Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.283
Filter
1.
J Immunother Cancer ; 12(7)2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004437

ABSTRACT

BACKGROUND: Vorinostat (SAHA) is a histone deacetylase inhibitor that has shown clinical efficacy against advanced cutaneous T-cell lymphoma (CTCL). However, only a subset of patients with CTCL (30-35%) respond to SAHA and the response is not always sustainable. Thus, understanding the mechanisms underlying evasive resistance in this cancer is an unmet medical need to improve the efficacy of current therapies. PURPOSE: This study aims to identify factors contributing to resistance against SAHA in CTCL and ways to mitigate it. METHODS AND RESULTS: In this study, we demonstrated that attenuated reactive oxygen species (ROS) induces the expression of interleukin (IL)-2Rα, one of the IL-2 receptors, which drives resistance to SAHA in CTCL. We also determined that cantharidin could overcome SAHA resistance to CTCL by blocking IL-2Rα-related signaling via ROS-dependent manner. Mechanistically, accelerated translation of IL-2Rα contributes to excessive IL-2Rα protein formation as a result of reduced ROS levels in SAHA-resistant CTCL. At the same time, amplified IL-2R signals are evidenced by strengthened interaction of IL-2Rß with IL-2Rγ and Janus kinase/signal transducer and activator of transcription molecules, and by increased expression of protein kinase B (AKT)/mTOR and mitogen-activated protein kinase signaling. Moreover, cantharidin, an active constituent of Mylabris used in traditional Chinese medicine, markedly increased ROS levels, and thereby restrained IL-2Rα translation, resulting in suppression of downstream pathways in SAHA-resistant cells. Cantharidin is also found to synergize with SAHA and triggers SAHA-resistant cell death via IL-2R signaling both in vitro and in vivo. CONCLUSION: Our study uncovers a novel molecular mechanism of acquired SAHA resistance and also suggests that using cantharidin is a potential approach to overcome CTCL therapy resistance. Our findings underlie the therapeutic potential of cantharidin in treating CTCL.


Subject(s)
Cantharidin , Drug Resistance, Neoplasm , Lymphoma, T-Cell, Cutaneous , Reactive Oxygen Species , Signal Transduction , Vorinostat , Humans , Cantharidin/pharmacology , Cantharidin/therapeutic use , Vorinostat/pharmacology , Vorinostat/therapeutic use , Lymphoma, T-Cell, Cutaneous/drug therapy , Lymphoma, T-Cell, Cutaneous/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Drug Resistance, Neoplasm/drug effects , Animals , Mice , Cell Line, Tumor , Skin Neoplasms/drug therapy , Skin Neoplasms/metabolism , Skin Neoplasms/pathology
2.
Stat Med ; 43(17): 3294-3312, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38831542

ABSTRACT

To study the roles that different nodes play in differentiating Bayesian networks under two states, such as control versus disease, we formulate two node-specific scores to facilitate such assessment. The first score is motivated by the prediction invariance property of a causal model. The second score results from modifying an existing score constructed for differential analysis of undirected networks. We develop strategies based on these scores to identify nodes responsible for topological differences between two Bayesian networks. Synthetic data and real-life data from designed experiments are used to demonstrate the efficacy of the proposed methods in detecting responsible nodes.


Subject(s)
Bayes Theorem , Models, Statistical , Humans , Computer Simulation
3.
BMC Infect Dis ; 24(1): 549, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824572

