Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 143
Filter
Add more filters











Publication year range
1.
Food Chem ; 463(Pt 2): 141138, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39265305

ABSTRACT

This study aimed to unravel the peptide profiles of six distinct yeast protein samples and identify novel umami peptides within them. Peptide characteristics analysis support the proposition that yeast protein peptide pools represent exceptional reservoirs of umami peptides. Nine potential umami peptides were screened using the iUmami_SCM, UMPred-FRL, Umami_YYDS, Umami-MRNN, Innovagen, Expasy-ProtParam, and ToxinPred tools. Peptides AGVEDVY, LFEQHPEYRK, AFDVQ, GPTVEEVD, NVVAGSDLR, ATNGSR, and VEVVALND (1 mg/mL) were confirmed to possess umami taste, and the first five peptides exhibited significant umami-enhancing effects on 0.35 % monosodium glutamate. Molecular docking indicated that peptide residues His, Arg, Tyr, Asp, Gln, Thr, Ser, and Glu primarily bound to His71, Ser107/109/148, Asp147/218, and Arg277 of T1R1 and Ser104/146, His145, Asp216, Tyr218, and Ala302 of T1R3 through hydrogen bonds. This study enriches the umami peptide repository for potential food additive use and establishes a theoretical foundation for exploring taste compounds in yeast proteins and their broader applications.

2.
J Cancer Res Clin Oncol ; 150(9): 426, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39299959

ABSTRACT

BACKGROUND: Double-hit lymphoma (DHL) with c-MYC gene translocation is highly aggressive and has a poor prognosis. In DHL cells, activation-induced cytidine deaminase (AID) promotes antibody class switch recombination (CSR), ultimately leading to c-MYC gene translocation caused by Myc/IgH DNA double-strand breaks. However, currently there is still no method to suppress the expression of AID. METHODS: In this study, we compared the clinical significance of AID expression in DHL, Additionally, two human double-hit lymphoma cell lines were used to analyze the effect of imatinib mesylate on c-MYC in vitro, and the therapeutic effect was also evaluated in xenograft mouse models. RESULTS: Imatinib mesylate downregulated the AID and c-MYC proteins in patients with chronic myelogenous leukemia associated with DHL. In addition, imatinib mesylate reduced AID and c-MYC expression in SU-DHL-4 and OCI-Ly18 DHL cells. Imatinib mesylate exerted significant inhibitory effects on the proliferation and metastasis of SU-DHL-4 and OCI-Ly18 cells. Finally, imatinib mesylate reduced not only tumor burden in DHL mouse models, but also AID and c-MYC expression in vivo. CONCLUSION: These findings reveal that imatinib mesylate effectively reduces the carcinogenic function of c-MYC in DHL, providing novel strategies for developing therapies targeting c-MYC-driven DHL.


Subject(s)
Cytidine Deaminase , Imatinib Mesylate , Proto-Oncogene Proteins c-myc , Xenograft Model Antitumor Assays , Imatinib Mesylate/pharmacology , Animals , Humans , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , Mice , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Cell Line, Tumor , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Female , Antineoplastic Agents/pharmacology , Translocation, Genetic , Male , Cell Proliferation/drug effects , Lymphoma/drug therapy , Lymphoma/pathology , Lymphoma/genetics , Lymphoma/metabolism , Gene Expression Regulation, Neoplastic/drug effects
3.
Mol Biomed ; 5(1): 36, 2024 09 04.
Article in English | MEDLINE | ID: mdl-39227479

