Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 142
Filter
1.
J Am Chem Soc ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39115312

ABSTRACT

Organic materials have been widely used as the charge transport layers in perovskite solar cells due to their structural versatility and solution processability. However, their low surface energy usually causes unsatisfactory thin-film wettability in contact with the perovskite solution, which limits the interfacial performance of the photovoltaic devices. Although solvent post-treatment could occasionally regulate the wetting behavior of organic films, the mechanism of the solid-liquid interaction is still unclear. Here, we present evidence of a possible correlation between the solvent and the wettability of a conventional polymer, poly[bis(4-phenyl) (2,4,6-trimethylphenyl) amine] (PTAA), and reveal the critical roles of Hansen solubility parameters (HSPs) of solvents in wetting mechanisms. Our results suggest that the conventional solvent N,N-dimethylformamide (DMF) improves the wettability of PTAA by the morphological disruption mechanism but negatively impacts interfacial charge collection and stability. In contrast, 2-methoxyethanol (2-Me) with an appropriate HSP value induces the transformation of the PTAA configuration in an orderly manner, which simultaneously improves the wetting property and maintains the film topography. After careful optimization of the surface conformation of the PTAA film, both perovskite crystallization and interfacial compatibility have been enhanced. Benefiting from superior interfacial properties, the perovskite solar cells based on 2-Me deliver a champion efficiency of 24.15% compared to 21.4% for DMF-based ones. More encouragingly, the use of 2-Me minimizes the perovskite buried interfacial defects, enabling the unencapsulated devices to maintain about 95% of their initial efficiencies after light illumination for 1100 h. The present study demonstrates the high effectiveness of solvent-polymer interaction for adjusting interfacial properties and strengthening the robustness of perovskite solar cells.

2.
Adv Sci (Weinh) ; : e2403735, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39044366

ABSTRACT

Naphthalene diimides (NDI) are widely serving as the skeleton to construct electron transport materials (ETMs) for optoelectronic devices. However, most of the reported NDI-based ETMs suffer from poor interfaces with the perovskite which deteriorates the carrier extraction and device stability. Here, a representative design concept for editing the peripheral groups of NDI molecules to achieve multifunctional properties is introduced. The resulting molecule 2,7-bis(2,2,3,3,4,4,4-heptafluorobutyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (NDI-C4F) incorporated with hydrophobic fluorine units contributes to the prevention of excessive molecular aggregation, the improvement of surface wettability and the formation of strong chemical coordination with perovskite precursors. All these features favor retarding the perovskite crystallization and achieving superior buried interfaces, which subsequently promote charge collection and improve the structural compatibility between perovskite and ETMs. The corresponding PSCs based on low-temperature processed NDI-C4F yield a record efficiency of 23.21%, which is the highest reported value for organic ETMs in n-i-p PSCs. More encouragingly, the unencapsulated devices with NDI-C4F demonstrate extraordinary stability by retaining over 90% of their initial PCEs after 2600 h in air. This work provides an alternative molecular strategy to engineer the buried interfaces and can trigger further development of organic ETMs toward reliable PSCs.

3.
Adv Mater ; : e2407349, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39022858

ABSTRACT

Simplifying the manufacturing processes of multilayered high-performance perovskite solar cells (PSCs) is yet of vital importance for their cost-effective production. Herein, an in situ blending strategy is presented for co-deposition of electron transport layer (ETL) and perovskite absorber by incorporating (3-(7-butyl-1,3,6,8-tetraoxo-3,6,7,8-tetrahydrobenzo- [lmn][3,8]phenanthrolin-2(1H)-yl)propyl)phosphonic acid (NDP) into the perovskite precursor solutions. The phosphonic acid-like anchoring group coupled with its large molecular size drives the migration of NDP toward indium tin oxide (ITO) surface to form a distinct ETL during perovskite film forming. This strategy circumvents the critical wetting issue and simultaneously improves the interfacial charge collection efficiencies. Consequently, n-i-p PSCs based on in situ blended NDP achieve a champion power conversion efficiency (PCE) of 24.01%, which is one of the highest values for PSCs using organic ETLs. This performance is notably higher than that of ETL-free (21.19%) and independently spin-coated (21.42%) counterparts. More encouragingly, the in situ blending strategy dramatically enhances the device stability under harsh conditions by retaining over 90% of initial efficiencies after 250 h in 100 °C or 65% humidity storage. Moreover, this strategy is universally adaptable to various perovskite compositions, device architectures, and electron transport materials (ETMs), showing great potential for applications in diverse optoelectronic devices.

