Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(14)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39063224

ABSTRACT

DNA-PKcs is a crucial protein target involved in DNA repair and response pathways, with its abnormal activity closely associated with the occurrence and progression of various cancers. In this study, we employed a deep learning-based screening and molecular dynamics (MD) simulation-based pipeline, identifying eight candidates for DNA-PKcs targets. Subsequent experiments revealed the effective inhibition of DNA-PKcs-mediated cell proliferation by three small molecules (5025-0002, M769-1095, and V008-1080). These molecules exhibited anticancer activity with IC50 (inhibitory concentration at 50%) values of 152.6 µM, 30.71 µM, and 74.84 µM, respectively. Notably, V008-1080 enhanced homology-directed repair (HDR) mediated by CRISPR/Cas9 while inhibiting non-homologous end joining (NHEJ) efficiency. Further investigations into the structure-activity relationships unveiled the binding sites and critical interactions between these small molecules and DNA-PKcs. This is the first application of DeepBindGCN_RG in a real drug screening task, and the successful discovery of a novel DNA-PKcs inhibitor demonstrates its efficiency as a core component in the screening pipeline. Moreover, this study provides important insights for exploring novel anticancer therapeutics and advancing the development of gene editing techniques by targeting DNA-PKcs.


Subject(s)
DNA-Activated Protein Kinase , Molecular Dynamics Simulation , Humans , DNA-Activated Protein Kinase/antagonists & inhibitors , DNA-Activated Protein Kinase/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Cell Proliferation/drug effects , Structure-Activity Relationship , High-Throughput Screening Assays/methods , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , DNA End-Joining Repair/drug effects , Molecular Docking Simulation , Binding Sites
2.
Int J Biol Macromol ; 277(Pt 2): 134289, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39084442

ABSTRACT

Human Serum Albumin (HSA), the most abundant protein in human body fluids, plays a crucial role in the transportation, absorption, metabolism, distribution, and excretion of drugs, significantly influencing their therapeutic efficacy. Despite the importance of HSA as a drug target, the available data on its interactions with external agents, such as drug-like molecules and antibodies, are limited, posing challenges for molecular modeling investigations and the development of empirical scoring functions or machine learning predictors for this target. Furthermore, the reported entries in existing databases often contain major inconsistencies due to varied experiments and conditions, raising concerns about data quality. To address these issues, a pioneering database, HSADab, was established through an extensive review of >30,000 scientific publications published between 1987 and 2023. The database encompasses over 5000 affinity data points at multiple temperatures and >130 crystal structures, including both ligand-bound and apo forms. The current HSADab resource (www.hsadab.cn) serves as a reliable foundation for validating molecular simulation protocols, such as traditional virtual screening workflows using docking, end-point, and al-chemical free energy techniques. Additionally, it provides a valuable data source for the implementation of machine learning predictors, including plasma protein binding models and plasma protein-based drug design models.

3.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-38864340

ABSTRACT

G-protein coupled receptors (GPCRs), crucial in various diseases, are targeted of over 40% of approved drugs. However, the reliable acquisition of experimental GPCRs structures is hindered by their lipid-embedded conformations. Traditional protein-ligand interaction models falter in GPCR-drug interactions, caused by limited and low-quality structures. Generalized models, trained on soluble protein-ligand pairs, are also inadequate. To address these issues, we developed two models, DeepGPCR_BC for binary classification and DeepGPCR_RG for affinity prediction. These models use non-structural GPCR-ligand interaction data, leveraging graph convolutional networks and mol2vec techniques to represent binding pockets and ligands as graphs. This approach significantly speeds up predictions while preserving critical physical-chemical and spatial information. In independent tests, DeepGPCR_BC surpassed Autodock Vina and Schrödinger Dock with an area under the curve of 0.72, accuracy of 0.68 and true positive rate of 0.73, whereas DeepGPCR_RG demonstrated a Pearson correlation of 0.39 and root mean squared error of 1.34. We applied these models to screen drug candidates for GPR35 (Q9HC97), yielding promising results with three (F545-1970, K297-0698, S948-0241) out of eight candidates. Furthermore, we also successfully obtained six active inhibitors for GLP-1R. Our GPCR-specific models pave the way for efficient and accurate large-scale virtual screening, potentially revolutionizing drug discovery in the GPCR field.