ABSTRACT

Bladder cancer (BCa) stands out as a highly prevalent malignant tumor affecting the urinary system. The Sex determining region Y-box protein family is recognized for its crucial role in BCa progression. However, the effect of Sex determining region Y-box 7 (SOX7) on BCa progression has not been fully elucidated. Herein, RNA-sequencing, western blot (WB), immunohistochemistry (IHC), immunofluorescence (IF) and tissue microarray were utilized to assess SOX7 expression in vitro and in vivo. Additionally, SOX7 expression, prognosis, and SOX7 + cytoglobin (CYGB) score were analyzed using R software. In vitro and vivo experiments were performed with BCa cell lines to validate the effect of SOX7 knockdown and overexpression on the malignant progression of BCa. The results showed that SOX7 exhibits low expression in BCa. It functions in diverse capacities, inhibiting the proliferative, migratory, and invasive capabilities of BCa. In addition, the experimental database demonstrated that SOX7 binds to the promoter of DNA methyltransferase 3 beta (DNMT3B), leading to the transcriptional inhibition of DNMT3B. This subsequently results in a reduced methylation of CYGB promoter, ultimately inhibiting the tumor progression of BCa. SOX7 + CYGB scores were significantly linked to patient prognosis. In conclusion, SOX7 inhibits the malignant progression of BCa via the DNMT3B/CYGB axis. Additionally, the SOX7 + CYGB score is capable of predicting the prognostic outcomes of BCa patients. Therefore, SOX7 and CYGB may play an important role in the progression of bladder cancer, and they can be used as prognostic markers of bladder cancer patients.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases , DNA Methyltransferase 3B , Disease Progression , Gene Expression Regulation, Neoplastic , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism , Cell Line, Tumor , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , Animals , Female , Mice , Male , Cell Proliferation , SOXF Transcription Factors/genetics , SOXF Transcription Factors/metabolism , Prognosis , Promoter Regions, Genetic/genetics , DNA Methylation , Mice, Nude , Cell Movement
4.
Food Funct ; 15(19): 9766-9778, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39189850

ABSTRACT

This study endeavored to high-throughput identify umami peptides from pork bone. Pork bone protein extracts were hydrolyzed using proteinase K and papain, enzymes selected through computational proteolysis of pork type I collagen under the controlled conditions predicted by umami intensity-guided response surface analysis. Peptide sequences (GVNAMLRK, HWDRSNWF, PGRGCPGN, NLRDNYRF, PGWETYRK, GPGCKAGL, VAQWRKCL, GPTAANRM) in hydrolysates were virtually screened as potential umami peptides. Sensory evaluation confirmed that six of these peptides demonstrate a progressive increase in umami intensity. Molecular docking revealed that hydrophilic amino acids in umami peptides predominantly formed hydrogen bonds with T1R1/T1R3. Specifically, residues Thr, Asn, Lys, Ser and Glu of peptides mainly interacted with Ser107/148/276 of T1R1, and residues Tyr, Arg and Asp played crucial roles in binding to the Ser104/146 and His145 of T1R3. This study offers insights into the high-value utilization of pork bones and guides the development of umami peptides in various food proteins.


Subject(s)
Molecular Docking Simulation , Peptides , Taste , Animals , Swine , Peptides/chemistry , Humans , Male , Bone and Bones/chemistry , Bone and Bones/metabolism , Taste Perception , Adult , Female , Receptors, G-Protein-Coupled/metabolism , Young Adult , Amino Acid Sequence
5.
J Agric Food Chem ; 72(36): 20014-20027, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39186792

ABSTRACT

This study aimed to rapidly develop novel umami peptides using yeast protein as an alternative protein source. Yeast protein hydrolysates exhibiting pronounced umami intensity were produced using flavorzyme under optimum conditions determined via a sensory-guided response surface methodology. Six out of 2138 peptides predicted to possess umami taste by composite machine learning and assessed as nontoxic, nonallergenic, water-soluble, and stable using integrated bioinformatics were screened as potential umami peptides. Sensory evaluation results revealed these peptides exhibited multiple taste attributes (detection threshold: 0.37 ± 0.10-1.1 ± 0.30 mmol/L), including umami. In light of the molecular docking outcomes, it is inferred that hydrogen bond, hydrophobic, and electrostatic interactions enhanced the theoretically stable binding of peptides to T1R1/T1R3, with their contributions gradually diminishing. Hydrophilic amino acids within T1R1/T1R3, especially Ser, may play a particularly pivotal role in binding with umami peptides. Future research will involve establishing heterologous cell models expressing T1R1 and T1R3 to delve into the cellular physiology of umami peptides. Peptide sequences (FADL, LPDP, and LDIGGDF) also had synergistic saltiness-enhancing effects; to overcome the limitation of not investigating the saltiness enhancement mechanism, comprehensive experiments at the molecular and cellular levels will also be conducted. This study offers a rapid umami peptide development framework and lays the groundwork for exploring yeast protein taste compounds.


