Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 129
Filter
1.
Immun Ageing ; 21(1): 59, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39237911

ABSTRACT

Natural killer (NK) cells are crucial innate immune cells that provide defense against viruses and tumors. However, aging is associated with alterations in NK cell composition and compromised cell functions. Melatonin, known for its anti-tumor effects, has been reported to improve NK cell function. However, the molecular mechanism underlying melatonin's effect on senescent NK cells remains unclear. In this study, we aimed to elucidate the mechanism by which melatonin enhances the function of senescent NK cells. Our findings revealed that melatonin significantly increased the number and function of NK cells in aging mice. The results suggest that melatonin enhances NK cell proliferation, degranulation, and IFN-γ secretion. Further investigations demonstrated that melatonin promotes NK cell maturation and activation, mainly via the JAK3/STAT5 signaling pathway, leading to increased expression of T-bet. These discoveries provide a theoretical basis for potential immunotherapy strategies based on melatonin-mediated modulation of NK cell function in aging individuals.

2.
Gigascience ; 132024 Jan 02.
Article in English | MEDLINE | ID: mdl-39110622

ABSTRACT

BACKGROUND: Rhododendron nivale subsp. boreale Philipson et M. N. Philipson is an alpine woody species with ornamental qualities that serve as the predominant species in mountainous scrub habitats found at an altitude of ∼4,200 m. As a high-altitude woody polyploid, this species may serve as a model to understand how plants adapt to alpine environments. Despite its ecological significance, the lack of genomic resources has hindered a comprehensive understanding of its evolutionary and adaptive characteristics in high-altitude mountainous environments. FINDINGS: We sequenced and assembled the genome of R. nivale subsp. boreale, an assembly of the first subgenus Rhododendron and the first high-altitude woody flowering tetraploid, contributing an important genomic resource for alpine woody flora. The assembly included 52 pseudochromosomes (scaffold N50 = 42.93 Mb; BUSCO = 98.8%; QV = 45.51; S-AQI = 98.69), which belonged to 4 haplotypes, harboring 127,810 predicted protein-coding genes. Conjoint k-mer analysis, collinearity assessment, and phylogenetic investigation corroborated autotetraploid identity. Comparative genomic analysis revealed that R. nivale subsp. boreale originated as a neopolyploid of R. nivale and underwent 2 rounds of ancient polyploidy events. Transcriptional expression analysis showed that differences in expression between alleles were common and randomly distributed in the genome. We identified extended gene families and signatures of positive selection that are involved not only in adaptation to the mountaintop ecosystem (response to stress and developmental regulation) but also in autotetraploid reproduction (meiotic stabilization). Additionally, the expression levels of the (group VII ethylene response factor transcription factors) ERF VIIs were significantly higher than the mean global gene expression. We suspect that these changes have enabled the success of this species at high altitudes. CONCLUSIONS: We assembled the first high-altitude autopolyploid genome and achieved chromosome-level assembly within the subgenus Rhododendron. In addition, a high-altitude adaptation strategy of R. nivale subsp. boreale was reasonably speculated. This study provides valuable data for the exploration of alpine mountaintop adaptations and the correlation between extreme environments and species polyploidization.


Subject(s)
Altitude , Genome, Plant , Haplotypes , Phylogeny , Rhododendron , Tetraploidy , Rhododendron/genetics , Adaptation, Physiological/genetics , Molecular Sequence Annotation , Polyploidy , Gene Expression Regulation, Plant
3.
J Nanobiotechnology ; 22(1): 501, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39169328