4.
ACS Appl Mater Interfaces ; 16(23): 30097-30106, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38831429

ABSTRACT

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as a low-cost and water-processable hole transport material has been widely used in various optoelectronic devices. Although the incorporation of anionic polyelectrolyte PSS in PEDOT contributes to superior water solubility, the trade-off between efficiency and stability remains a challenging issue, limiting its reliable application in perovskite solar cells (PSCs). Herein, we proposed an ion-exchange (IE) strategy to effectively control the doping degree, interfacial charge dynamics, and reliability of PEDOT:PSS in PSCs. This IE approach based on hard cation-soft anion rules enabled effective anion exchange between PEDOT:PSS and lithium bis(trifluoromethylsulfonyl)imide (LiTFSI), which favored enhancing the film conductivity, regulating the perovskite crystallization, and reducing the carrier losses at the interfaces. Consequently, a notable increase of the open-circuit voltage from 0.88 to 1.02 V was realized, resulting in a champion efficiency of 18.7% compared to the control (15.4%) in inverted PSCs. More encouragingly, this IE strategy significantly promoted the thermal and environmental stability of unsealed devices by maintaining over 80% of initial efficiencies after 2000 h. This work provides an effective way to regulate the doping state of the PEDOT-based hole transport material and guides the development of robust polymeric conducting materials for efficient perovskite photovoltaics.

5.
High Alt Med Biol ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38900692

ABSTRACT

Background: Pulmonary hypertension (PH) is a prevalent adverse cardiovascular event at high-altitude environments. Prolonged exposure to high altitudes may result in myocardial injury, which is associated with poor clinical outcomes. This study aims to investigate the clinical characteristics of myocardial injury in patients with PH at high altitude. Methods: Consecutive patients admitted to a general tertiary hospital at the altitude of 3,650 m were selected into this retrospective study. Clinical and biochemical data were collected, as well as based on cardiac troponin I (cTnI) and echocardiography, patients were divided into myocardial injury group and non-myocardial injury group. Results: A total of 231 patients were enrolled, among whom 29 (12.6%) had myocardial injury. We found that body mass index, left ventricular end-diastolic dimension, and serum level of creatine kinase-MB (CK-MB) in myocardial injury group were significantly higher than non-myocardial injury group. Spearman correlation analysis revealed that cTnI has a significant positive correlation with CK-MB and lactic dehydrogenase instead of aspartate aminotransferase. A receiver operating characteristic curve was drawn to demonstrate that CK-MB could significantly predict the occurrence of myocardial injury with an area under the curve of 0.749, and a level of 3.035 (sensitivity = 59.3%, specificity = 90.5%) was optimal cutoff value. Conclusion: The incidence of myocardial injury in highlanders with PH is significant. CK-MB, as a convenient and efficient marker, has been found to be closely associated with cTnI and plays a predictive role in the occurrence of myocardial injury with PH in individuals exposed to high altitude.