ABSTRACT

BACKGROUND: Nonpharmaceutical interventions (NPIs) implemented to reduce the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have suppressed the spread of other respiratory viruses during the coronavirus disease 2019 (COVID-19) pandemic. This study aimed to explore the epidemiological trends and clinical characteristics of Mycoplasma pneumoniae (MP) infection among inpatient children with lower respiratory tract infection (LRTI) before and during the COVID-19 pandemic, and investigate the long-term effects of China's NPIs against COVID-19 on the epidemiology of MP among inpatient children with LRTI. METHODS: Children hospitalised for LRTI at the Department of Pulmonology, The Children's Hospital, Zhejiang University School of Medicine (Hangzhou, China) between January 2019 and December 2022 were tested for common respiratory pathogens, including Mycoplasma pneumoniae (MP), Chlamydia trachomatis (CT) and other bacteria. Clinical data on age, sex, season of onset, disease spectrum, and combined infection in children with MP-induced LRTI in the past 4 years were collected and analysed. RESULTS: Overall, 15909 patients were enrolled, and MP-positive cases were 1971 (34.0%), 73 (2.4%), 176 (5.8%), and 952 (20.6%) in 2019, 2020, 2021, and 2022, respectively, with a significant statistical difference in the MP-positive rate over the 4 years (p <0.001). The median age of these children was preschool age (3-6 years), except for 2022, when they were school age (7-12 years), with statistical differences. Comparing the positive rates of different age groups, the school-age children (7-12 years) had the highest positive rate, followed by the preschoolers (3-6 years) in each of the 4 years. Compared among different seasons, the positive rate of MP in children with LRTI was higher in summer and autumn, whereas in 2020, it was highest in spring. The monthly positive rate peaked in July 2019, remained low from 2020 to 2021, and rebounded until 2022. Regarding the disease spectrum, severe pneumonia accounted for the highest proportion (46.3%) pre-pandemic and lowest (0%) in 2020. CONCLUSION: Trends in MP detection in children with LRTIs suggest a possible correlation between COVID-19 NPIs and significantly reduced detection rates. The positivity rate of MP gradually rose after 2 years. The epidemic season showed some differences, but school-age children were more susceptible to MP before and during the COVID-19 pandemic.


Subject(s)
COVID-19 , Mycoplasma pneumoniae , Pneumonia, Mycoplasma , Respiratory Tract Infections , Humans , China/epidemiology , COVID-19/epidemiology , Child , Child, Preschool , Male , Female , Pneumonia, Mycoplasma/epidemiology , Pneumonia, Mycoplasma/microbiology , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/virology , Adolescent , Infant , SARS-CoV-2 , Pandemics
4.
J Mater Chem B ; 12(25): 6005-6032, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38869470

ABSTRACT

Periodontitis is an immune-inflammatory disease caused by dental plaque, and deteriorates the periodontal ligament, causes alveolar bone loss, and may lead to tooth loss. To treat periodontitis, antibacterial and anti-inflammation approaches are required to reduce bone loss. Thus, appropriate drug administration methods are significant. Due to their "syringeability", biocompatibility, and convenience, injectable hydrogels and associated methods have been extensively studied and used for periodontitis therapy. Such hydrogels are made from natural and synthetic polymer materials using physical and/or chemical cross-linking approaches. Interestingly, some injectable hydrogels are stimuli-responsive hydrogels, which respond to the local microenvironment and form hydrogels that release drugs. Therefore, as injectable hydrogels are different and highly varied, we systematically reviewed the periodontal treatment field from three perspectives: raw material sources, cross-linking methods, and stimuli-responsive methods. We then discussed current challenges and opportunities for the translation of hydrogels to clinic, which may guide further injectable hydrogel designs for periodontitis.


Subject(s)
Hydrogels , Periodontitis , Periodontitis/drug therapy , Hydrogels/chemistry , Humans , Animals , Injections , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology
5.
bioRxiv ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38895265

ABSTRACT

Paclitaxel is a standard of care neoadjuvant therapy for patients with triple negative breast cancer (TNBC); however, it shows limited benefit for locally advanced or metastatic disease. Here we used a coordinated experimental-computational approach to explore the influence of paclitaxel on the cellular and molecular responses of TNBC cells. We found that escalating doses of paclitaxel resulted in multinucleation, promotion of senescence, and initiation of DNA damage induced apoptosis. Single-cell RNA sequencing (scRNA-seq) of TNBC cells after paclitaxel treatment revealed upregulation of innate immune programs canonically associated with interferon response and downregulation of cell cycle progression programs. Systematic exploration of transcriptional responses to paclitaxel and cancer-associated microenvironmental factors revealed common gene programs induced by paclitaxel, IFNB, and IFNG. Transcription factor (TF) enrichment analysis identified 13 TFs that were both enriched based on activity of downstream targets and also significantly upregulated after paclitaxel treatment. Functional assessment with siRNA knockdown confirmed that the TFs FOSL1, NFE2L2 and ELF3 mediate cellular proliferation and also regulate nuclear structure. We further explored the influence of these TFs on paclitaxel-induced cell cycle behavior via live cell imaging, which revealed altered progression rates through G1, S/G2 and M phases. We found that ELF3 knockdown synergized with paclitaxel treatment to lock cells in a G1 state and prevent cell cycle progression. Analysis of publicly available breast cancer patient data showed that high ELF3 expression was associated with poor prognosis and enrichment programs associated with cell cycle progression. Together these analyses disentangle the diverse aspects of paclitaxel response and identify ELF3 upregulation as a putative biomarker of paclitaxel resistance in TNBC.