ABSTRACT

Macrophages are multifunctional innate immune cells that play indispensable roles in homeostasis, tissue repair, and immune regulation. However, dysregulated activation of macrophages is implicated in the pathogenesis of various human disorders, making them a potential target for treatment. Through the expression of pattern recognition and scavenger receptors, macrophages exhibit selective uptake of pathogens and apoptotic cells. Consequently, the utilization of drug carriers that mimic pathogenic or apoptotic signals shows potential for targeted delivery to macrophages. In this study, a series of mannosylated or/and phosphatidylserine (PS) -presenting liposomes were developed to target macrophages via the design of experiment (DoE) strategy and the trial-and-error (TaE) approach. The optimal molar ratio for the liposome formulation was DOPC: DSPS: Chol: PEG-PE = 20:60:20:2 based on the results of cellular uptake and cytotoxicity evaluation on RAW 264.7 and THP-1 in vitro. Results from in vivo distribution showed that, in the DSS-induced colitis model and collagen II-induced rheumatoid arthritis model, PS-presenting liposomes (PS-Lipo) showed the highest accumulation in intestine and paws respectively, which holds promising potential for macrophage target therapy since macrophages are abundant at inflammatory sites and contribute to the progression of corresponding diseases. Organs such as the heart, liver, spleen, lung, and kidney did not exhibit histological alterations such as inflammation or necrosis when exposed to PC-presenting liposomes (PC-Lipo) or PS-Lipo. In addition, liposomes demonstrated hemobiocompatibility and no toxicity to liver or kidney for circulation and did not induce metabolic injury in the animals. Thus, the well-designed PS-Lipo demonstrated the most potential for macrophage target therapy.


Subject(s)
Apoptosis , Liposomes , Macrophages , Phosphatidylserines , Liposomes/chemistry , Animals , Mice , Macrophages/metabolism , Macrophages/drug effects , Apoptosis/drug effects , Humans , RAW 264.7 Cells , Phosphatidylserines/metabolism , Phosphatidylserines/chemistry , THP-1 Cells , Male , Mice, Inbred C57BL , Drug Delivery Systems/methods , Tissue Distribution
4.
Sensors (Basel) ; 24(14)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39065880

ABSTRACT

The relative rotation angle between two cabins should be automatically and precisely obtained during automated assembly processes for spacecraft and aircraft. This paper introduces a method to solve this problem based on distributed vision, where two groups of cameras are employed to take images of mating features, such as dowel pins and holes, in oblique directions. Then, the relative rotation between the mating flanges of two cabins is calculated. The key point is the registration of the distributed cameras; thus, a simple and practical registration process is designed. It is assumed that there are rigid and scaling transformations among the world coordinate systems (WCS) of each camera. Therefore, the rigid-correct and scaling-correct matrices are adopted to register the cameras. An auxiliary registration device with known features is designed and moved in the cameras' field of view (FOV) to obtain the matrix parameters so that each camera acquires traces of every feature. The parameters can be solved using a genetic algorithm based on the known geometric relationships between the trajectories on the registration devices. This paper designs a prototype to verify the method. The precision reaches 0.02° in the measuring space of 340 mm.

5.
Medicine (Baltimore) ; 103(30): e38947, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058857

ABSTRACT

BACKGROUND: Uric acid, as an important antioxidant substance in human body, has attracted much attention in relation to the risk of Parkinson's disease (PD). However, the causal relationship between them is still controversial. We perform a meta-analysis to summarize the available evidence from cohort studies on the association between high uric acid and the risk of PD. METHODS: We searched the Cochrane Library, PubMed, Medline, and Embase to obtain the Odds Ratio (OR) of high uric acid and PD and pooled the data using RevMan software (v5.4; Cochrane library). RESULTS: A total of 18 studies involving more than 840,774 participants were included. Overall, we found a significant association (OR = 0.84; 95% CI: 0.77-0.91) between high uric acid and PD. Subgroup analysis was stratified by gender, indicating more statistically significant protective effects of serum urate in men (OR = 0.66; 95% CI: 0.54-0.81) than that of in women (OR = 0.86; 95% CI: 0.76-0.98). People under the age of 60 (OR = 0.53, 95% CI: 0.33-0.86) are more likely to benefit from high uric acid than people over age of 60 (OR = 0.73, 95% CI: 0.63-0.86). The resistance of high uric acid to PD in LRRK2 mutation carriers (OR = 0.22, 95% CI: 0.11-0.45) is stronger than that in non-manifesting LRRK2 mutation carriers (OR = 0.37, 95% CI: 0.16-0.85). In addition, a dose-response trend of serum urate to reduce PD risk was also observed (OR = 0.68; 95% CI: 0.48-0.93). CONCLUSION: Our study confirms a significant association between high uric acid and the risk of PD, especially in men under 60 years old, and a dose-response trend of uric acid to reduce PD risk was also observed. Furthermore, LRRK2 mutation carriers are more likely to benefit from high uric acid than non-manifesting LRRK2 mutation carriers.


