vein endothelial cells (HUVECs) was developed. These HepLPC spheroids mimicked the cellular interactions and architecture of mature hepatocytes, as confirmed through ultrastructure morphology, gene expression profile and functional assays. HepLPCs encapsulated in alginate beads are able to mitigate liver injury in mice treated with carbon tetrachloride (CCL4), while alginate coating protects the cells from immune attack. We confirmed these phenomena due to HUVECs producing glial cell line-derived neurotrophic factor (GDNF) to promote HepLPCs maturation and enhance HepLPCs tight junction through MET phosphorylation. Our results display the efficacy and safety of the alginate microencapsulated spheroids in animal model with acute liver injury (ALF), which may suggest a new strategy for cell therapy.

13.
Medicine (Baltimore) ; 100(46): e27860, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34797324

ABSTRACT

BACKGROUND: Stroke can cause physical and mental problems. This study examined how the sequential therapy of N-butylphthalide (NBP) could effectively improve physical movement, life activities, and psychological disorders in stroke patients. METHODS: This double-blind, randomized controlled trial included middle-aged or elderly patients with acute ischemic stroke that had commenced within 48 hours before enrolment in the study. The experimental group was administered 100 mL NBP injections twice a day in the first 14 days, and a sequential 200 mg NBP soft capsule 3 times a day for the next 76 days. The control group was administered 100 mL NBP placebo injections twice a day in the first 14 days and 200 mg sequential NBP placebo soft capsule 3 times a day for the next 76 days. Primary outcomes were the National Institutes of Health Stroke Scale, the Barthel Index of activities of daily living, and Modified Rankin Scale which were evaluated at day 0, day 14, and month 1 or at day 14, month 3, and month 6. Secondary outcomes included the Hamilton Anxiety Scale and the Hamilton Depression Scale, all were evaluated on day 0, month 3, and month 6. Moreover, the adverse reaction of NBP or other serious adverse events were evaluated at each time. RESULTS: Our therapy significantly increased the Barthel Index of activities of daily living scores, decreased the National Institutes of Health Stroke Scale and Modified Rankin Scale scores, and the incidence of the Hamilton Anxiety Scale and the Hamilton Depression Scale of ischemic stroke patients (P < .05). CONCLUSION: Our results indicated that 90 days' sequential therapy with NBP as an additional therapy in the treatment of ischemic stroke can better improve patients' psychological and behavioral functions without significant side effects.


Subject(s)
Benzofurans/therapeutic use , Ischemic Stroke/drug therapy , Activities of Daily Living , Adult , Aged , Aged, 80 and over , Behavioral Symptoms , Benzofurans/adverse effects , Double-Blind Method , Female , Humans , Ischemic Stroke/complications , Male , Mental Disorders , Middle Aged , Treatment Outcome
14.
Ecotoxicol Environ Saf ; 227: 112896, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34673412

ABSTRACT

Tri-n-butyl phosphate (TnBP), a typical alkyl organophosphate ester is widely used as an emerging flame retardant for polybrominated diphenyl ethers alternatives, but the potential toxicity and mechanism are unclear. In this study, the reproductive toxicity of TnBP and its related mechanisms were explored using the Caenorhabditis elegans (C. elegans) model. After TnBP (100-1000 µg/L) exposure, brood size and the number of fertilized eggs in the uterus in C. elegans were significantly reduced, the relative area of gonad arm and the number of total germline cells in C. elegans were significantly reduced, germ cell apoptosis and germ cell DNA damage in C. elegans were significantly increased, the level of ROS in C. elegans was significantly increased. Furthermore, TnBP exposure caused abnormal gene expressions of cell apoptosis (ced-9, ced-4 and ced-3), DNA damage (hus-1, clk-2, cep-1 and egl-1) and oxidative stress (mev-1 and gas-1). TnBP exposure can lead to reproductive ability decreased and gonad development impaired in C. elegans, the mechanism of TnBP reduced reproductive ability may be related to germ cell apoptosis, germ cell DNA damage and oxidative stress. Environmental exposure to TnBP may have potential reproductive toxicity.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Female , Germ Cells , Organophosphates
15.
Bioresour Technol ; 339: 125522, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34320454