6.
J Environ Manage ; 363: 121374, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38843734

ABSTRACT

Cotton is a major cash crop globally, playing a pivotal role in the textile sector. However, cotton growers in Xinjiang region are experiencing cotton yield penalty caused by limited heat environment. In this region, limited heat conditions strongly arrest cotton plant growth and development resulting in recued productivity. To counteract this problem, there is an urgent need to robustly identify efficient management strategies to improve plant performance and increase cotton yield under heat-limited situations. This will hold crucial implications for agricultural sustainability and global cotton supply. This review article identified challenges faced by cotton producers under heat limited environments with potential solutions to enhance cotton productivity. Specifically, we focused on the implementation of two life history strategies including planting early maturing and cold tolerant cultivars, and adjusting sowing date that can promote early maturity and increase cold stress tolerance. These strategies have shown promising results in protecting cotton plants from limited heat injury and consequently improved cotton productivity. By focusing on Xinjiang province unique climate and associated agronomic practices, valuable insights can be gained, which may have broader applications in other heat-limited cotton-growing regions globally. This comprehensive review endeavors to provide a foundation for future research and practical interventions aimed at boosting cotton yields under limited heat areas.


Subject(s)
Gossypium , Gossypium/growth & development , Hot Temperature , Agriculture/methods , China
7.
Infect Drug Resist ; 17: 2501-2512, 2024.
Article in English | MEDLINE | ID: mdl-38933776

ABSTRACT

Background: Persistent infections caused by Helicobacter pylori (H. pylori), which are resistant to antibiotic treatment, pose a growing global public health concern. Biofilm formation is known to be associated with persistent infections due to its role in enhancing antimicrobial resistance and the tolerance of many pathogenic bacteria. Objective: This study aims to evaluate the biofilm formation of clinical isolates of H. pylori and its impact on antibiotic eradication. Methods: The thickness, morphology, and structure of biofilms derived from nine H. pylori strains were examined using confocal laser scanning microscopy, scanning electron microscopy, and transmission electron microscopy. Subsequently, the susceptibility of both planktonic and biofilm bacteria was assessed through the determination of minimum inhibitory concentration and minimum biofilm eradication concentration for amoxicillin, clarithromycin, levofloxacin, and tetracycline. Results: The results revealed varying biofilm thicknesses and densities among the strains, characterised by the presence of numerous filaments intertwining and connecting bacterial cells. Additionally, several cases exhibited susceptibility based on MIC measurements but resistance according to MBEC measurements, with MBEC indicating a higher resistance rate. Pearson Correlation analysis demonstrated a positive correlation between biofilm thickness and MBEC results (0 < r < 1), notably significant for amoxicillin (r = 0.801, P = 0.009) and tetracycline (r = 0.696, P = 0.037). Conclusion: Different strains of H. pylori exhibit variations in their capacity to release outer membrane vesicles (OMVs) and form biofilms. Biofilm formation can influence the effectiveness of amoxicillin and tetracycline in eradicating susceptible bacterial strains.

8.
Sci Total Environ ; 927: 172276, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38583634

ABSTRACT

The increases in extent and frequency of extreme drought events and increased nitrogen (N) deposition due to global change are expected to have profound impacts on carbon cycling in semi-arid grasslands. However, how ecosystem CO2 exchange processes respond to different drought scenarios individually and interactively with N addition remains uncertain. In this study, we experimentally explored the effects of different drought scenarios (early season extreme drought, 50 % reduction in precipitation amount, and 50 % reduction in precipitation events) and N addition on net ecosystem CO2 exchange (NEE), ecosystem respiration (ER), and gross ecosystem productivity (GEP) over three growing seasons (2019-2021) in a semi-arid grassland in northern China. The growing-season ecosystem carbon fluxes in response to drought and N addition were influenced by inter-annual precipitation changes, with 2019 as a normal precipitation year, and 2020 and 2021 as wet years. Early season extreme drought stimulated NEE by reducing ER. 50 % reduction in precipitation amount decreased ER and GEP consistently in three years, but only significantly suppressed NEE in 2019. 50 % reduction in precipitation events stimulated NEE. Nitrogen addition stimulated NEE, ER, and GEP, but only significantly in wet years. The structural equation models showed that changes in carbon fluxes were regulated by soil moisture, soil temperature, microbial biomass nitrogen (MBN), and the key plant functional traits. Decreased community-weighted means of specific leaf area (CWMSLA) was closely related to the reduced ER and GEP under early season extreme drought and 50 % reduction in precipitation amount. While increased community-weighted means of plant height (CWMPH) largely accounted for the stimulated ER and GEP under 50 % reduction in precipitation events. Our study stresses the distinct effects of different drought scenarios and N enrichment on carbon fluxes, and highlights the importance of soil traits and the key plant traits in determining carbon exchange in this water-limited ecosystem.