Subject(s)
Parkinson Disease , Uric Acid , Humans , Parkinson Disease/epidemiology , Parkinson Disease/blood , Parkinson Disease/genetics , Uric Acid/blood , Male , Female , Risk Factors , Middle Aged , Sex Factors , Hyperuricemia/epidemiology , Hyperuricemia/blood , Age Factors
6.
J Mater Chem B ; 12(30): 7311-7323, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38954469

ABSTRACT

Foodborne pathogens including Salmonella typhimurium (S. typhimurium) are responsible for over 600 million global incidences of illness annually, posing a significant threat to public health. Inductively coupled plasma mass spectrometry (ICP-MS), coupled with element labeling strategies, has emerged as a promising platform for multivariate and accurate pathogen detection. However, achieving high specificity and sensitivity remains a critical challenge. Herein, we synthesize clustered magnetic nanoparticles (MNPs) and popcorn-shaped gold nanoparticles (AuNPs) to conjugate capture and report DNA probes for S. typhimurium, respectively. These engineered nanoparticles facilitate the identification of S. typhimurium DNA through a sandwich hybridization technique. ICP-MS quantification of Au within the sandwich-structure complexes allows for precise S. typhimurium detection. The unique morphology of the AuNPs and MNPs increases the available sites for probe attachment, enhancing the efficiency of S. typhimurium DNA capture, broadening the detection range to 101-1010 copies mL-1, and achieving a low detection limit of 1 copy mL-1, and the overall assay time is 70 min. The high specificity of this method is verified by anti-interference assays against ten other pathogens. The recovery was 96.8-102.8% for detecting S. typhimurium DNA in biological samples. As these specially designed nanoparticles may facilitate the attachment of various proteins and nucleic acid probes, they may become an effective platform for detecting multiple pathogens.


Subject(s)
Gold , Magnetite Nanoparticles , Nucleic Acid Hybridization , Salmonella typhimurium , Salmonella typhimurium/isolation & purification , Gold/chemistry , Magnetite Nanoparticles/chemistry , Mass Spectrometry , DNA, Bacterial/analysis , Metal Nanoparticles/chemistry , DNA Probes/chemistry , Particle Size
7.
Talanta ; 277: 126325, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38833906

ABSTRACT

Infections caused by viruses and bacteria pose a significant threat to global public health, emphasizing the critical importance of timely and precise detection methods. Inductively coupled plasma mass spectrometry (ICP-MS), a contemporary approach for pathogen detection, offers distinct advantages such as high sensitivity, a wide linear range, and multi-index capabilities. This review elucidates the underexplored application of ICP-MS in conjunction with functional nanoparticles (NPs) for the identification of viruses and bacteria. The review commences with an elucidation of the underlying principles, procedures, target pathogens, and NP requirements for this innovative approach. Subsequently, a thorough analysis of the advantages and limitations associated with these techniques is provided. Furthermore, the review delves into a comprehensive examination of the challenges encountered when utilizing NPs and ICP-MS for pathogen detection, culminating in a forward-looking assessment of the potential pathways for advancement in this domain. Thus, this review contributes novel perspectives to the field of pathogen detection in biomedicine by showcasing the promising synergy of ICP-MS and NPs.