ABSTRACT

In this study, different metal-salt catalyzed pretreatment was presented to disorganize the obstinate structure by eliminating the majority of hemicellulose, fractional of lignin, and improve the enzymatic saccharification of sugarcane bagasse. With the accession of Tween 80 during enzymolysis, all metal-salt pretreated substrates presented higher glucose yields, especially for CuCl2. Furthermore, Tween 80 was added to the pretreatment, enhancing the elimination of hemicellulose and lignin, decreasing the degradation of sugars to inhibitors, and presenting superior performance on improving glucose yield. In addition, the maximum glucose yield of 88.0% was achieved by using Tween 80 concomitantly with AlCl3 pretreatment and enzymolysis. It was also found that adding Tween 80 during pretreatment or/and enzymolysis after 24 h could liberate the similar glucose without Tween 80 after 72 h. However, the enhancement of Tween 80 at 6 h was higher than that at 72 h.


Subject(s)
Saccharum , Catalysis , Cellulose , Hydrolysis , Lignin , Polysorbates , Sugars
16.
Theranostics ; 11(11): 5539-5552, 2021.
Article in English | MEDLINE | ID: mdl-33859762

ABSTRACT

Rationale: We developed a cocktail of soluble molecules mimicking the in vivo milieu supporting liver regeneration that could convert mature hepatocytes to expandable liver progenitor-like cells in vitro. This study aimed to induce endogenous liver progenitor cells by the administration of the soluble molecules to provide an alternative approach for the resolution of liver fibrosis. Methods:In vitro cultured hepatocyte-derived liver progenitor-like cells (HepLPCs) were transplanted into CCL4-treated mice to investigate the therapeutic effect against liver fibrosis. Next, we used HGF in combination with a cocktail of small molecules (Y-27632, A-83-01, and CHIR99021 (HACY)) to induce endogenous CD24+ liver progenitor cells and to inhibit the activation of hepatic stellate cells (HSCs) during CCL4-induced hepatic injury. RNA sequencing was performed to further clarify the features of HACY-induced CD24+ cells compared with CCL4-induced CD24+ cells and in vitro derived HepLPCs. Finally, we evaluated the expansion of HACY-induced CD24+ cells in human hepatocyte-spheroids from fibrotic liver tissues. Results: HepLPCs exhibited the capacity to alleviate liver fibrosis after transplantation into CCL4-treated mice. The in vivo administration of HACY not only induced the conversion of mature hepatocytes (MHs) to CD24+ progenitor cells but prevented the activation of HSCs, thus leading to enhanced improvement of liver fibrosis in CCL4-treated mice. Compared to CD24+ cells induced by CCL4 alone, HACY-induced CD24+ cells retained an enhanced level of hepatic function and could promote the restoration of liver function that exhibited comparable gene expression profiles with HepLPCs. CD24+ cells were also observed in human liver fibrotic tissues and were expanded in three-dimensional (3D) hepatic spheroids in the presence of HACY in vitro. Conclusions: Hepatocyte-derived liver progenitor-like cells are crucial for liver regeneration during chronic hepatic injuries. The administration of HACY, which allowed the induction of endogenous CD24+ progenitor cells and the inactivation of HSCs, exerts beneficial effects in the treatment of liver fibrosis by re-establishing a balance favoring liver regeneration while preventing fibrotic responses.


Subject(s)
Hepatic Stellate Cells/drug effects , Liver Cirrhosis/drug therapy , Liver/drug effects , Small Molecule Libraries/pharmacology , Stem Cells/drug effects , Amides/pharmacology , Animals , CD24 Antigen/metabolism , Carbon Tetrachloride/pharmacology , Cells, Cultured , Gene Expression/drug effects , Hepatic Stellate Cells/metabolism , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Liver/metabolism , Liver Cirrhosis/metabolism , Liver Regeneration/drug effects , Male , Mice , Mice, Inbred C57BL , Pyridines/pharmacology , Pyrimidines/pharmacology , Stem Cells/metabolism
17.
Opt Express ; 29(7): 10726-10736, 2021 Mar 29.
Article in English | MEDLINE | ID: mdl-33820201

ABSTRACT

By employing the frequency-domain theory, we investigate the influence of polarization directions on angle-resolved photoelectron energy spectrum in the above-threshold ionization (ATI) process of atoms exposed to the IR+XUV two-color laser fields, which shows the multiplateau structures. When the ionized electron is emitted along the IR laser's polarization direction, the width of each plateau keeps a certain energy range, and the jet structures and main lobes are determined by both the emission angle relative to the polarization direction of the XUV laser field and the number of the XUV photons absorbed by the electron. While when the ionized electron is emitted along the XUV laser's polarization direction, the width of each plateau depends on the polarization direction of the IR laser field, and the angular distribution of the ionized electron exhibits the isotropic characteristics. These results show that the ATI spectrum may be effectively controlled by changing the angle between the two laser fields' polarization directions.