Subject(s)
Flavoring Agents , Molecular Docking Simulation , Peptides , Taste , Peptides/chemistry , Peptides/metabolism , Humans , Flavoring Agents/chemistry , Flavoring Agents/metabolism , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Male , Female , Adult , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/genetics , Young Adult , Computer Simulation , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Fungal Proteins/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Endopeptidases
6.
Ren Fail ; 46(2): 2394634, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39177235

ABSTRACT

OBJECTIVES: This study aims to identify risk factors for acute kidney injury (AKI) in patients with ureterolithiasis and to develop a predictive model for early AKI detection in this population. METHODS: A retrospective analysis was conducted on data from 1,016 patients with ureterolithiasis who presented to our outpatient emergency department between January 2021 and December 2022. Using multifactorial logistic regression, we identified independent risk factors for AKI and constructed a nomogram to predict AKI risk. The predictive model's efficacy was assessed through the area under the ROC curve, calibration curves, Hosmer-Lemeshow (HL) test, and decision curve analysis (DCA). RESULTS: AKI was diagnosed in 18.7% of the patients. Independent risk factors identified included age, fever, diabetes, hyperuricemia, bilateral calculi, functional solitary kidney, self-medication, and prehospital delay. The nomogram demonstrated excellent discriminatory capabilities, with AUCs of 0.818 (95% CI, 0.775-0.861) for the modeling set and 0.782 (95% CI, 0.708-0.856) for the validation set. Both calibration curve and HL test results confirmed strong concordance between the model's predictions and actual observations. DCA highlighted the model's significant clinical utility. CONCLUSIONS: The predictive model developed in this study provides clinicians with a valuable tool for early identification and management of patients at high risk for AKI, thereby potentially enhancing patient outcomes.


Subject(s)
Acute Kidney Injury , Nomograms , Ureterolithiasis , Humans , Male , Female , Retrospective Studies , Middle Aged , Acute Kidney Injury/etiology , Acute Kidney Injury/diagnosis , Risk Factors , Adult , Ureterolithiasis/complications , Aged , ROC Curve , Logistic Models , Risk Assessment/methods
7.
Pest Manag Sci ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39139028

ABSTRACT

BACKGROUND: Yellow rust (Puccinia striiformis f. sp. tritici) is a devastating hazard to wheat production, which poses a serious threat to yield and food security in the main wheat-producing areas in eastern China. It is necessary to monitor yellow rust progression during spring critical wheat growth periods to support its prediction by providing timely calibrations for disease prediction models and timely green prevention and control. RESULTS: Three Sentinel-2 images for the disease during the three wheat growth periods (jointing, heading, and filling) were acquired. Spectral, texture, and color features were all extracted for each growth period disease. Then three period-specific feature sets were obtained. Given the differences in field disease epidemic status in the three periods, three period-targeted monitoring models were established to map yellow rust damage progression in spring and track its spatiotemporal change. The models' performance was then validated based on the disease field truth data during the three periods (87 for the jointing period, 183 for the heading period, and 155 for the filling period). The validation results revealed that the representation of the wheat yellow rust damage progression based on our monitoring model group was realistic and credible. The overall accuracy of the healthy and diseased pixel classification monitoring model at the jointing period reached 87.4%, and the coefficient of determination (R2) of the disease index regression monitoring models at the heading and filling periods was 0.77 (heading period) and 0.76 (filling period). The model-group-result-based spatiotemporal change detection of the yellow rust progression across the entire study area revealed that the area proportions conforming to the expected disease spatiotemporal development pattern during the jointing-to-heading period and the heading-to-filling period reached 98.2% and 84.4% respectively. CONCLUSIONS: Our jointing, heading, and filling period-targeted monitoring model group overcomes the limitations of most existing monitoring models only based on single-phase remote sensing information. It performs well in revealing the wheat yellow rust spatiotemporal epidemic in spring, can timely update disease trends to optimize disease management, and provide a basis for disease prediction to timely correct model. © 2024 Society of Chemical Industry.