Subject(s)
Bacteria , Mass Spectrometry , Nanoparticles , Viruses , Mass Spectrometry/methods , Viruses/isolation & purification , Bacteria/isolation & purification , Nanoparticles/chemistry , Humans
8.
Biomed Mater ; 19(4)2024 May 28.
Article in English | MEDLINE | ID: mdl-38740038

ABSTRACT

Bacterial infections pose a serious threat to human health, with emerging antibiotic resistance, necessitating the development of new antibacterial agents. Cu2+and Ag+are widely recognized antibacterial agents with a low propensity for inducing bacterial resistance; however, their considerable cytotoxicity constrains their clinical applications. Rare-earth ions, owing to their unique electronic layer structure, hold promise as promising alternatives. However, their antibacterial efficacy and biocompatibility relative to conventional antibacterial agents remain underexplored, and the variations in activity across different rare-earth ions remain unclear. Here, we systematically evaluate the antibacterial activity of five rare-earth ions (Yb3+, Gd3+, Sm3+, Tb3+, and La3+) againstStaphylococcus aureusandPseudomonas aeruginosa, benchmarked against well-established antibacterial agents (Cu2+, Ag+) and the antibiotic norfloxacin. Cytotoxicity is also assessed via live/dead staining of fibroblasts after 24 h rare-earth ion exposure. Our findings reveal that rare-earth ions require higher concentrations to match the antibacterial effects of traditional agents but offer the advantage of significantly lower cytotoxicity. In particular, Gd3+demonstrates potent bactericidal efficacy against both planktonic and biofilm bacteria, while maintaining the lowest cytotoxicity toward mammalian cells. Moreover, the tested rare-earth ions also exhibited excellent antifungal activity againstCandida albicans. This study provides a critical empirical framework to guide the selection of rare-earth ions for biomedical applications, offering a strategic direction for the development of novel antimicrobial agents.


Subject(s)
Anti-Bacterial Agents , Biofilms , Ions , Metals, Rare Earth , Microbial Sensitivity Tests , Plankton , Pseudomonas aeruginosa , Metals, Rare Earth/chemistry , Metals, Rare Earth/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Plankton/drug effects , Pseudomonas aeruginosa/drug effects , Humans , Staphylococcus aureus/drug effects , Animals , Norfloxacin/pharmacology , Norfloxacin/chemistry
9.
Colloids Surf B Biointerfaces ; 238: 113925, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657556

ABSTRACT

Antibiotic-loaded calcium phosphate cement (CPC) has emerged as a promising biomaterial for drug delivery in orthopedics. However, there are problems such as the burst release of antibiotics, low cumulative release ratio, inappropriate release cycle, inferior mechanical strength, and poor anti-collapse properties. In this research, montmorillonite-gentamicin (MMT-GS) was fabricated by solution intercalation method and served as the drug release pathways in CPC to avoid burst release of GS, achieving promoted cumulative release ratios and a release cycle matched the time of inflammatory response. The results indicated that the highest cumulative release ratio and release concentration of GS in CPC/MMT-GS was 94.1 ± 2.8 % and 1183.05 µg/mL, and the release cycle was up to 504 h. In addition, the hierarchical GS delivery system was divided into three stages, and the kinetics followed the Korsmeyer-Peppas model, the zero-order model, and the diffusion-dissolution model, respectively. Meanwhile, the compressive strength of CPC/MMT-GS was up to 51.33 ± 3.62 MPa. Antibacterial results demonstrated that CPC/MMT-GS exhibited excellent in vitro long-lasting antibacterial properties to E. coli and S. aureus. Furthermore, CPC/MMT-GS promoted osteoblast proliferation and exhibited excellent in vivo histocompatibility. Therefore, CPC/MMT-GS has favorable application prospects in the treatment of bone defects with bacterial infections and inflammatory reactions.


Subject(s)
Anti-Bacterial Agents , Bentonite , Bone Cements , Calcium Phosphates , Drug Delivery Systems , Drug Liberation , Escherichia coli , Gentamicins , Staphylococcus aureus , Bentonite/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Gentamicins/pharmacology , Gentamicins/chemistry , Gentamicins/administration & dosage , Gentamicins/pharmacokinetics , Calcium Phosphates/chemistry , Bone Cements/chemistry , Bone Cements/pharmacology , Animals , Escherichia coli/drug effects , Mice , Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Particle Size
10.
RSC Adv ; 14(18): 12754-12761, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38645521

