Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
Clin Chem Lab Med ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38915251

ABSTRACT

INTRODUCTION: The correlation between serum angiopoietin-2 levels and acute kidney injury (AKI) is a topic of significant clinical interest. This meta-analysis aims to provide a comprehensive evaluation of this relationship. CONTENT: A systematic search was conducted in PubMed, Embase, Web of Science, and Cochrane databases up to October 11, 2023. The included studies were evaluated using the Newcastle-Ottawa Scale (NOS) and Methodological Index for Non-Randomized Studies (MINORS). Weighted mean differences (WMD) and odds ratios (OR) were calculated using random-effects models. Sensitivity analysis, funnel plots, and Egger's test were used to assess the robustness and publication bias of the findings. Subgroup analyses were performed to explore potential variations between adults and children. SUMMARY: Eighteen studies encompassing a total of 7,453 participants were included. The analysis revealed a significant elevation in serum angiopoietin-2 levels in patients with AKI compared to those without (WMD: 4.85; 95 % CI: 0.75 to 0.27; I²=93.2 %, p<0.001). Subgroup analysis indicated significantly higher angiopoietin-2 levels in adults with AKI (WMD: 5.17; 95 % CI: 3.51 to 6.83; I²=82.6 %, p<0.001), but not in children. Additionally, high serum angiopoietin-2 levels were associated with an increased risk of AKI (OR: 1.58; 95 % CI: 1.39 to 1.8; I²=89.1 %, p<0.001). Sensitivity analysis validated the robustness of these results, showing no substantial change in the overall effect size upon the exclusion of individual studies. OUTLOOK: This meta-analysis supports a significant association between elevated serum angiopoietin-2 levels and increased risk of AKI. The observed differential association between adults and children highlights the need for further targeted research to understand these age-specific variations.

2.
Int J Mol Sci ; 25(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892138

ABSTRACT

Salinity stress has a great impact on crop growth and productivity and is one of the major factors responsible for crop yield losses. The K-homologous (KH) family proteins play vital roles in regulating plant development and responding to abiotic stress in plants. However, the systematic characterization of the KH family in rice is still lacking. In this study, we performed genome-wide identification and functional analysis of KH family genes and identified a total of 31 KH genes in rice. According to the homologs of KH genes in Arabidopsis thaliana, we constructed a phylogenetic tree with 61 KH genes containing 31 KH genes in Oryza sativa and 30 KH genes in Arabidopsis thaliana and separated them into three major groups. In silico tissue expression analysis showed that the OsKH genes are constitutively expressed. The qRT-PCR results revealed that eight OsKH genes responded strongly to salt stresses, and OsKH12 exhibited the strongest decrease in expression level, which was selected for further study. We generated the Oskh12-knockout mutant via the CRISPR/Cas9 genome-editing method. Further stress treatment and biochemical assays confirmed that Oskh12 mutant was more salt-sensitive than Nip and the expression of several key salt-tolerant genes in Oskh12 was significantly reduced. Taken together, our results shed light on the understanding of the KH family and provide a theoretical basis for future abiotic stress studies in rice.


Subject(s)
Gene Expression Regulation, Plant , Multigene Family , Oryza , Phylogeny , Plant Proteins , Salt Stress , Oryza/genetics , Oryza/metabolism , Oryza/drug effects , Oryza/growth & development , Salt Stress/genetics , Gene Expression Regulation, Plant/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Salt Tolerance/genetics , Arabidopsis/genetics , Stress, Physiological/genetics
3.
Ecol Evol ; 14(5): e11355, 2024 May.
Article in English | MEDLINE | ID: mdl-38694754

ABSTRACT

The mitochondrial genome (mitogenome) has been extensively used as molecular markers in determining the insect phylogenetic relationships. In order to resolve the relationships among tribes and subtribes of Satyrinae at the mitochondrial genomic level, we obtained the complete mitogenome of Aulocera merlina (Oberthür, 1890) (Lepidoptera: Nymphalidae: Satyrinae) with a size of 15,259 bp. The mitogenome consisted of 37 typical genes, including 13 protein-coding genes (PCGs), 2 ribosomal RNA genes (rRNAs), 22 transfer RNA genes (tRNAs), and an A + T-rich region. The gene organization and arrangement were similar to those of all other known Satyrinae mitogenomes. All PCGs were initiated with the canonical codon pattern ATN, except for the cox1 gene, which used an atypical CGA codon. Nine PCGs used the complete stop codon TAA, while the remaining PCGs (cox1, cox2, nad4, and nad5) were terminated with a single T nucleotide. The canonical cloverleaf secondary structures were found in all tRNAs, except for trnS1 which lacked a dihydrouridine arm. The 448 bp A + T-rich region was located between rrnS and trnM, and it included the motif ATAGA followed by a 19-bp poly-T stretch and a microsatellite-like (TA)6 element preceded by the ATTTA motif. The phylogenetic tree, inferred using Bayesian inference and maximum likelihood methods, generated similar tree topologies, revealing well-supported monophyletic groups at the tribe level and recovering the relationship ((Satyrini + Melanitini) + ((Amathusiini + Elymniini) + Zetherini)). The close relationship between Satyrina and Melanargiina within the Satyrini was widely accepted. Additionally, Lethina, Parargina, and Mycalesina were closely related and collectively formed a sister group to Coenonymphina. Moreover, A. merlina was closely related to Oeneis buddha within the Satyrina. These findings will provide valuable information for future studies aiming to elucidate the phylogenetic relationships of Satyrinae.