Subject(s)
Carbon Cycle , Droughts , Grassland , Nitrogen , Nitrogen/analysis , China , Rain , Climate Change , Ecosystem , Carbon/metabolism , Seasons
9.
Sci Adv ; 10(16): eadl2063, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38640232

ABSTRACT

All-perovskite tandem solar cells (TSCs) have exhibited higher efficiencies than single-junction perovskite solar cells (PSCs) but still suffer from the unsatisfactory performance of low-bandgap (LBG) tin-lead (Sn-Pb) subcells. The inherent properties of PEDOT:PSS are crucial to high-performance Sn-Pb perovskite films and devices; however, the underlying mechanism has not been fully explored and revealed. Here, we report a facile oxalic acid treatment of PEDOT:PSS (OA-PEDOT:PSS) to precisely regulate its work function and surface morphology. OA-PEDOT:PSS shows a larger work function and an ordered reorientation and fiber-shaped film morphology with efficient hole transport pathways, leading to the formation of more ideal hole-selective contact with Sn-Pb perovskite for suppressing interfacial nonradiative recombination losses. Moreover, OA-PEDOT:PSS induces (100) preferred orientation growth of perovskite for higher-quality Sn-Pb films. Last, the OA-PEDOT:PSS-tailored LBG PSC yields an impressive efficiency of up to 22.56% (certified 21.88%), enabling 27.81% efficient all-perovskite TSC with enhanced operational stability.

10.
Ecol Appl ; 34(4): e2969, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38562107

ABSTRACT

Drought and nitrogen enrichment could profoundly affect the productivity of semiarid ecosystems. However, how ecosystem productivity will respond to different drought scenarios, especially with a concurrent increase in nitrogen availability, is still poorly understood. Using data from a 4-year field experiment conducted in a semiarid temperate steppe, we explored the responses of aboveground net primary productivity (ANPP) to different drought scenarios and nitrogen addition, and the underlying mechanisms linking soil properties, plant species richness, functional diversity (community-weighted means of plant traits, functional dispersion) and phylogenetic diversity (net relatedness index) to ANPP. Our results showed that completely excluding precipitation in June (1-month intense drought) and reducing half the precipitation amount from June to August (season-long chronic drought) both significantly reduced ANPP, with the latter having a more negative impact on ANPP. However, reducing half of the precipitation frequency from June to August (precipitation redistribution) had no significant effect on ANPP. Nitrogen addition increased ANPP irrespective of drought scenarios. ANPP was primarily determined by soil moisture and nitrogen availability by regulating the community-weighted means of plant height, rather than other aspects of plant diversity. Our findings suggest that precipitation amount is more important than precipitation redistribution in influencing the productivity of temperate steppe, and nitrogen supply could alleviate the adverse impacts of drought on grassland productivity. Our study advances the mechanistic understanding of how the temperate grassland responds to drought stress, and implies that management strategies to protect tall species in the community would be beneficial for maintaining the productivity and carbon sequestration of grassland ecosystems under climate drought.


Subject(s)
Droughts , Grassland , Nitrogen , Nitrogen/metabolism , Plants/classification , Soil/chemistry , China
11.
Genes Genomics ; 46(4): 423-436, 2024 04.
Article in English | MEDLINE | ID: mdl-38324226