ABSTRACT

Enhancing the flame retardancy of electrolytes and the stability of lithium anodes is of great significance to improve the safety performance of lithium-sulfur (Li-S) batteries. It is well known that the most commonly used ether based electrolyte solvents in Li-S batteries have a lower flash point and higher volatility than the ester electrolyte solvents in Li-ion batteries. Hence, lithium-sulfur batteries have greater safety risks than lithium-ion batteries. Herein, ethoxy(pentafluoro)cyclotriphosphazene (PFPN), which is commonly used as a flame retardant for ester electrolytes in lithium-ion batteries, is utilized as both a film-forming electrolyte additive and a flame retardant additive for the ether electrolyte to investigated its applicability in Li-S batteries. It is found that the ether electrolyte containing PFPN not only has good flame retardant properties and a wide potential window of about 5 V, but also can form a stable SEI film on the surface of a lithium anode. As a result, with the ether-based electrolyte containing 10 wt% PFPN, Li-Cu and Li-S batteries all delivered a stable cycling performance with a high coulombic Efficiency and a long-lifespan performance, which were all superior to the batteries using the ether-based electrolyte without PFPN. This study demonstrates an effective solution to solve the problems of flammable ether-based electrolytes and reactive lithium anodes, and it may contribute to the development of safe Li-S batteries.

11.
BMC Plant Biol ; 24(1): 46, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38216860

ABSTRACT

BACKGROUND: The GRAS transcription factor family plays a crucial role in various biological processes in different plants, such as tissue development, fruit maturation, and environmental stress. However, the GRAS family in rye has not been systematically analyzed yet. RESULTS: In this study, 67 GRAS genes in S. cereale were identified and named based on the chromosomal location. The gene structures, conserved motifs, cis-acting elements, gene replications, and expression patterns were further analyzed. These 67 ScGRAS members are divided into 13 subfamilies. All members include the LHR I, VHIID, LHR II, PFYRE, and SAW domains, and some nonpolar hydrophobic amino acid residues may undergo cross-substitution in the VHIID region. Interested, tandem duplications may have a more important contribution, which distinguishes them from other monocotyledonous plants. To further investigate the evolutionary relationship of the GRAS family, we constructed six comparative genomic maps of homologous genes between rye and different representative monocotyledonous and dicotyledonous plants. The response characteristics of 19 ScGRAS members from different subfamilies to different tissues, grains at filling stages, and different abiotic stresses of rye were systematically analyzed. Paclobutrazol, a triazole-based plant growth regulator, controls plant tissue and grain development by inhibiting gibberellic acid (GA) biosynthesis through the regulation of DELLA proteins. Exogenous spraying of paclobutrazol significantly reduced the plant height but was beneficial for increasing the weight of 1000 grains of rye. Treatment with paclobutrazol, significantly reduced gibberellin levels in grain in the filling period, caused significant alteration in the expression of the DELLA subfamily gene members. Furthermore, our findings with respect to genes, ScGRAS46 and ScGRAS60, suggest that these two family members could be further used for functional characterization studies in basic research and in breeding programmes for crop improvement. CONCLUSIONS: We identified 67 ScGRAS genes in rye and further analysed the evolution and expression patterns of the encoded proteins. This study will be helpful for further analysing the functional characteristics of ScGRAS genes.


Subject(s)
Plant Proteins , Secale , Secale/genetics , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Breeding , Genome, Plant/genetics , Gene Expression Regulation, Plant
12.
J Mater Chem B ; 12(5): 1168-1193, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38193143