8.
Food Chem ; 460(Pt 2): 140637, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39111139

ABSTRACT

This study aimed to explore the potential of a fermentation technology to reduce off-flavour perception and its underlying mechanisms. Results revealed that yeast fermentation (YF) significantly ameliorated the off-flavour of pig liver (p < 0.05). Specifically, YF pre-treatment decreased the relative abundance of α-helix and fluorescence intensity while increasing the surface hydrophobicity and SS level and loosening the microstructure of myofibrillar proteins (MPs) in pig liver. Additionally, the appropriate fermentation treatments enhanced the MP-aldehyde binding capacity by 0.25-1.30 times, demonstrating that YF-induced conformational modifications in pig liver proteins made them more prone to interacting with characteristic aldehydes. Moreover, molecular docking results confirmed that hydrophobic interactions are the primary drivers of MP-aldehyde binding. These findings suggest that YF technology holds immense promise for modulating off-flavour perception in liver products by altering protein conformation.


Subject(s)
Aldehydes , Fermentation , Liver , Saccharomyces cerevisiae , Animals , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/chemistry , Swine , Liver/metabolism , Liver/chemistry , Aldehydes/metabolism , Aldehydes/chemistry , Molecular Docking Simulation , Protein Conformation , Hydrophobic and Hydrophilic Interactions
9.
Cell Rep ; 43(6): 114372, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38878289

ABSTRACT

Emerging evidence highlights the regulatory role of paired-like (PRD-like) homeobox transcription factors (TFs) in embryonic genome activation (EGA). However, the majority of PRD-like genes are lost in rodents, thus prompting an investigation into PRD-like TFs in other mammals. Here, we showed that PRD-like TFs were transiently expressed during EGA in human, monkey, and porcine fertilized embryos, yet they exhibited inadequate expression in their cloned embryos. This study, using pig as the research model, identified LEUTX as a key PRD-like activator of porcine EGA through genomic profiling and found that LEUTX overexpression restored EGA failure and improved preimplantation development and cloning efficiency in porcine cloned embryos. Mechanistically, LEUTX opened EGA-related genomic regions and established histone acetylation via recruiting acetyltransferases p300 and KAT2A. These findings reveal the regulatory mechanism of LEUTX to govern EGA in pigs, which may provide valuable insights into the study of early embryo development for other non-rodent mammals.


Subject(s)
Genome , Nuclear Transfer Techniques , Animals , Swine , Gene Expression Regulation, Developmental , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Embryonic Development/genetics , Embryo, Mammalian/metabolism , Humans , Transcription Factors/metabolism , Transcription Factors/genetics , Acetylation , Cloning, Organism/methods , Histones/metabolism , Blastocyst/metabolism
10.
Food Chem ; 449: 139216, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38604031

ABSTRACT

This study aimed to identify saltiness-enhancing peptides from yeast protein and elucidate their mechanisms by molecular docking. Yeast protein hydrolysates with optimal saltiness-enhancing effects were prepared under conditions determined using an orthogonal test. Ten saltiness-enhancing peptide candidates were screened using an integrated virtual screening strategy. Sensory evaluation demonstrated that these peptides exhibited diverse taste characteristics (detection thresholds: 0.13-0.50 mmol/L). Peptides NKF, LGLR, WDL, NMKF, FDSL and FDGK synergistically or additively enhanced the saltiness of a 0.30% NaCl solution. Molecular docking revealed that these peptides predominantly interacted with TMC4 by hydrogen bonding, with hydrophilic amino acids from both peptides and TMC4 playing a pivotal role in their binding. Furthermore, Leu217, Gln377, Glu378, Pro474 and Cys475 were postulated as the key binding sites of TMC4. These findings establish a robust theoretical foundation for salt reduction strategies in food and provide novel insights into the potential applications of yeast proteins.