ABSTRACT

BACKGROUND: Rubisco activase (RCA) is a pivotal enzyme that can catalyse the activation of Rubisco in carbon assimilation pathway. Many studies have shown that RCA may be a potential target for genetic manipulation aimed at enhancing photosynthetic efficiency and crop yield. OBJECTIVE: To understand the biological function of the GhRCAß2 gene in upland cotton, we cloned the coding sequence (CDS) of the GhRCAß2 gene and investigated its sequence features, evolutionary relationship, subcellular localization, promoter sequence and expression pattern. METHODS: The bioinformatics tools were used to analyze the sequence features of GhRCAß2 protein. Transient transformation of Arabidopsis mesophyll protoplasts was performed to determine the subcellular localization of the GhRCAß2 protein. The expression pattern of the GhRCAß2 gene was examined by analyzing transcriptome data and using the quantitative real-time PCR (qRT-PCR). RESULTS: The full-length CDS of GhRCAß2 was 1317 bp, and it encoded a protein with a chloroplast transit peptide. The GhRCAß2 had two conserved ATP-binding domains, and did not have the C-terminal extension (CTE) domain that was unique to the RCA α-isoform in plants. Evolutionarily, GhRCAß2 was clustered in Group A, and had a close evolutionary relationship with the soybean RCA. Western blot analysis demonstrated that GhRCAß2 was immunoreactive to the RCA antibody displaying a molecular weight similar to that of the RCA ß-isoform. The GhRCAß2 protein was found in chloroplast, aligning with its role as a vital enzyme in the process of photosynthesis. The GhRCAß2 gene had a leaf tissue-specific expression pattern, and the yellow-green leaf mutant exhibited a decreased expression of GhRCAß2 in comparison to the wild-type cotton plants. The GhRCAß2 promoter contained several cis-acting elements that respond to light, phytohormones and stress, suggesting that the expression of GhRCAß2 may be regulated by these factors. An additional examination of stress response indicated that GhRCAß2 expression was influenced by cold, heat, salt, and drought stress. Notably, diverse expression pattern was observed across different stress conditions. Additionally, low phosphorus and low potassium stress may result in a notable reduction in the expression of GhRCAß2 gene. CONCLUSION: Our findings will establish a basis for further understanding the function of the GhRCAß2 gene, as well as providing valuable genetic knowledge to improve cotton photosynthetic efficiency and yield under challenging environmental circumstances.


Subject(s)
Arabidopsis , Gossypium , Gossypium/genetics , Ribulose-Bisphosphate Carboxylase/genetics , Ribulose-Bisphosphate Carboxylase/metabolism , Tissue Plasminogen Activator , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Isoforms , Arabidopsis/metabolism
12.
Res Aging ; 46(5-6): 275-286, 2024.
Article in English | MEDLINE | ID: mdl-38189254

ABSTRACT

Consumer-directed Care (CDC) empowers older people to flexibly arrange services and enhances their well-being. Prior studies have suggested that limited attention and hassle costs are major demand-side barriers to using CDC. However, many other psychosocial factors were unexplored. In this study, we explore associations between CDC utilization and a wider range of psychosocial factors based on behavioral economics theories. A cross-sectional telephone survey of older persons (or family members that represent them) was conducted in Guangzhou, China in 2021. We adopted a two-stage sampling method based on administrative records and analyzed the data using multivariate logistic models. Procedural literacy, hassle costs, and social norms regarding CDC were associated with using CDC. The findings reveal nuances in the decision-making process, and people are not unboundedly rational in making care-related decisions. Policymakers could employ cost-effective tools to facilitate CDC utilization and optimize resources to address the most crucial service barriers.


Subject(s)
Economics, Behavioral , Humans , Aged , Female , Male , Cross-Sectional Studies , China , Middle Aged , Aged, 80 and over , Patient Acceptance of Health Care/statistics & numerical data , Surveys and Questionnaires , Decision Making
13.
ACS Chem Neurosci ; 15(3): 572-581, 2024 02 07.
Article in English | MEDLINE | ID: mdl-38277219