Subject(s)
Drug Discovery , Receptors, G-Protein-Coupled , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Ligands , Drug Discovery/methods , Humans , Molecular Docking Simulation , Protein Binding , Binding Sites
4.
Methods ; 226: 164-175, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38702021

ABSTRACT

Ensuring the safety and efficacy of chemical compounds is crucial in small-molecule drug development. In the later stages of drug development, toxic compounds pose a significant challenge, losing valuable resources and time. Early and accurate prediction of compound toxicity using deep learning models offers a promising solution to mitigate these risks during drug discovery. In this study, we present the development of several deep-learning models aimed at evaluating different types of compound toxicity, including acute toxicity, carcinogenicity, hERG_cardiotoxicity (the human ether-a-go-go related gene caused cardiotoxicity), hepatotoxicity, and mutagenicity. To address the inherent variations in data size, label type, and distribution across different types of toxicity, we employed diverse training strategies. Our first approach involved utilizing a graph convolutional network (GCN) regression model to predict acute toxicity, which achieved notable performance with Pearson R 0.76, 0.74, and 0.65 for intraperitoneal, intravenous, and oral administration routes, respectively. Furthermore, we trained multiple GCN binary classification models, each tailored to a specific type of toxicity. These models exhibited high area under the curve (AUC) scores, with an impressive AUC of 0.69, 0.77, 0.88, and 0.79 for predicting carcinogenicity, hERG_cardiotoxicity, mutagenicity, and hepatotoxicity, respectively. Additionally, we have used the approved drug dataset to determine the appropriate threshold value for the prediction score in model usage. We integrated these models into a virtual screening pipeline to assess their effectiveness in identifying potential low-toxicity drug candidates. Our findings indicate that this deep learning approach has the potential to significantly reduce the cost and risk associated with drug development by expediting the selection of compounds with low toxicity profiles. Therefore, the models developed in this study hold promise as critical tools for early drug candidate screening and selection.


Subject(s)
Deep Learning , Humans , Drug Discovery/methods , Animals , Drug-Related Side Effects and Adverse Reactions , Cardiotoxicity/etiology
5.
Methods ; 225: 44-51, 2024 May.
Article in English | MEDLINE | ID: mdl-38518843

ABSTRACT

The process of virtual screening relies heavily on the databases, but it is disadvantageous to conduct virtual screening based on commercial databases with patent-protected compounds, high compound toxicity and side effects. Therefore, this paper utilizes generative recurrent neural networks (RNN) containing long short-term memory (LSTM) cells to learn the properties of drug compounds in the DrugBank, aiming to obtain a new and virtual screening compounds database with drug-like properties. Ultimately, a compounds database consisting of 26,316 compounds is obtained by this method. To evaluate the potential of this compounds database, a series of tests are performed, including chemical space, ADME properties, compound fragmentation, and synthesizability analysis. As a result, it is proved that the database is equipped with good drug-like properties and a relatively new backbone, its potential in virtual screening is further tested. Finally, a series of seedling compounds with completely new backbones are obtained through docking and binding free energy calculations.


Subject(s)
Deep Learning , Molecular Docking Simulation , Molecular Docking Simulation/methods , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Drug Evaluation, Preclinical/methods , Humans , Databases, Pharmaceutical , Neural Networks, Computer , Databases, Chemical
6.
Phys Chem Chem Phys ; 26(12): 9636-9644, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38466583