6.
Biomed Pharmacother ; 177: 116965, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38925019

ABSTRACT

BACKGROUND AND PURPOSE: GLP-1 receptor agonists are clinically utilized for type 2 diabetes and obesity. In vitro and in vivo preclinical studies were performed to assess the druggability of a novel small molecule GLP-1 receptor biased agonist SAL0112. EXPERIMENTAL APPROACH: The HTRF assay, FLIPR assay, TR-FRET assay, and PathHunter assay were utilized for in vitro studies. Liver transporter tests were conducted using the HEK293-OATP1B1 and HEK293-OATP1B3 cell lines. In vitro stability assessments of various species and in vivo PK studies in rodents were performed. A model of type 2 diabetes and obesity induced by a high-energy diet in transgenic C57BL/6 mice expressing the human GLP-1 receptor gene was conducted. PRINCIPAL RESULTS: SAL0112 demonstrated high potency and selectivity in activating the Gαs pathway of the GLP-1 receptor, with no observed desensitization. SAL0112 demonstrated greater stability in human and rat liver microsomes compared to Danuglipron. In vivo PK studies revealed higher absorption of SAL0112 in rats. SAL0112 displayed a significantly lower potential for DDI on liver transporters compared to Danuglipron. SAL0112 led to significant reductions in body weight (P<0.001), blood glucose levels in OGTT (P<0.001), HbA1c (P<0.05) and improved insulin resistance (P<0.01). Notably, it increased peripheral adipocyte density and resolved hepatic steatosis. The efficacy of SAL0112 was found to be comparable to that of Danuglipron and Liraglutide. CONCLUSION: SAL0112 demonstrated potent and selective GLP-1 receptor biased agonism, effectively alleviating signs of type 2 diabetes in a mouse model. These promising findings pave the way for the advancement of SAL0112 into clinical trials.

7.
Heliyon ; 10(11): e32056, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38882340

ABSTRACT

Washed red blood cells (RBCs) can be used to treat immune-related diseases. However, whether the washing process changes the quality of RBCs and affects the curative effect of transfusion therapy remains unclear. We retrospectively analysed the clinical data of patients who received blood transfusion. The physiological and biochemical parameters of RBCs were tested on an automated haematology-biochemical analyser. CD47 and phosphatidylserine (PS) plasma membrane expression were analysed using flow cytometry. Morphological changes in RBCs were observed using scanning electron microscopy. The results showed that the curative effect on patients who received washed RBCs was weaker than that on those who received non-washed RBCs. Physiological and biochemical parameters of RBCs were not significantly different. RBC immune indices changed significantly after washing. The expression of "don't eat me" signals was weakened, whereas the intensity of "eat me" signals was enhanced. This study suggests that the current use of physiological and biochemical parameters as indicators to evaluate the quality of RBCs may not be comprehensive and that evaluation of the real status of RBCs requires other effective parameters. Immune molecules in RBCs are expected to become supplementary markers for evaluating RBC quality.