ABSTRACT

Abnormal glutamate signaling is implicated in the heightened vulnerability of dopaminergic neurons in Parkinson's disease (PD). NMDA receptors are ion-gated glutamate receptors with high calcium permeability, and their GluN2D subunits are prominently distributed in the basal ganglia and brainstem nuclei. Previous studies have reported that dopamine depletion led to the dysfunctions of GluN2D-containing NMDA receptors in PD animal models. However, it remains unknown whether selective modulation of GluN2D could protect dopaminergic neurons against neurotoxicity in PD. In this study, we found that allosteric activation of GluN2D-containing NMDA receptors decreased the cell viability of MES23.5 dopaminergic cells and the GluN2D inhibitor, QNZ46, showed antioxidant effects and significantly relieved apoptosis in 6-OHDA-treated cells. Meanwhile, we demonstrated that QNZ46 might act via activation of the ERK/NRF2/HO-1 pathway. We also verified that QNZ46 could rescue abnormal behaviors and attenuate dopaminergic cell loss in a 6-OHDA-lesioned rat model of PD. Although the precise mechanisms underlying the efficacy of QNZ46 in vivo remain elusive, the inhibition of the GluN2D subunit should be a considerable way to treat PD. More GluN2D-selective drugs, which present minimal side effects and broad therapeutic windows, need to be developed for PD treatment in future studies.


Subject(s)
Neurotoxicity Syndromes , Parkinson Disease , Rats , Animals , Oxidopamine/pharmacology , Dopaminergic Neurons/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , NF-E2-Related Factor 2/metabolism , Signal Transduction
14.
Adv Mater ; 36(14): e2308969, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38145547

ABSTRACT

High efficiency and long-term stability are the prerequisites for the commercialization of perovskite solar cells (PSCs). However, inadequate and non-uniform doping of hole transport layers (HTLs) still limits the efficiency improvements, while the intrinsic instability of HTLs caused by ion migration and accumulation is difficult to be addressed by external encapsulation. Here it is shown that the addition of a conjugated phosphonic acid (CPA) to the Spiro-OMeTAD benchmark HTL can greatly enhance the device efficiency and intrinsic stability. Featuring an optimal diprotic-acid structure, indolo(3,2-b)carbazole-5,11-diylbis(butane-4,1-diyl) bis(phosphonic acid) (BCZ) is developed to promote morphological uniformity and mitigate ion migration across both perovskite/HTL and HTL/Ag interfaces, leading to superior charge conductivity, reinforced ion immobilization, and remarkable film stability. The dramatically improved interfacial charge collection endows BCZ-based n-i-p PSCs with a champion power conversion efficiency of 24.51%. More encouragingly, the BCZ-based devices demonstrate remarkable stability under harsh environmental conditions by retaining 90% of initial efficiency after 3000 h in air storage. This work paves the way for further developing robust organic HTLs for optoelectronic devices.

15.
J Aging Soc Policy ; : 1-21, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38151708

ABSTRACT

Consumer-directed care (CDC) programs for older people aim to optimize health outcomes by offering clients control and flexibility regarding service arrangements. However, policy design features may differ due to heterogenous sociostructural systems. By operationalizing a framework with three dimensions of CDC, i.e. control and direct services, variety of service options, and information and support, we analyzed how countries vary in their policy designs to achieve consumer direction. Using an expert survey (n = 20) and cross-national document analysis, we analyzed 12 CDC programs from seven selected countries: the United States, the United Kingdom, Germany, the Netherlands, China, Australia, and Spain. Among the three dimensions, CDC programs placed more emphasis on and displayed more homogenous performance of policy designs that achieve consumer direction in the dimension of control and direct services, while less emphasis was placed on and more heterogenous performance displayed in the dimensions of variety of service options and information and support. We offer a systematically operationalized framework to investigate CDC policy designs. Findings advance our understanding of CDC policy features from a cross-national perspective. Policymakers could incorporate these findings to empower older people in their respective societies.