ABSTRACT

In this work, we report a density functional theory (DFT) study and a dynamical trajectory study of substituent effects on the ambimodal [6+4]/[4+2] cycloaddition proposed for 1,3,5,10,12-cycloheptadecapentaene, referred to as cycloheptadecapentaene. The proposed cycloaddition proceeds through an ambimodal transition state, which results in both a [6+4] adduct a [4+2] adduct directly. The [6+4] adduct can be readily converted to the [4+2] adduct via a Cope rearrangement. We study the selectivity of the reaction with regard to the position of substituents, steric effects of substituents, and electronic effects of substituents. In the dynamical trajectory study, we find that nitro-substituted reactants lead to a new product from the ambimodal transition state via the hetero Diels-Alder reaction, and this new product can then be converted to a [4+2] adduct by a hetero [3, 3]-sigmatropic rearrangement. These results may provide insights for designing more bridged heterocyclic compounds.

7.
Molecules ; 29(4)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38398632

ABSTRACT

The major histocompatibility complex (MHC) can recognize and bind to external peptides to generate effective immune responses by presenting the peptides to T cells. Therefore, understanding the binding modes of peptide-MHC complexes (pMHC) and predicting the binding affinity of pMHCs play a crucial role in the rational design of peptide vaccines. In this study, we employed molecular dynamics (MD) simulations and free energy calculations with an Alanine Scanning with Generalized Born and Interaction Entropy (ASGBIE) method to investigate the protein-peptide interaction between HLA-A*02:01 and the G9209 peptide derived from the melanoma antigen gp100. The energy contribution of individual residue was calculated using alanine scanning, and hotspots on both the MHC and the peptides were identified. Our study shows that the pMHC binding is dominated by the van der Waals interactions. Furthermore, we optimized the ASGBIE method, achieving a Pearson correlation coefficient of 0.91 between predicted and experimental binding affinity for mutated antigens. This represents a significant improvement over the conventional MM/GBSA method, which yields a Pearson correlation coefficient of 0.22. The computational protocol developed in this study can be applied to the computational screening of antigens for the MHC1 as well as other protein-peptide binding systems.


Subject(s)
Peptides , Proteins , Peptides/chemistry , Proteins/metabolism , Protein Binding , Major Histocompatibility Complex , Histocompatibility Antigens/metabolism , Alanine/metabolism
8.
Appl Microbiol Biotechnol ; 108(1): 84, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38189953

ABSTRACT

The flavonoid naringenin is abundantly present in pomelo peels, and the unprocessed naringenin in wastes is not friendly for the environment once discarded directly. Fortunately, the hydroxylated product of eriodictyol from naringenin exhibits remarkable antioxidant and anticancer properties. The P450s was suggested promising for the bioconversion of the flavonoids, but less naturally existed P450s show hydroxylation activity to C3' of the naringenin. By well analyzing the catalytic mechanism and the conformations of the naringenin in P450, we proposed that the intermediate Cmpd I ((porphyrin)Fe = O) is more reasonable as key conformation for the hydrolyzation, and the distance between C3'/C5' of naringenin to the O atom of CmpdI determines the hydroxylating activity for the naringenin. Thus, the "flying kite model" that gradually drags the C-H bond of the substrate to the O atom of CmpdI was put forward for rational design. With ab initio design, we successfully endowed the self-sufficient P450-BM3 hydroxylic activity to naringenin and obtained mutant M5-5, with kcat, Km, and kcat/Km values of 230.45 min-1, 310.48 µM, and 0.742 min-1 µM-1, respectively. Furthermore, the mutant M4186 was screened with kcat/Km of 4.28-fold highly improved than the reported M13. The M4186 also exhibited 62.57% yield of eriodictyol, more suitable for the industrial application. This study provided a theoretical guide for the rational design of P450s to the nonnative compounds. KEY POINTS: •The compound I is proposed as the starting point for the rational design of the P450BM3 •"Flying kite model" is proposed based on the distance between O of Cmpd I and C3'/C5' of naringenin •Mutant M15-5 with 1.6-fold of activity than M13 was obtained by ab initio modification.


Subject(s)
Citrus , Flavanones , Hydroxylation , Flavonoids
SELECTION OF CITATIONS
SEARCH DETAIL