ABSTRACT

A biosensor is a device that reacts with the analyte to be analyzed, detects its concentration, and generates readable information, which plays an important role in medical diagnosis, detection of physiological indicators, and disease prevention. Nanomaterials have received increasing attention in the fabrication and improvement of biosensors due to their unique physicochemical and optical properties. In this paper, the properties of nanomaterials such as the size effect, optical and electrical properties, and their advantages in the field of biosensing are briefly summarized, and the application of nanomaterials can effectively improve the sensitivity and reduce the detection limit of biosensors. The advantages of commonly used nanomaterials such as gold nanoparticles (AuNPs), carbon nanotubes (CNTs), quantum dots (QDs), graphene, and magnetic nanobeads for biosensor applications are also reviewed. Besides, the two main types of biosensors using nanomaterials involved in their construction and their working principles are described, and the toxicity and biocompatibility of nanomaterials and the future direction of nanomaterial biosensors are discussed.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Nanostructures , Nanotubes, Carbon , Nanotubes, Carbon/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Nanostructures/chemistry
13.
Exp Dermatol ; 33(1): e14869, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37386781

ABSTRACT

Bullous pemphigoid (BP) is the most prevalent autoimmune vesiculobullous skin illness that tends to affect the elderly. Growing evidence has hinted a correlation between BP and neurological diseases. However, existing observational studies contained inconsistent results, and the causality and direction of their relationship remain poorly understood. To assess the causal relationship between BP and neurological disorders, including Alzheimer's disease (AD), multiple sclerosis (MS), Parkinson's disease (PD), and stroke. A bidirectional two-sample Mendelian randomization (MR) adopted independent top genetic variants as instruments from the largest accessible genome-wide association studies (GWASs), with BP (n = 218 348), PD (n = 482 730), AD (n = 63 926), stroke (n = 446 696), and MS (n = 115 803). Inverse variance weighted (IVW), MR-Egger, weighted mode methods, weighted median, and simple mode were performed to explore the causal association. Multiple sensitivity analyses, MR-Pleiotropy Residual Sum and Outlier (PRESSO) was used to evaluate horizontal pleiotropy and remove outliers. With close-to-zero effect estimates, no causal impact of BP on the risk of the four neurological diseases was discovered. However, we found that MS was positively correlated with higher odds of BP (OR = 1.220, 95% CI: 1.058-1.408, p = 0.006), while no causal associations were observed between PD (OR = 0.821, 95% CI: 0.616-1.093, p = 0.176), AD (OR = 1.066, 95% CI: 0.873-1.358, p = 0.603), stroke (OR = 0.911, 95% CI: 0.485-1.713, p = 0.773) and odds of BP. In summary, no causal impact of BP on the risk of PD, AD, MS and stroke was detected in our MR analysis. However, reverse MR analysis identified that only MS was positively correlated with higher odds of BP, but not PD, AD and stroke.


Subject(s)
Nervous System Diseases , Parkinson Disease , Pemphigoid, Bullous , Stroke , Aged , Humans , Pemphigoid, Bullous/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Nervous System Diseases/genetics , Parkinson Disease/genetics
15.
Insect Sci ; 31(1): 119-133, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37287390

ABSTRACT

RNA interference (RNAi) is a powerful tool that post-transcriptionally silences target genes in eukaryotic cells. However, silencing efficacy varies greatly among different insect species. Recently, we met with little success when attempting to knock down genes in the mirid bug Apolygus lucorum via dsRNA injection. The disappearance of double-stranded RNA (dsRNA) could be a potential factor that restricts RNAi efficiency. Here, we found that dsRNA can be degraded in midgut fluids, and a dsRNase of A. lucorum (AldsRNase) was identified and characterized. Sequence alignment indicated that its 6 key amino acid residues and the Mg2+ -binding site were similar to those of other insects' dsRNases. The signal peptide and endonuclease non-specific domain shared high sequence identity with the brown-winged green stinkbug Plautia stali dsRNase. AldsRNase showed high salivary gland and midgut expression and was continuously expressed through the whole life cycle, with peaks at the 4th instar ecdysis in the whole body. The purified AldsRNase protein obtained by heterologously expressed can rapidly degrade dsRNA. When comparing the substrate specificity of AldsRNase, 3 specific substrates (dsRNA, small interfering RNA, and dsDNA) were all degraded, and the most efficient degradation is dsRNA. Subsequently, immunofluorescence revealed that AldsRNase was expressed in the cytoplasm of midgut cells. Through cloning and functional study of AldsRNase, the enzyme activity and substrate specificity of the recombinant protein, as well as the subcellular localization of nuclease, the reason for the disappearance of dsRNA was explained, which was useful in improving RNAi efficiency in A. lucorum and related species.