8.
Kidney Int Rep ; 9(6): 1860-1875, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38899224

ABSTRACT

Introduction: Men are vulnerable to ambient heat-related kidney disease burden; however, limited evidence exists on how vulnerable women are when exposed to high ambient heat. We evaluated the sex-specific association between ambient temperature and urine electrolytes, and 24-hour urine total protein, and volume. Methods: We pooled a longitudinal 5624 person-visits data of 1175 participants' concentration and 24-hour excretion of urine electrolytes and other biomarkers (24-hour urine total protein and volume) from southwest coastal Bangladesh (Khulna, Satkhira, and Mongla districts) during November 2016 to April 2017. We then spatiotemporally linked ambient temperature data from local weather stations to participants' health outcomes. For evaluating the relationships between average ambient temperature and urine electrolytes and other biomarkers, we plotted confounder-adjusted restricted cubic spline (RCS) plots using participant-level, household-level, and community-level random intercepts. We then used piece-wise linear mixed-effects models for different ambient temperature segments determined by inflection points in RCS plots and reported the maximum likelihood estimates and cluster robust standard errors. By applying interaction terms for sex and ambient temperature, we determined the overall significance using the Wald test. Bonferroni correction was used for multiple comparisons. Results: The RCS plots demonstrated nonlinear associations between ambient heat and urine biomarkers for males and females. Piecewise linear mixed-effects models suggested that sex did not modify the relationship of ambient temperature with any of the urine parameters after Bonferroni correction (P < 0.004). Conclusion: Our findings suggest that women are as susceptible to the effects of high ambient temperature exposure as men.

9.
Aging Cell ; : e14256, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898632

ABSTRACT

Hepatic steatosis, the first step in the development of nonalcoholic fatty liver disease (NAFLD), is frequently observed in the aging population. However, the underlying molecular mechanism remains largely unknown. In this study, we first employed GSEA enrichment analysis to identify short-chain acyl-CoA dehydrogenase (SCAD), which participates in the mitochondrial ß-oxidation of fatty acids and may be associated with hepatic steatosis in elderly individuals. Subsequently, we examined SCAD expression and hepatic triglyceride content in various aged humans and mice and found that triglycerides were markedly increased and that SCAD was upregulated in aged livers. Our further evidence in SCAD-ablated mice suggested that SCAD deletion was able to slow liver aging and ameliorate aging-associated fatty liver. Examination of the molecular pathways by which the deletion of SCAD attenuates steatosis revealed that the autophagic degradation of lipid droplets, which was not detected in elderly wild-type mice, was maintained in SCAD-deficient old mice. This was due to the decrease in the production of acetyl-coenzyme A (acetyl-CoA), which is abundant in the livers of old wild-type mice. In conclusion, our findings demonstrate that the suppression of SCAD may prevent age-associated hepatic steatosis by promoting lipophagy and that SCAD could be a promising therapeutic target for liver aging and associated steatosis.

10.
Bioact Mater ; 39: 354-374, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38846529

ABSTRACT

Osteoporosis is majorly caused by an imbalance between osteoclastic and osteogenic niches. Despite the development of nationally recognized first-line anti-osteoporosis drugs, including alendronate (AL), their low bioavailability, poor uptake rate, and dose-related side effects present significant challenges in treatment. This calls for an urgent need for more effective bone-affinity drug delivery systems. In this study, we produced hybrid structures with bioactive components and stable fluffy topological morphology by cross-linking calcium and phosphorus precursors based on mesoporous silica to fabricate nanoadjuvants for AL delivery. The subsequent grafting of -PEG-DAsp8 ensured superior biocompatibility and bone targeting capacity. RNA sequencing revealed that these fluffy nanoadjuvants effectively activated adhesion pathways through CARD11 and CD34 molecular mechanisms, hence promoting cellular uptake and intracellular delivery of AL. Experiments showed that small-dose AL nanoadjuvants effectively suppress osteoclast formation and potentially promote osteogenesis. In vivo results restored the balance between osteogenic and osteoclastic niches against osteoporosis as well as the consequent significant recovery of bone mass. Therefore, this study constructed a drug nanoadjuvant with peculiar topological structures and high bone targeting capacities, efficient intracellular drug delivery as well as bone bioactivity. This provides a novel perspective on drug delivery for osteoporosis and treatment strategies for other bone diseases.