18.
Arch Toxicol ; 95(7): 2431-2442, 2021 07.
Article in English | MEDLINE | ID: mdl-33852043

ABSTRACT

Hepatocytes are the main cell components of the liver and perform metabolic, detoxification, and endocrine functions. Functional hepatocytes are of great value in drug development, toxicity evaluation, and cell therapy for liver diseases. In recent years, an increasing number of in vitro models have been developed to screen drugs and test their toxicity. However, maintaining hepatocyte function in vitro for a long time is a serious challenge. Even freshly isolated liver cells cultured for a short time may lose function via spontaneous dedifferentiation. Thus, novel cell culture systems allowing extended hepatocyte maintenance and more predictive long-term in vitro studies are required. In this study, we developed a conditioned culture system composed of a small-molecule combination that can maintain hepatocyte morphology and functions over the long term. Two-month culture of primary human hepatocytes showed that the conditioned medium was able to stably preserve hepatic functions such as albumin and α-antitrypsin secretion, hepatic transport activity, urea synthesis, and ammonia elimination. Furthermore, this culture model can be used to assess drug-induced hepatotoxicity in vitro. In summary, our work suggests a feasible approach to maintain hepatocyte function in vitro and proposes a promising model for long-term toxicological studies and drug development.


Subject(s)
Chemical and Drug Induced Liver Injury , Liver Diseases , Cells, Cultured , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/metabolism , Hepatocytes/metabolism , Humans , Liver/metabolism , Liver Diseases/metabolism
19.
Eur Radiol ; 31(4): 2094-2105, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33025175

ABSTRACT

OBJECTIVES: We aimed to determine the value of MR-based preoperative nomograms in predicting DNA copy number (CN) subtype in lower grade glioma (LGG) patients. METHODS: The overall survival (OS) data were analyzed. MRI data of 170 subjects were retrospectively analyzed. The correlation was explored by univariate and multivariate regression analysis. RESULTS: CN2 subtype was associated with shortest median OS (CN2 subtype vs. others: 46.8 vs. 221.7 months, p < 0.05). The time-dependent receiver operating characteristic for the CN2 subtype was 0.80 (95% CI: 0.74-0.85) for survival at 1 year, 0.80 (95% CI: 0.75-0.85) for survival at 2 years, and 0.77 (95% CI: 0.73-0.83) for survival at 3 years. On multivariate analysis, hemorrhage (OR: 0.118; p < 0.001; 95% CI: 0.037-0.376), poorly defined margin (OR: 4.592; p < 0.001; 95% CI: 1.965-10.730), extranodular growth (OR: 0.247; p = 0.006; 95% CI: 0.091-0.671), and volume ≥ 60 cm3 (OR: 4.734.256; p < 0.001; 95% CI: 2.051-10.924) were associated with CN1 subtype (AUC: 0.781). Proportion CE tumor (OR: 5.905; p = 0.007; 95% CI: 1.622-21.493), extranodular growth (OR: 9.047; p = 0.001; 95% CI: 2.349-34.846), width ≥ median (OR: 0.231; p = 0.049; 95% CI: 0.054-0.998), and depth ≥ median (OR: 0.192; p = 0.023; 95% CI: 0.046-0.799) were associated with CN2 subtype (AUC: 0.854). Necrosis/cystic (OR: 6.128; p = 0.007; 95% CI: 1.635-22.968), hemorrhage (OR: 5.752; p = 0.002; 95% CI: 1.953-16.942), poorly defined margin (OR: 0.164; p < 0.001; 95% CI: 0.063-0.427), and volume ≥ median (OR: 4.422; p < 0.001; 95% CI: 1.925-10.160) were associated with CN3 subtype (AUC: 0.808). All three nomograms showed good discrimination and calibration. Decision curve analysis supported that all nomograms were clinically useful. The average accuracy of the tenfold cross-validation was 0.680 (CN1), 0.794 (CN2), and 0.894 (CN3), respectively. CONCLUSIONS: The shortest OS was observed in patients with CN2 subtype. This preliminary radiogenomics analysis revealed that the MR-based preoperative nomograms provide individualized prediction of DNA copy number subtype in LGG patients. KEY POINTS: • This preliminary radiogenomics analysis of LGG revealed that the MR-based preoperative nomograms provide individualized prediction of DNA copy number subtype in LGG patients. • The AUC for the ROC curve was 0.781 for CN1 subtype, 0.854 for CN2 subtype, and 0.808 for CN3 subtype. Decision curve analysis supported that all nomograms were clinically useful. • The sensitivity was 0.779 (CN1), 0.731 (CN2), and 0.851 (CN3), respectively. The specificity was 0.664 (CN1), 0.872 (CN2), and 0.625 (CN3), respectively. And the accuracy was 0.717 (CN1), 0.849 (CN2), and 0.692 (CN3), respectively.