Subject(s)
Heteroptera , RNA, Double-Stranded , Animals , RNA, Double-Stranded/genetics , Sequence Alignment , RNA Interference , Insecta/genetics , Cloning, Molecular , Heteroptera/genetics
16.
Acta Biomater ; 175: 199-213, 2024 02.
Article in English | MEDLINE | ID: mdl-38160859

ABSTRACT

Wearable microneedle sensors for continuous glucose monitoring (CGM) have great potential for clinical impact by allowing access to large data sets to provide individualized treatment plans. To date, their development has been challenged by the accurate wide linear range tracking of interstitial fluid (ISF) glucose (Glu) levels. Here, we present a CGM platform consisting of a three-electrode microneedle electrochemical biosensor and a fully integrated radio-chemical analysis system. The long-term performance of the robust CGM on diabetic rats was achieved by electrodepositing Prussian blue (PB), and crosslinking glucose oxidase (GOx) and chitosan to form a 3D network using glutaraldehyde (GA). After redox by GOx, PB rapidly decomposes hydrogen peroxide and mediates charge transfer, while the 3D network and graphite powder provide enrichment and release sites for Glu and catalytic products, enabling a sensing range of 0.25-35 mM. Microneedle CGM has high sensitivity, good stability, and anti-interference ability. In diabetic rats, CGM can accurately monitor Glu levels in the ISF in real-time, which are highly consistent with levels measured by commercial Glu meters. These results indicate the feasibility and application prospects of the PB-based CGM for the clinical management of diabetes. STATEMENT OF SIGNIFICANCE: This study addresses the challenge of continuous glucose monitoring system design where the narrow linear range of sensing due to the miniaturization of sensors fails to meet the monitoring needs of clinical diabetic patients. This was achieved by utilizing a three-dimensional network of glutaraldehyde cross-linked glucose oxidase and chitosan. The unique topology of the 3D network provides a large number of sites for glucose enrichment and anchors the enzyme to the sensing medium and the conductive substrate through covalent bonding, successfully blocking the escape of the enzyme and the sensing medium and shortening the electron transfer and transmission path.


Subject(s)
Biosensing Techniques , Chitosan , Diabetes Mellitus, Experimental , Wearable Electronic Devices , Humans , Rats , Animals , Blood Glucose , Blood Glucose Self-Monitoring , Glucose Oxidase , Continuous Glucose Monitoring , Glutaral , Glucose
17.
Front Plant Sci ; 14: 1301445, 2023.
Article in English | MEDLINE | ID: mdl-38107010

ABSTRACT

As we face increasing challenges of world food security and malnutrition, coarse cereals are coming into favor as an important supplement to human staple foods due to their high nutritional value. In addition, their functional components, such as flavonoids and polyphenols, make them an important food source for healthy diets. However, we lack a systematic understanding of the importance of coarse cereals for world food security and nutritional goals. This review summarizes the worldwide cultivation and distribution of coarse cereals, indicating that the global area for coarse cereal cultivation is steadily increasing. This paper also focuses on the special adaptive mechanisms of coarse cereals to drought and discusses the strategies to improve coarse cereal crop yields from the perspective of agricultural production systems. The future possibilities, challenges, and opportunities for coarse cereal production are summarized in the face of food security challenges, and new ideas for world coarse cereal production are suggested.

18.
J Mater Chem B ; 11(45): 10793-10821, 2023 11 22.
Article in English | MEDLINE | ID: mdl-37910389

ABSTRACT

Biomass, a renewable hydrocarbon, is one of the favorable sources of advanced carbon materials owing to its abundant resources and diverse molecular structures. Biomass-based two-dimensional carbon nanomaterials (2D-BC) have attracted extensive attention due to their tunable structures and properties, and have been widely used in the design and fabrication of electrochemical sensing platforms. This review embarks on the thermal conversion process of biomass from different sources and the synthesis strategy of 2D-BC materials. The affinity between 2D-BC structure and properties is emphasized. The recent progress in 2D-BC-based electrochemical sensors for health and environmental monitoring is also presented. Finally, the challenges and future development directions related to such materials are proposed in order to promote their further application in the field of electrochemical sensing.