16.
iScience ; 26(11): 108130, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37876795

ABSTRACT

Parkinson's disease (PD) is characterized by the irreversible loss of dopaminergic neurons and the accumulation of α-synuclein in Lewy bodies. The oligomeric α-synuclein (O-αS) is the most toxic form of α-synuclein species, and it has been reported to be a robust inflammatory mediator. Mutations in Leucine-Rich Repeat Kinase 2 (LRRK2) are also genetically linked to PD and neuroinflammation. However, how O-αS and LRRK2 interact in glial cells remains unclear. Here, we reported that LRRK2 G2019S mutation, which is one of the most frequent causes of familial PD, enhanced the effects of O-αS on astrocytes both in vivo and in vitro. Meanwhile, inhibition of LRRK2 kinase activity could relieve the inflammatory effects of both LRRK2 G2019S and O-αS. We also demonstrated that nuclear factor κB (NF-κB) pathway might be involved in the neuroinflammatory responses. These findings revealed that inhibition of LRRK2 kinase activity may be a viable strategy for suppressing neuroinflammation in PD.

17.
Mitochondrion ; 73: 10-18, 2023 11.
Article in English | MEDLINE | ID: mdl-37708949

ABSTRACT

Mutations in the Leucine-rich repeat protein kinase 2 (LRRK2) gene are the most frequent cause of familial Parkinson's disease (PD). Although LRRK2 has been extensively studied, the pathogenic mechanism of the LRRK2 G2385R mutation, which is most common in Asian populations, especially in the Chinese Han population, remains unclear. In this study, we demonstrated that the LRRK2 G2385R mutation in HEK293T cells led to a reduction in cellular PGC-1α protein expression and inhibition of mitochondrial biogenesis through the PGC-1α-TFAM pathway. This resulted in a decrease in mitochondrial genome expression, which in turn impaired the normal electron transfer process of the oxidative phosphorylation respiratory chain, leading to mitochondrial dysfunction and onset of apoptosis. The mitochondrial dysfunction and apoptosis caused by the LRRK2 G2385R mutation were significantly alleviated by antioxidant Idebenone, which provides a theoretical basis for the subsequent development of precise treatment specifically for PD patients with LRRK2 G2385R mutation. Further validation of our findings in neurons and animal models are necessary.


Subject(s)
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Parkinson Disease , Humans , DNA-Binding Proteins/genetics , HEK293 Cells , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Mitochondrial Proteins/genetics , Mutation , Organelle Biogenesis , Parkinson Disease/genetics , Transcription Factors/genetics , Mitochondria
18.
ACS Appl Mater Interfaces ; 15(34): 41109-41120, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37590128

ABSTRACT

Poly(3-hexylthiophene) (P3HT) represents a promising hole transport material for emerging perovskite solar cells (PSCs) due to its appealing merits of high thermal stability and appropriate hydrophobicity. Nonetheless, large energy losses at the P3HT/perovskite interface lead to unsatisfied efficiency and stability of the devices. Herein, two ionic dendritic molecules, 3,3'-(2,7-bis(3,6-bis(bis(4-methoxyphenyl)amino)-9H-carbazol-9-yl)-9H-fluorene-9,9-diyl)bis(N,N,N-trimethylpropan-1-aminium) iodide and 3,3'-(2,7-bis(bis(4-(bis(4-methoxyphenyl)amino)phenyl)amino)-9H-fluorene-9,9-diyl)bis(N,N,N-trimethylpropan-1-aminium) iodide, namely, MPA-Cz-FAI and MPA-PA-FAI, are rationally designed as the interlayer to enhance interfacial compatibility. The dendritic backbone with conjugated structure endows the hole transport layer with high conductivity, derived from the more ordered microstructure with larger crystallization and higher connectivity of domain zones. Besides, a better energy level alignment is established between P3HT and perovskite, which enhances the charge extraction and transport yield. In addition, the peripheral methoxy groups enable effective defect passivation at the interface to suppress nonradiative recombination and the quaternary ammonium iodide serving as side chains enable efficient interfacial hole extraction contributing to enhanced charge collection yield. As a result, the dopant-free P3HT-based PSCs modified with MPA-Cz-PAI deliver a champion efficiency of 19.7%, significantly higher than that of the control devices (15.4%). More encouragingly, the unencapsulated devices demonstrate competitive environmental stability by retaining over 85% of its initial efficiency after 1500 h of storage under humid conditions (70% relative humidity). This work provides an effective molecular design strategy for interface engineering, envisaging a bright prospect for the further development of efficient and stable perovskite solar cells.