Subject(s)
Molecular Docking Simulation , Peptides , Taste , Peptides/chemistry , Peptides/metabolism , Humans , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/metabolism , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Sodium Chloride/chemistry
12.
Hematology ; 29(1): 2339778, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38625693

ABSTRACT

OBJECTIVE: To establish an efficient nomogram model to predict short-term survival in ICU patients with aplastic anemia (AA). METHODS: The data of AA patients in the MIMIC-IV database were obtained and randomly assigned to the training set and testing set in a ratio of 7:3. Independent prognosis factors were identified through univariate and multivariate Cox regression analyses. The variance inflation factor was calculated to detect the correlation between variables. A nomogram model was built based on independent prognostic factors and risk scores for factors were generated. Model performance was tested using C-index, receiver operating characteristic (ROC) curve, calibration curve, decision curve analysis (DCA) and Kaplan-Meier curve. RESULTS: A total of 1,963 AA patients were included. A nomogram model with 7 variables was built, including SAPS II, chronic pulmonary obstructive disease, body temperature, red cell distribution width, saturation of peripheral oxygen, age and mechanical ventilation. The C-indexes in the training set and testing set were 0.642 and 0.643 respectively, indicating certain accuracy of the model. ROC curve showed favorable classification performance of nomogram. The calibration curve reflected that its probabilistic prediction was reliable. DCA revealed good clinical practicability of the model. Moreover, the Kaplan-Meier curve showed that receiving mechanical ventilation could improve the survival status of AA patients in the short term but did not in the later period. CONCLUSION: The nomogram model of the short-term survival rate of AA patients was built based on clinical characteristics, and early mechanical ventilation could help improve the short-term survival rate of patients.


Subject(s)
Anemia, Aplastic , Humans , Anemia, Aplastic/diagnosis , Anemia, Aplastic/therapy , Nomograms , Databases, Factual , Erythrocyte Indices , Intensive Care Units
13.
Food Res Int ; 182: 114139, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38519171

ABSTRACT

The previously obtained chicken-derived umami peptides in the laboratory were evaluated for their saltiness-enhancing effect by sensory evaluation and S-curve, and the results revealed that peptides TPPKID, PKESEKPN, TEDWGR, LPLQDAH, NEFGYSNR, and LPLQD had significant saltiness-enhancing effects. In the binary solution system with salt, the ratio of the experimental detection threshold (129.17 mg/L) to the theoretical detection threshold (274.43 mg/L) of NEFGYSNR was 0.47, which had a synergistic saltiness-enhancing effect with salt. The model of transmembrane channel-like protein 4 (TMC4) channel protein was constructed by homology modeling, which had a 10-fold transmembrane structure and was well evaluated. Molecular docking and frontier molecular orbitals showed that the main active sites of TMC4 were Lys 471, Met 379, Cys 475, Gln 377, and Pro 380, and the main active sites of NEFGYSNR were Tyr, Ser and Asn. This study may provide a theoretical reference for low-sodium diets.


Subject(s)
Chickens , Peptides , Animals , Molecular Docking Simulation , Peptides/chemistry , Proteins , Sodium Chloride, Dietary
14.
Food Res Int ; 178: 113908, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38309861

ABSTRACT

Yeast extract (YE) is derived from the soluble component in yeast cells, which is rich in peptides and has been used as a sweet-enhancing agent. It has the potential to be utilized to produce natural sweet-flavored peptides or sweet-enhancing peptides. To study the synergistic effect and mechanism of sweetness-enhancing peptides derived from YE, ultrafiltration fraction with molecular weight less than 1 kDa was screened according to sensory analysis, which showed a synergistic sweetening effect in stevioside and mogroside solution. Twenty potential taste peptides were identified from the screened fractions, among which EV, AM, AVDNIPVGPN and VDNIPVGPN showed sweetness-enhancing effects on both stevioside and mogroside. The sweetener-receptor-peptide complex was constructed to investigate the interaction of stevioside and mogroside to taste receptor type 1 member 2 accompanied by these peptides. The results of the molecular docking indicated that new hydrophobic interactions (Leu 279, Pro 308, Val 309, etc.) and hydrogen bonds (Ser 40, Ala 43, Asp 278, etc.) were formed between sweeteners and active sites in the venus flytrap domain. In conclusion, the presence of sweetness-enhancing peptides from YE improved the binding stability of sweeteners and receptors by increasing the binding interaction, especially the hydrophobic interactions, which contribute to the synergistic effect of sweetness-enhancing peptides.


