Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Chem ; 70(6): 830-840, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38581343

ABSTRACT

BACKGROUND: Microsatellite instability (MSI) indicates DNA mismatch repair deficiency in certain types of cancer, such as colorectal cancer. The current gold standard technique, PCR-capillary electrophoresis (CE), requires matching normal samples and specialized instrumentation. We developed VarTrace, a rapid and low-cost quantitative PCR (qPCR) assay, to evaluate MSI using solely the tumor sample DNA, obviating the requirement for matching normal samples. METHODS: One hundred and one formalin-fixed paraffin-embedded (FFPE) tumor samples were tested using VarTrace and compared with the Promega OncoMate assay utilizing PCR-CE. Tumor percentage limit of detection was evaluated on contrived samples derived from clinical high MSI (MSI-H) samples. Analytical sensitivity, specificity, limit of detection, and input requirements were assessed using synthetic commercial reference standards. RESULTS: VarTrace successfully analyzed all 101 clinical FFPE samples, demonstrating 100% sensitivity and 98% specificity compared to OncoMate. It detected MSI-H with 97% accuracy down to 10% tumor. Analytical studies using synthetic samples showed a limit of detection of 5% variant allele frequency and a limit of input of 0.5 ng. CONCLUSIONS: This study validates VarTrace as a swift, accurate, and economical assay for MSI detection in samples with low tumor percentages without the need for matching normal DNA. VarTrace's capacity for highly sensitive MSI analysis holds potential for enhancing the efficiency of clinical work flows and broadening the availability of this test.


Subject(s)
Microsatellite Instability , Humans , Paraffin Embedding , Neoplasms/genetics , Neoplasms/diagnosis , Multiplex Polymerase Chain Reaction/methods , Colorectal Neoplasms/genetics , Colorectal Neoplasms/diagnosis , Sensitivity and Specificity , Electrophoresis, Capillary/methods , Formaldehyde , DNA, Neoplasm/genetics , Limit of Detection , Polymerase Chain Reaction/methods
2.
Nat Commun ; 13(1): 1791, 2022 04 04.
Article in English | MEDLINE | ID: mdl-35379811

ABSTRACT

Current gold standard for absolute quantitation of a specific DNA sequence is droplet digital PCR (ddPCR), which has been applied to copy number variation (CNV) detection. However, the number of quantitation modules in ddPCR is limited by fluorescence channels, which thus limits the CNV sensitivity due to sampling error following Poisson distribution. Here we develop a PCR-based molecular barcoding NGS approach, quantitative amplicon sequencing (QASeq), for accurate absolute quantitation scalable to over 200 quantitation modules. By attaching barcodes to individual target molecules with high efficiency, 2-plex QASeq exhibits higher and more consistent conversion yield than ddPCR in absolute molecule count quantitation. Multiplexed QASeq improves CNV sensitivity allowing confident distinguishment of 2.05 ploidy from normal 2.00 ploidy. We apply multiplexed QASeq to serial longitudinal plasma cfDNA samples from patients with metastatic ERBB2+ (HER2+ ) breast cancer seeking association with tumor progression. We further show an RNA QASeq panel for targeted expression profiling.


Subject(s)
Breast Neoplasms , Cell-Free Nucleic Acids , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , DNA Copy Number Variations , Female , Humans , Polymerase Chain Reaction , RNA/analysis
3.
ACS Sens ; 7(4): 1165-1174, 2022 04 22.
Article in English | MEDLINE | ID: mdl-35418222

ABSTRACT

Molecular detection of disease-associated mutations, especially those with low abundance, is essential for academic research and clinical diagnosis. Certain variant detection methods reach satisfactory sensitivity and specificity in detecting rare mutations based on the introduction of blocking oligos to prevent the amplification of wild-type or unwanted templates, thus selectively amplifying and enriching the mutations. These blocking oligos usually suppress PCR amplification through the 3' chemical modifications, with high price, slow synthesis, and reduced purity. Herein, we introduce chemistry-free designs to block enzymatic extension during PCR by the steric hindrance from the secondary structures attached to the 3' end of the oligos (nonextensible oligonucleotide, NEO). We demonstrated that NEO efficiently prohibited the extension of both Taq and high-fidelity DNA polymerases. By further applying NEO as blockers in blocker displacement amplification (BDA) qPCR, multiplex BDA (mBDA) NGS, and quantitative BDA (QBDA) NGS methods, we showed that NEO blockers had performance comparable with previously validated chemical modifications. Comparison experiments using QBDA with NEO blockers and droplet digital PCR (ddPCR) on clinical formalin-fixed paraffin-embedded (FFPE) samples exhibited 100% concordance. Lastly, the ability of NEO to adjust plex uniformity through changes of PCR amplification efficiency was demonstrated in an 80-plex NGS panel.


Subject(s)
High-Throughput Nucleotide Sequencing , Oligonucleotides , High-Throughput Nucleotide Sequencing/methods , Mutation , Oligonucleotides/genetics , Real-Time Polymerase Chain Reaction/methods , Sensitivity and Specificity
4.
Nat Commun ; 12(1): 6123, 2021 10 21.
Article in English | MEDLINE | ID: mdl-34675197

ABSTRACT

Quantitation of rare somatic mutations is essential for basic research and translational clinical applications including minimal residual disease (MRD) detection. Though unique molecular identifier (UMI) has suppressed errors for rare mutation detection, the sequencing depth requirement is high. Here, we present Quantitative Blocker Displacement Amplification (QBDA) which integrates sequence-selective variant enrichment into UMI quantitation for accurate quantitation of mutations below 0.01% VAF at only 23,000X depth. Using a panel of 20 genes recurrently altered in acute myeloid leukemia, we demonstrate quantitation of various mutations including single base substitutions and indels down to 0.001% VAF at a single locus with less than 4 million sequencing reads, allowing sensitive MRD detection in patients during complete remission. In a pan-cancer panel and a melanoma hotspot panel, we detect mutations down to 0.1% VAF using only 1 million reads. QBDA provides a convenient and versatile method for sensitive mutation quantitation using low-depth sequencing.


Subject(s)
High-Throughput Nucleotide Sequencing/standards , Leukemia, Myeloid, Acute/genetics , Melanoma/genetics , Mutation , Neoplasm, Residual/genetics , Calibration , High-Throughput Nucleotide Sequencing/methods , Humans
SELECTION OF CITATIONS
SEARCH DETAIL