11.
Front Immunol ; 15: 1369406, 2024.
Article in English | MEDLINE | ID: mdl-38835760

ABSTRACT

Epigenetic mechanisms are involved in several cellular functions, and their role in the immune system is of prime importance. Histone deacetylases (HDACs) are an important set of enzymes that regulate and catalyze the deacetylation process. HDACs have been proven beneficial targets for improving the efficacy of immunotherapies. HDAC11 is an enzyme involved in the negative regulation of T cell functions. Here, we investigated the potential of HDAC11 downregulation using RNA interference in CAR-T cells to improve immunotherapeutic outcomes against prostate cancer. We designed and tested four distinct short hairpin RNA (shRNA) sequences targeting HDAC11 to identify the most effective one for subsequent analyses. HDAC11-deficient CAR-T cells (shD-NKG2D-CAR-T) displayed better cytotoxicity than wild-type CAR-T cells against prostate cancer cell lines. This effect was attributed to enhanced activation, degranulation, and cytokine release ability of shD-NKG2D-CAR-T when co-cultured with prostate cancer cell lines. Our findings reveal that HDAC11 interference significantly enhances CAR-T cell proliferation, diminishes exhaustion markers PD-1 and TIM3, and promotes the formation of T central memory TCM populations. Further exploration into the underlying molecular mechanisms reveals increased expression of transcription factor Eomes, providing insight into the regulation of CAR-T cell differentiation. Finally, the shD-NKG2D-CAR-T cells provided efficient tumor control leading to improved survival of tumor-bearing mice in vivo as compared to their wild-type counterparts. The current study highlights the potential of HDAC11 downregulation in improving CAR-T cell therapy. The study will pave the way for further investigations focused on understanding and exploiting epigenetic mechanisms for immunotherapeutic outcomes.


Subject(s)
Histone Deacetylases , Immunotherapy, Adoptive , Prostatic Neoplasms , RNA, Small Interfering , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/therapy , Prostatic Neoplasms/immunology , Humans , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Animals , Mice , RNA, Small Interfering/genetics , Cell Line, Tumor , Immunotherapy, Adoptive/methods , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Gene Silencing , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Xenograft Model Antitumor Assays
12.
Front Immunol ; 15: 1372692, 2024.
Article in English | MEDLINE | ID: mdl-38720884

ABSTRACT

Background: The tertiary lymphatic structure (TLS) is an important component of the tumor immune microenvironment and has important significance in patient prognosis and response to immune therapy. However, the underlying mechanism of TLS in soft tissue sarcoma remains unclear. Methods: A total of 256 RNAseq and 7 single-cell sequencing samples were collected from TCGA-SARC and GSE212527 cohorts. Based on published TLS-related gene sets, four TLS scores were established by GSVA algorithm. The immune cell infiltration was calculated via TIMER2.0 and "MCPcounter" algorithms. In addition, the univariate, LASSO, and multivariate-Cox analyses were used to select TLS-related and prognosis-significant hub genes. Single-cell sequencing dataset, clinical immunohistochemical, and cell experiments were utilized to validate the hub genes. Results: In this study, four TLS-related scores were identified, and the total-gene TLS score more accurately reflected the infiltration level of TLS in STS. We further established two hub genes (DUSP9 and TNFSF14) prognosis markers and risk scores associated with soft tissue sarcoma prognosis and immune therapy response. Flow cytometry analysis showed that the amount of CD3, CD8, CD19, and CD11c positive immune cell infiltration in the tumor tissue dedifferentiated liposarcoma patients was significantly higher than that of liposarcoma patients. Cytological experiments showed that soft tissue sarcoma cell lines overexpressing TNFSF14 could inhibit the proliferation and migration of sarcoma cells. Conclusion: This study systematically explored the TLS and related genes from the perspectives of bioinformatics, clinical features and cytology experiments. The total-gene TLS score, risk score and TNFSF14 hub gene may be useful biomarkers for predicting the prognosis and immunotherapy efficacy of soft tissue sarcoma.


Subject(s)
Biomarkers, Tumor , Immunotherapy , Sarcoma , Tumor Microenvironment , Humans , Sarcoma/genetics , Sarcoma/therapy , Sarcoma/immunology , Sarcoma/diagnosis , Biomarkers, Tumor/genetics , Prognosis , Immunotherapy/methods , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Gene Expression Regulation, Neoplastic , Female , Male , Tumor Necrosis Factor Ligand Superfamily Member 14/genetics , Gene Expression Profiling , Single-Cell Analysis
13.
Article in English | MEDLINE | ID: mdl-38713857