Subject(s)
Diterpenes, Kaurane , Glucosides , Sweetening Agents , Molecular Docking Simulation , Sweetening Agents/analysis , Diterpenes, Kaurane/analysis , Peptides/pharmacology
15.
J Exp Clin Cancer Res ; 43(1): 44, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326863

ABSTRACT

BACKGROUND: m6A modification is currently recognized as a major driver of RNA function that maintains cancer cell homeostasis. Long non-coding (Lnc) RNAs control cell proliferation and play an important role in the occurrence and progression of colorectal cancer (CRC). ZCCHC4 is a newly discovered m6A methyltransferase whose role and mechanism in tumors have not yet been elucidated. METHODS: The EpiQuik m6A RNA methylation kit was used to detect the level of total RNA m6A in six types of digestive tract tumors. The Kaplan-Meier method and receiver operating characteristic curve were used to evaluate the prognostic and diagnostic value of the newly discovered m6A methyltransferase, ZCCHC4, in CRC. The effects on CRC growth in vitro and in vivo were studied using gain- and loss-of-function experiments. The epigenetic mechanisms underlying ZCCHC4 upregulation in CRC were studied using RIP, MeRIP-seq, RNA pull-down, and animal experiments. RESULTS: We reported that the ZCCHC4-LncRNAGHRLOS-KDM5D axis regulates the growth of CRC in vitro and in vivo. We found that ZCCHC4 was upregulated in primary CRC samples and could predict adverse clinical outcomes in patients with CRC. Mechanistically, ZCCHC4 downregulated LncRNAGHRLOS to promote CRC tumorigenesis. As a downstream molecule of LncRNAGHRLOS, KDM5D directly controls CRC cell proliferation, migration, and invasion. CONCLUSION: This study suggests that the ZCCHC4 axis contributes to the tumorigenesis and progression of CRC and that ZCCHC4 may be a potential biomarker for this malignancy.


Subject(s)
Adenine , Colorectal Neoplasms , RNA, Long Noncoding , Animals , Humans , Adenine/analogs & derivatives , Carcinogenesis/genetics , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Colorectal Neoplasms/pathology , Down-Regulation , Epigenesis, Genetic , Histone Demethylases/genetics , Methyltransferases/metabolism , Minor Histocompatibility Antigens , RNA , RNA, Long Noncoding/genetics , tRNA Methyltransferases/genetics , tRNA Methyltransferases/metabolism
16.
Cancer Sci ; 115(4): 1085-1101, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38287908

ABSTRACT

Regulator of G protein signaling 1 (RGS1) is closely associated with the tumor immune microenvironment and is highly expressed in various tumors and immune cells. The specific effects of RGS1 in the dynamic progression from chronic gastritis to gastric cancer have not been reported, and the role of tumor-associated macrophages (TAMs) is also unclear. In the present study, RGS1 was identified as an upregulated gene in different pathological stages ranging from chronic gastritis to gastric cancer by using Gene Expression Omnibus (GEO) screening together with pancancer analysis of The Cancer Genome Atlas and clinical prognostic analysis. The results indicated that RGS1 is highly expressed in gastric cancer and has potential prognostic value. We confirmed through in vivo experiments that RGS1 inhibited the proliferation of gastric cancer cells and promoted apoptosis, which was further corroborated by in vitro experiments. Additionally, RGS1 influenced cell migration and invasion. In our subsequent investigation of RGS1, we discovered its role in the immune response. Through analyses of single-cell and GEO database data, we confirmed its involvement in immune cell regulation, specifically TAM activation. Subsequently, we conducted in vivo and in vitro experiments to confirm the involvement of RGS1 in polarizing M1 macrophages while indirectly regulating M2 macrophages through tumor cells. In conclusion, RGS1 could be a potential target for the transformation of chronic gastritis into gastric cancer and has a measurable impact on TAMs, which warrants further in-depth research.