4.
J Genet Genomics ; 51(7): 691-702, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38575110

ABSTRACT

The highly conserved CLV-WUS negative feedback pathway plays a decisive role in regulating stem cell maintenance in shoot and floral meristems in higher plants, including Arabidopsis, rice, maize, and tomato. Here, we find significant natural variations in the OsCLV2c, OsCLV2d, and OsCRN1 loci in a genome-wide association study of grain shape in rice. OsCLV2a, OsCLV2c, OsCLV2d, and OsCRN1 negatively regulate grain length-width ratio and show distinctive geographical distribution, indica-japonica differentiation, and artificial selection signatures. Notably, OsCLV2a and OsCRN1 interact biochemically and genetically, suggesting that the two components function in a complex to regulate grain shape of rice. Furthermore, the genetic contributions of the haplotypes combining OsCLV2a, OsCLV2c, and OsCRN1 are significantly higher than those of each single gene alone in controlling key yield traits. These findings identify two groups of receptor-like kinases that may function as distinct co-receptors to control grain size in rice, thereby revealing a previously unrecognized role of the CLV class genes in regulating seed development and proposing a framework to understand the molecular mechanisms of the CLV-WUS pathway in rice and other crops.


Subject(s)
Edible Grain , Oryza , Plant Proteins , Oryza/genetics , Oryza/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Edible Grain/genetics , Edible Grain/growth & development , Genome-Wide Association Study , Quantitative Trait Loci/genetics , Gene Expression Regulation, Plant/genetics , Haplotypes/genetics , Phenotype , Seeds/genetics , Seeds/growth & development
5.
Physiol Plant ; 176(2): e14286, 2024.
Article in English | MEDLINE | ID: mdl-38618752

ABSTRACT

Shoot branching fundamentally influences plant architecture and agricultural yield. However, research on shoot branching in Dendrobium catenatum, an endangered medicinal plant in China, remains limited. In this study, we identified a transcription factor DcERF109 as a key player in shoot branching by regulating the expression of strigolactone (SL) receptors DWARF 14 (D14)/ DECREASED APICAL DOMINANCE 2 (DAD2). The treatment of D. catenatum seedlings with GR24rac/TIS108 revealed that SL can significantly repress the shoot branching in D. catenatum. The expression of DcERF109 in multi-branched seedlings is significantly higher than that of single-branched seedlings. Ectopic expression in Arabidopsis thaliana demonstrated that overexpression of DcERF109 resulted in significant shoot branches increasing and dwarfing. Molecular and biochemical assays demonstrated that DcERF109 can directly bind to the promoters of AtD14 and DcDAD2.2 to inhibit their expression, thereby positively regulating shoot branching. Inhibition of DcERF109 by virus-induced gene silencing (VIGS) resulted in decreased shoot branching and improved DcDAD2.2 expression. Moreover, overexpression of DpERF109 in A. thaliana, the homologous gene of DcERF109 in Dendrobium primulinum, showed similar phenotypes to DcERF109 in shoot branch and plant height. Collectively, these findings shed new insights into the regulation of plant shoot branching and provide a theoretical basis for improving the yield of D. catenatum.


Subject(s)
Arabidopsis , Dendrobium , Heterocyclic Compounds, 3-Ring , Lactones , Dendrobium/genetics , Agriculture , Seedlings , Signal Transduction
6.
Nat Commun ; 15(1): 3209, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38615033

ABSTRACT

The manipulation of excitation modes and resultant emission colors in luminescent materials holds pivotal importance for encrypting information in anti-counterfeiting applications. Despite considerable achievements in multimodal and multicolor luminescent materials, existing options generally suffer from static monocolor emission under fixed external stimulation, rendering them vulnerability to replication. Achieving dynamic multimodal luminescence within a single material presents a promising yet challenging solution. Here, we report the development of a phosphor exhibiting dynamic multicolor photoluminescence (PL) and photo-thermo-mechanically responsive multimodal emissions through the incorporation of trace Mn2+ ions into a self-activated CaGa4O7 host. The resulting phosphor offers adjustable emission-color changing rates, controllable via re-excitation intervals and photoexcitation powers. Additionally, it demonstrates temperature-induced color reversal and anti-thermal-quenched emission, alongside reproducible elastic mechanoluminescence (ML) characterized by high mechanical durability. Theoretical calculations elucidate electron transfer pathways dominated by intrinsic interstitial defects and vacancies for dynamic multicolor emission. Mn2+ dopants serve a dual role in stabilizing nearby defects and introducing additional defect levels, enabling flexible multi-responsive luminescence. This developed phosphor facilitates evolutionary color/pattern displays in both temporal and spatial dimensions using readily available tools, offering significant promise for dynamic anticounterfeiting displays and multimode sensing applications.