ABSTRACT

PURPOSE: Preoperative prudent patient selection plays a crucial role in knee osteoarthritis management but faces challenges in appropriate referrals such as total knee arthroplasty (TKA), unicompartmental knee arthroplasty (UKA) and nonoperative intervention. Deep learning (DL) techniques can build prediction models for treatment decision-making. The aim is to develop and evaluate a knee arthroplasty prediction pipeline using three-view X-rays to determine the suitable candidates for TKA, UKA or are not arthroplasty candidates. METHODS: A study was conducted using three-view (anterior-posterior, lateral and patellar) X-rays and surgical data of patients undergoing TKA, UKA or nonarthroplasty interventions from sites A and B. Data from site A were used to derive and validate models. Data from site B were used as external test set. A DL pipeline combining YOLOv3 and ResNet-18 with confident learning (CL) was developed. Multiview Convolutional Neural Network, EfficientNet-b4, ResNet-101 and the proposed model without CL were also trained and tested. The models were evaluated using metrics such as area under the receiver operating characteristic curve (AUC), accuracy, precision, specificity, sensitivity and F1 score. RESULTS: The data set comprised a total of 1779 knees. Of which 1645 knees were from site A as a derivation set and an internal validation cohort. The external validation cohort consisted of 134 knees. The internal validation cohort demonstrated superior performance for the proposed model augmented with CL, achieving an AUC of 0.94 and an accuracy of 85.9%. External validation further confirmed the model's generalisation, with an AUC of 0.93 and an accuracy of 82.1%. Comparative analysis with other neural network models showed the proposed model's superiority. CONCLUSIONS: The proposed DL pipeline, integrating YOLOv3, ResNet-18 and CL, provides accurate predictions for knee arthroplasty candidates based on three-view X-rays. This prediction model could be useful in performing decision making for the type of arthroplasty procedure in an automated fashion. LEVEL OF EVIDENCE: Level III, diagnostic study.

14.
J Clin Nurs ; 33(8): 3101-3114, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38764176

ABSTRACT

AIMS AND OBJECTIVES: To describe a grading system that can be used to evaluate core competency of clinical nurse specialists (CNSs) at different levels. BACKGROUND: Evaluate core competence of CNSs at different levels reflects the quality of nursing and the development of the nursing profession. DESIGN: This research employed the Delphi method. METHODS: The STROBE checklist for observational cross-sectional studies was followed to report this research study. This study consisted of two main phases: a literature review and semistructured interviews. Individual semistructured interviews were conducted with 11 healthcare experts and two patients. Two rounds of questionnaire surveys were administered to 21 nursing experts using the Delphi method. The CNSs were classified as primary, intermediate or advanced based on their years of work, professional titles and educational qualifications. RESULTS: The graded competency evaluation system consisted of five first-level indicators (clinical practice, consulting guidance and teaching, scientific research innovation, management and discipline development, and ethical decision-making), 15 second level indicators, and 40 third-level indicators. The authority coefficients (Cr) of the experts were .865 and .901. The Kendall's concordance coefficients of the three-level indicators were .417, .289 and .316 for primary CNSs; .384, .294 and .337 for intermediate CNSs; and .489, .289 and .239 for advanced CNSs. CONCLUSION: The graded use evaluation system in clinical practice initially involves a comprehensive evaluation of the core abilities of CNSs. This is a tool for cultivating and grading the abilities of specialised nurses that can promote a practical upwards spiral. RELEVANCE TO CLINICAL PRACTICE: The evaluation system can promote the scientific management and continuous improvement of CNSs in clinical nursing and can serve as a practical and objective reference for the effective management and development of CNSs. PATIENT OR PUBLIC CONTRIBUTION: Patients participated in the data collection process, during which they shared their health-seeking experience with our research team.


Subject(s)
Clinical Competence , Delphi Technique , Nurse Clinicians , Humans , Clinical Competence/standards , Cross-Sectional Studies , Surveys and Questionnaires , Adult , Female , Male , Middle Aged
15.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38711371