Subject(s)
Carbon , Nanostructures , Biomass , Electrochemical Techniques/methods , Nanostructures/chemistry , Environmental Monitoring
19.
Zhongguo Zhong Yao Za Zhi ; 48(17): 4675-4685, 2023 Sep.
Article in Chinese | MEDLINE | ID: mdl-37802806

ABSTRACT

The Compound Cheqian Tablets are derived from Cheqian Power in Comprehensive Recording of Divine Assistance, and they are made by modern technology with the combination of Plantago asiatica and Coptis chinensis. To investigate the material basis of Compound Cheqian Tablets in the treatment of diabetic nephropathy, in this study, the chemical components of Compound Cheqian Tablets were characterized and analyzed by UPLC-Q-TOF-MS/MS, and a total of 48 chemical components were identified. The identified chemical compounds were analyzed by network pharmacology. By validating with previous literature, six bioactive compounds including acteoside, isoacteoside, coptisine, magnoflorine, palmatine, and berberine were confirmed as the index components for qua-lity evaluation. Furthermore, the content of the six components in the Compound Cheqian Tablets was determined by the "double external standards" quantitative analysis of multi-components by single marker(QAMS), and the relative correction factor of isoacteoside was calculated as 1.118 by using acteoside as the control; the relative correction factors of magnoflorine, palmatine, and berberine were calculated as 0.729, 1.065, and 1.126, respectively, by using coptisine as the control, indicating that the established method had excellent stability under different conditions. The results obtained by the "double external standards" QAMS approximated those obtained by the external standard method. This study qualitatively characterized the chemical components in the Compound Cheqian Tablets by applying UPLC-Q-TOF-MS/MS and screened the pharmacodynamic substance basis for the treatment of diabetic nephropathy via network pharmacology, and primary pharmacodynamic substance groups were quantitatively analyzed by the "double external stan-dards" QAMS method, which provided a scientific basis for clarifying the pharmacodynamic substance basis and quality control of Compound Cheqian Tablets.


Subject(s)
Berberine , Diabetic Nephropathies , Drugs, Chinese Herbal , Humans , Tandem Mass Spectrometry , Berberine/pharmacology , Chromatography, High Pressure Liquid/methods , Network Pharmacology , Drugs, Chinese Herbal/chemistry , Quality Control , Tablets
20.
Environ Sci Pollut Res Int ; 30(54): 115152-115163, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37880400

ABSTRACT

Since the outbreak of the COVID-19 pandemic, the discarded face masks have attracted widespread attention in society. In line with sustainable development, a physicochemical treatment method was used to recycle discarded face masks into styrene-butadiene-styrene (SBS) modified bitumen. Utilizing the highly adhesive polydopamine-polyethyleneimine (PDA-PEI) coating, it has improved the surface damage of the discarded face mask fibers (DFMF) caused by natural aging and mechanical fragmentation, simultaneously strengthening the connection between the fibers and bitumen. At 46 °C, the 2% embellish-face mask fiber (E-FMF)/SBS modified bitumen, compared to the 2%DFMF/SBS modified bitumen, exhibited improvements in complex modulus (G*), elastic modulus (G'), and loss modulus (G″) by 12.27%, 16.39%, and 13.35%, respectively. Furthermore, at 0.1 kPa and 3.2 kPa, the creep recovery rate (R) increased by 23.3% and 32%, and the average creep compliance (Jnr) decreased by 54.7% and 64%. It was demonstrated that DFMF adhered with the coating, were more effective in improving the mechanical properties, deformation resistance, and shear resistance of the bitumen. This approach enriches the application scenarios of discarded single-use face masks and supports environmental protection and road construction.


Subject(s)
Masks , Pandemics , Humans , Hydrocarbons , Styrene
SELECTION OF CITATIONS
SEARCH DETAIL