19.
Acta Pharmacol Sin ; 44(12): 2418-2431, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37563446

ABSTRACT

Pain is a common annoying non-motor symptom in Parkinson's disease (PD) that causes distress to patients. Treatment for PD pain remains a big challenge, as its underlying mechanisms are elusive. Pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptor PAC1-R play important roles in regulating a variety of pathophysiological processes. In this study, we investigated whether PACAP/PAC1-R signaling was involved in the mechanisms of PD pain. 6-hydroxydopamine (6-OHDA)-induced PD model was established in rats. Behavioral tests, electrophysiological and Western blotting analysis were conducted 3 weeks later. We found that 6-OHDA rats had significantly lower mechanical paw withdrawal 50% threshold in von Frey filament test and shorter tail flick latency, while mRNA levels of Pacap and Adcyap1r1 (gene encoding PAC1-R) in the spinal dorsal horn were significantly upregulated. Whole-cell recordings from coronal spinal cord slices at L4-L6 revealed that the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) in dorsal horn neurons was significantly increased, which was reversed by application of a PAC1-R antagonist PACAP 6-38 (250 nM). Furthermore, we demonstrated that intrathecal microinjection of PACAP 6-38 (0.125, 0.5, 2 µg) dose-dependently ameliorated the mechanical and thermal hyperalgesia in 6-OHDA rats. Inhibition of PACAP/PAC1-R signaling significantly suppressed the activation of Ca2+/calmodulin-dependent protein kinase II and extracellular signal-regulated kinase (ERK) in spinal dorsal horn of 6-OHDA rats. Microinjection of pAAV-Adcyap1r1 into L4-L6 spinal dorsal horn alleviated hyperalgesia in 6-OHDA rats. Intrathecal microinjection of ERK antagonist PD98059 (10 µg) significantly alleviated hyperalgesia in 6-OHDA rats associated with the inhibition of sEPSCs in dorsal horn neurons. In addition, we found that serum PACAP-38 concentration was significantly increased in PD patients with pain, and positively correlated with numerical rating scale score. In conclusion, activation of PACAP/PAC1-R induces the development of PD pain and targeting PACAP/PAC1-R is an alternative strategy for treating PD pain.


Subject(s)
Parkinson Disease , Pituitary Adenylate Cyclase-Activating Polypeptide , Rats , Humans , Animals , Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Oxidopamine , Parkinson Disease/drug therapy , Synaptic Transmission , Pain , Extracellular Signal-Regulated MAP Kinases/metabolism , Posterior Horn Cells/metabolism , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism
20.
Adv Mater ; 35(35): e2303692, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37354138

ABSTRACT

Although hole transport layers (HTLs) based on solution-processed doped Spiro-OMeTAD are extremely popular and effective for their remarkable performance in n-i-p perovskite solar cells (PSCs), their scalable application is still being held back by poor chemical stability and unsatisfied scalability. Essentially, the volatile components and hygroscopic nature of ionic salts often cause morphological deformation that deteriorate both device efficiency and stability. Herein, a simple and effective molecular implantation-assisted sequential doping (MISD) approach is strategically introduced to modulate spatial doping uniformity of organic films and fabricate all evaporated Spiro-OMeTAD layer in which phase-segregation free HTL is achieved accompanied with high molecular density, uniform doping composition, and superior optoelectronic characteristics. The resultant MISD-based devices attain a record power conversion efficiency (PCE) of 23.4%, which represents the highest reported value among all the PSCs with evaporated HTLs. Simultaneously, the unencapsulated devices realize considerably enhanced stability by maintaining over 90% of their initial PCEs in the air for 5200 h and after working at maximum power point under illumination for 3000 h. This method provides a facile way to fabricate robust and reliable HTLs toward developing efficient and stable perovskite solar cells.

SELECTION OF CITATIONS
SEARCH DETAIL