Subject(s)
Gastritis , Stomach Neoplasms , Humans , Tumor-Associated Macrophages/metabolism , Stomach Neoplasms/pathology , Signal Transduction , GTP-Binding Proteins/metabolism , Tumor Microenvironment
17.
Cell Prolif ; 57(2): e13534, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37592709

ABSTRACT

A minority of mouse embryonic stem cells (ESCs) display totipotent features resembling 2-cell stage embryos and are known as 2-cell-like (2C-like) cells. However, how ESCs transit into this 2C-like state remains largely unknown. Here, we report that the overexpression of negative elongation factor A (Nelfa), a maternally provided factor, enhances the conversion of ESCs into 2C-like cells in chemically defined conditions, while the deletion of endogenous Nelfa does not block this transition. We also demonstrate that Nelfa overexpression significantly enhances somatic cell reprogramming efficiency. Interestingly, we found that the co-overexpression of Nelfa and Bcl2 robustly activates the 2C-like state in ESCs and endows the cells with dual cell fate potential. We further demonstrate that Bcl2 overexpression upregulates endogenous Nelfa expression and can induce the 2C-like state in ESCs even in the absence of Nelfa. Our findings highlight the importance of BCL2 in the regulation of the 2C-like state and provide insights into the mechanism underlying the roles of Nelfa and Bcl2 in the establishment and regulation of the totipotent state in mouse ESCs.


Subject(s)
Embryonic Stem Cells , Mouse Embryonic Stem Cells , Animals , Mice , Mouse Embryonic Stem Cells/metabolism , Cell Differentiation , Embryonic Stem Cells/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism
18.
Chin Med J (Engl) ; 137(4): 408-420, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-37545027

ABSTRACT

ABSTRACT: As pancreatic cancer (PC) is highly malignant, its patients tend to develop metastasis at an early stage and show a poor response to conventional chemotherapies. First-line chemotherapies for PC, according to current guidelines, include fluoropyrimidine- and gemcitabine-based regimens. Accumulating research on drug resistance has shown that biochemical metabolic aberrations in PC, especially those involving glycolysis and glutamine metabolism, are highly associated with chemoresistance. Additionally, lipid metabolism is a major factor in chemoresistance. However, emerging compounds that target these key metabolic pathways have the potential to overcome chemoresistance. This review summarizes how PC develops chemoresistance through aberrations in biochemical metabolism and discusses novel critical targets and pathways within cancer metabolism for new drug research.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Gemcitabine , Deoxycytidine/therapeutic use , Drug Resistance, Neoplasm , Metabolic Reprogramming , Carcinoma, Pancreatic Ductal/drug therapy , Pancreatic Neoplasms/pathology , Cell Line, Tumor
20.
Adv Mater ; : e2310134, 2023 Dec 03.
Article in English | MEDLINE | ID: mdl-38042993

ABSTRACT

Fluid flow behavior is visualized through particle image velocimetry (PIV) for understanding and studying experimental fluid dynamics. However, traditional PIV methods require multiple cameras and conventional lens systems for image acquisition to resolve multi-dimensional velocity fields. In turn, it introduces complexity to the entire system. Meta-lenses are advanced flat optical devices composed of artificial nanoantenna arrays. It can manipulate the wavefront of light with the advantages of ultrathin, compact, and no spherical aberration. Meta-lenses offer novel functionalities and promise to replace traditional optical imaging systems. Here, a binocular meta-lens PIV technique is proposed, where a pair of GaN meta-lenses are fabricated on one substrate and integrated with a imaging sensor to form a compact binocular PIV system. The meta-lens weigh only 116 mg, much lighter than commercial lenses. The 3D velocity field can be obtained by the binocular disparity and particle image displacement information of fluid flow. The measurement error of vortex-ring diameter is ≈1.25% experimentally validates via a Reynolds-number (Re) 2000 vortex-ring. This work demonstrates a new development trend for the PIV technique for rejuvenating traditional flow diagnostic tools toward a more compact, easy-to-deploy technique. It enables further miniaturization and low-power systems for portable, field-use, and space-constrained PIV applications.

SELECTION OF CITATIONS
SEARCH DETAIL