ABSTRACT

T-cell receptor (TCR) recognition of antigens is fundamental to the adaptive immune response. With the expansion of experimental techniques, a substantial database of matched TCR-antigen pairs has emerged, presenting opportunities for computational prediction models. However, accurately forecasting the binding affinities of unseen antigen-TCR pairs remains a major challenge. Here, we present convolutional-self-attention TCR (CATCR), a novel framework tailored to enhance the prediction of epitope and TCR interactions. Our approach utilizes convolutional neural networks to extract peptide features from residue contact matrices, as generated by OpenFold, and a transformer to encode segment-based coded sequences. We introduce CATCR-D, a discriminator that can assess binding by analyzing the structural and sequence features of epitopes and CDR3-ß regions. Additionally, the framework comprises CATCR-G, a generative module designed for CDR3-ß sequences, which applies the pretrained encoder to deduce epitope characteristics and a transformer decoder for predicting matching CDR3-ß sequences. CATCR-D achieved an AUROC of 0.89 on previously unseen epitope-TCR pairs and outperformed four benchmark models by a margin of 17.4%. CATCR-G has demonstrated high precision, recall and F1 scores, surpassing 95% in bidirectional encoder representations from transformers score assessments. Our results indicate that CATCR is an effective tool for predicting unseen epitope-TCR interactions. Incorporating structural insights enhances our understanding of the general rules governing TCR-epitope recognition significantly. The ability to predict TCRs for novel epitopes using structural and sequence information is promising, and broadening the repository of experimental TCR-epitope data could further improve the precision of epitope-TCR binding predictions.


Subject(s)
Receptors, Antigen, T-Cell , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/genetics , Humans , Epitopes/chemistry , Epitopes/immunology , Computational Biology/methods , Neural Networks, Computer , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/chemistry , Antigens/chemistry , Antigens/immunology , Amino Acid Sequence
16.
Molecules ; 29(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731407

ABSTRACT

The problem of bacterial resistance has become more and more common with improvements in health care. Worryingly, the misuse of antibiotics leads to an increase in bacterial multidrug resistance and the development of new antibiotics has virtually stalled. These challenges have prompted the need to combat bacterial infections with the use of radically different approaches. Taking lessons from the exciting properties of micro-/nano-natural-patterned surfaces, which can destroy cellular integrity, the construction of artificial surfaces to mimic natural functions provides new opportunities for the innovation and development of biomedicine. Due to the diversity of natural surfaces, functional surfaces inspired by natural surfaces have a wide range of applications in healthcare. Nature-inspired surface structures have emerged as an effective and durable strategy to prevent bacterial infection, opening a new way to alleviate the problem of bacterial drug resistance. The present situation of bactericidal and antifouling surfaces with natural and biomimetic micro-/nano-structures is briefly reviewed. In addition, these innovative nature-inspired methods are used to manufacture a variety of artificial surfaces to achieve extraordinary antibacterial properties. In particular, the physical antibacterial effect of nature-inspired surfaces and the functional mechanisms of chemical groups, small molecules, and ions are discussed, as well as the wide current and future applications of artificial biomimetic micro-/nano-surfaces. Current challenges and future development directions are also discussed at the end. In the future, controlling the use of micro-/nano-structures and their subsequent functions will lead to biomimetic surfaces offering great potential applications in biomedicine.


Subject(s)
Anti-Bacterial Agents , Nanostructures , Surface Properties , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Nanostructures/chemistry , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Humans , Bacteria/drug effects , Bacterial Infections/drug therapy , Bacterial Infections/prevention & control
17.
Foodborne Pathog Dis ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695190

ABSTRACT

Trans-cinnamaldehyde (TC), a typical plant-derived compound, has been widely used in the control of foodborne pathogen contamination. Nevertheless, the risk associated with the occurrence of viable but nonculturable (VBNC) bacteria induced by TC remains unclear. The results of this study showed that Salmonella Enteritidis (S. Enteritidis) entered the VBNC state after being induced by TC at a minimum inhibitory concentration of 312.5 µg/mL and survived for at least 22 days under TC treatment. Enhanced resistance was found against heat treatment (75°C, 30 s), antibiotics (i.e., ampicillin, ceftriaxone sodium, chloramphenicol), and hydrogen peroxide (3%) in VBNC S. Enteritidis. A synergistic effect against VBNC S. Enteritidis occurred when TC was combined with acid treatment, including lactic acid and acetic acid (pH = 3.5). VBNC and resuscitated S. Enteritidis by sodium pyruvate treatment (100 mM) were found to retain the infectious ability to Caco-2 cells. Relative expression levels of the stress-related genes relA, spoT, ppx, lon, katG, sodA, dnaK, and grpE were upregulated in VBNC S. Enteritidis. Accumulation of reactive oxygen species (ROS) and protein aggregates was observed in VBNC cells. Besides, the resuscitation of VBNC cells was accompanied with clearance of ROS and protein aggregates. In summary, this study presents a comprehensive characterization of stress tolerance and resuscitation of VBNC S. Enteritidis induced by cinnamaldehyde, and the results provide useful information for the development of effective control strategy against VBNC pathogenic bacteria in food production.