Subject(s)
Glioma , Nomograms , DNA , DNA Copy Number Variations , Glioma/diagnostic imaging , Glioma/genetics , Humans , Magnetic Resonance Imaging , Prognosis , Retrospective Studies
20.
Acad Radiol ; 28(7): e199-e208, 2021 07.
Article in English | MEDLINE | ID: mdl-32241714

ABSTRACT

RATIONALE AND OBJECTIVES: To explore associations between MR imaging features, DNA methylation subtyping, and survival in lower-grade gliomas (LGG). MATERIALS AND METHODS: The MR data from 170 patients generated with the Cancer Imaging Archive were reviewed. The correlation was evaluated by Fisher's Exact Test, Pearson Chi-Square and binary regression analysis. Survival analysis was conducted by using time-dependent ROC analysis and the Kaplan-Meier method (the worst prognosis subgroup). RESULTS: Identified were 9 (5.3%) M1-subtype, 18 (10.6%) M2-subtype, 48 (28.2%) M3-subtype, 31 (18.2%) M4-subtype and 64 (37.6%) M5-subtype. Patients with M4-subtype had the shortest median OS (49.3 vs. 28.4) months(p < 0.05). The time-dependent ROC for the M4-subtype was 0.83 (95% confidence interval 0.72-0.95) for survival at 12 months, 0.82 (95% confidence interval 0.70-0.94) for survival at 24 months, and 0.74 (95% confidence interval 0.62-0.86) for survival at 36 months. After uni- and multivariate analysis, a nomogram was built based on proportion contrast-enhanced (CE) tumor, extranodular growth, volume_cutoff_median, and location. For the prediction of M4-subtype, the nomogram showed good discrimination, with an area under the curve (AUC) of 0.886 (95% CI: 0.820-952) and was well calibrated. On multivariate logistic regression analysis, volume ≥60cm3 (OR: 0.200; p < 0.001; 95%CI: 0.048-0.834) was associated with M1-subtype (AUC: 0.690). Hemorrhage (OR: 5.443; p = 0.002; 95%CI: 1.844-16.069) and volume > median (OR: 3.256; p = 0.05; 95%CI: 0.992-10.686) were associated with M2-subtype (AUC: 0.733). Proportion CE tumor<=5% (OR: 3.968; P=0.002; 95%CI: 1.634-9.635) was associated with M3-subtype (AUC: 0.632). Poorly-defined (OR: 2.258; p = 0.05; 95%CI: 1.000-5.101) and volume > median (OR: 2.447; p = 0.01; 95%CI: 1.244-4.813) were associated with M5-subtype (AUC: 0.645). Decision curve analysis indicated predictions for all models were clinically useful. CONCLUSION: This preliminary radiogenomics analysis of lower-grade gliomas demonstrated associations between MR features and DNA methylation subtyping. The shortest survival was observed in patients with M4-subtype. And we have constructed nomogram that enables more accurate predictions of M4-subtype.


Subject(s)
DNA Methylation , Glioma , Glioma/diagnostic imaging , Glioma/genetics , Humans , Magnetic Resonance Imaging , Nomograms , Prognosis , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...