18.
BMC Genom Data ; 25(1): 43, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38710997

ABSTRACT

BACKGROUND: Cadmium (Cd) is extremely toxic and non-essential for plants. Different soybean varieties differ greatly in their Cd accumulation ability, but little is known about the underlying molecular mechanisms. RESULTS: Here, we performed transcriptomic analysis using Illumina pair-end sequencing on root tissues from two soybean varieties (su8, high-Cd-accumulating (HAS) and su7, low Cd-accumulating (LAS)) grown with 0 or 50 µM CdSO4. A total of 18.76 million clean reads from the soybean root samples were obtained after quality assessment and data filtering. After Cd treatment, 739 differentially expressed genes (DEGs; 265 up and 474 down) were found in HAS; however, only 259 DEGs (88 up and 171 down) were found in LAS, and 64 genes were same between the two varieties. Pathway enrichment analysis suggested that after cadmium treatment, the DEGs between LAS and HAS were mainly enriched in glutathione metabolism and plant-pathogen interaction pathways. KEGG analysis showed that phenylalanine metabolism responding to cadmium stress in LAS, while ABC transporters responding to cadmium stress in HAS. Besides we found more differential expressed heavy metal transporters such as ABC transporters and zinc transporters in HAS than LAS, and there were more transcription factors differently expressed in HAS than LAS after cadmium treatment in two soybean varieties, eg. bHLH transcription factor, WRKY transcription factor and ZIP transcription factor. CONCLUSIONS: Findings from this study will shed new insights on the underlying molecular mechanisms behind the Cd accumulation in soybean.


Subject(s)
Cadmium , Gene Expression Profiling , Gene Expression Regulation, Plant , Glycine max , Stress, Physiological , Glycine max/genetics , Glycine max/drug effects , Glycine max/metabolism , Cadmium/toxicity , Cadmium/metabolism , Gene Expression Regulation, Plant/drug effects , Stress, Physiological/drug effects , Stress, Physiological/genetics , Genotype , Transcriptome/drug effects , Plant Roots/metabolism , Plant Roots/drug effects , Plant Roots/genetics
19.
Ther Apher Dial ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38818966

ABSTRACT

INTRODUCTION: This study was designed to investigate whether renal α-klotho levels are associated with renal pathology. This is the first report on patients with chronic kidney disease (CKD). METHODS: We conducted a retrospective observational study. A total of 65 CKD patients were enrolled. Serum and renal biopsy samples were collected. Estimated glomerular filtration rate (eGFR) was examined by biochemical test. And α-klotho expressions were assessed by RT-PCR and immunohistochemistry. In addition, detailed microscopic findings were reviewed. RESULTS: Renal α-klotho levels are associated positively with eGFR, and negatively with renal pathology, including interstitial fibrosis, inflammatory cell infiltration, and tubular atrophy. CONCLUSIONS: The renal α-klotho is related to renal pathology.

20.
Mol Hortic ; 4(1): 21, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38773570

ABSTRACT

Salicylic acid (SA) is a multi-functional phytohormone, regulating diverse processes of plant growth and development, especially triggering plant immune responses and initiating leaf senescence. However, the early SA signaling events remain elusive in most plant species apart from Arabidopsis, and even less is known about the multi-facet mechanism underlying SA-regulated processes. Here, we report the identification of a novel regulatory module in cucumber, CsNPR1-CsWRKY11, which mediates the regulation of SA-promoted leaf senescence and ROS burst. Our analyses demonstrate that under SA treatment, CsNPR1 recruits CsWRKY11 to bind to the promoter of CsWRKY11 to activate its expression, thus amplifying the primary SA signal. Then, CsWRKY11 cooperates with CsNPR1 to directly regulate the expression of both chlorophyll degradation and ROS biosynthesis related genes, thereby inducing leaf de-greening and ROS burst. Our study provides a solid line of evidence that CsNPR1 and CsWRKY11 constitute a key module in SA signaling pathway in cucumber, and gains an insight into the interconnected regulation of SA-triggered processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...