7.
Antioxidants (Basel) ; 13(1)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38247518

ABSTRACT

Dendrobium catenatum is a highly drought-tolerant herb, which usually grows on cliffs or in the branches of trees, yet the underlying molecular mechanisms for its tolerance remain poorly understood. We conducted a comprehensive study utilizing whole-transcriptome sequencing approaches to investigate the molecular response to extreme drought stress in D. catenatum. A large number of differentially expressed mRNAs, lncRNAs, and circRNAs have been identified, and the NAC transcription factor family was highly enriched. Meanwhile, 46 genes were significantly up-regulated in the ABA-activated signaling pathway. In addition to the 89 NAC family members accurately identified in this study, 32 members were found to have different expressions between the CK and extreme drought treatment. They may regulate drought stress through both ABA-dependent and ABA-independent pathways. Moreover, the 32 analyzed differentially expressed DcNACs were found to be predominantly expressed in the floral organs and roots. The ceRNA regulatory network showed that DcNAC87 is at the core of the ceRNA network and is regulated by miR169, miR393, and four lncRNAs. These investigations provided valuable information on the role of NAC transcription factors in D. catenatum's response to drought stress.

8.
J Exp Bot ; 75(5): 1421-1436, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-37988625

ABSTRACT

A class I PCF type protein, TCP4, was identified as a transcription factor associated with both grain size and tillering through a DNA pull-down-MS assay combined with a genome-wide association study. This transcription factor was found to have a significant role in the variations among the 533 rice accessions, dividing them into two main subspecies. A Tourist-like miniature inverted-repeat transposable element (MITE) was discovered in the promoter of TCP4 in japonica/geng accessions (TCP4M+), which was found to suppress the expression of TCP4 at the transcriptional level. The MITE-deleted haplotype (TCP4M-) was mainly found in indica/xian accessions. ChIP-qPCR and EMSA demonstrated the binding of TCP4 to promoters of grain reservoir genes such as SSIIa and Amy3D in vivo and in vitro, respectively. The introduction of the genomic sequence of TCP4M+ into different TCP4M- cultivars was found to affect the expression of TCP4 in the transgenic rice, resulting in decreased expression of its downstream target gene SSIIa, increased tiller number, and decreased seed length. This study revealed that a Tourist-like MITE contributes to subspecies divergence by regulating the expression of TCP4 in response to environmental pressure, thus influencing source-sink balance by regulating starch biosynthesis in rice.


Subject(s)
DNA Transposable Elements , Oryza , DNA Transposable Elements/genetics , Oryza/genetics , Genome-Wide Association Study , Promoter Regions, Genetic/genetics , Edible Grain/genetics , Transcription Factors/genetics
10.
J Ethnopharmacol ; 319(Pt 3): 117328, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37865275

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Huayuwendan decoction (HYWD) is a broad used traditional Chinese medicine and therapeutic effects against type 2 diabetes mellitus (T2DM). The mechanism of HYWD on the treatment of T2DM is still unclear. AIM OF THE STUDY: For this reason, this study was performed to uncover the effects and mechanism of action of HYWD on T2DM. MATERIALS AND METHODS: Male Wistar rats were chosen to set up the T2DM model. This study was randomly divided into six groups: CON (control), MOD (model), HYWDL (Huayuwendan decoction Low Dose), HYWDM (Huayuwendan decoction Middle Dose), HYWDH (Huayuwendan decoction High Dose), and MET (Metformin). Body weight gains were estimated. Using H&E staining, pathological alterations was explored. The serums of fasting plasma glucose (FPG), 2-h postprandial plasma glucose (2 h PG) were detected by Roche blood glucose meter. LDL-C and HDL-C were analyzed by automatic biochemical analyzer. Network pharmacology analyzed the active ingredients, drug targets, and key pathways of HYWD in T2DM treatment. The islet function and inflammation related factors were determined by ELISA. NF-κB signaling pathway or IL-17 signaling pathway related proteins were analyzed by Western blotting. IL-17RA were determined by immunohistochemistry analyze. RESULTS: HYWD inhibited weight gain in T2DM rats. Histopathological results showed that HYWD inhibits liver injury. HYWD suppressed LDL-C and enhanced HDL-C in serum of T2DM rats. HYWD reduce FPG and 2 h PG, inhibit Fins, GSP and IRI, but enhance IAI in serum of T2DM rats. In addition, the network pharmacology results identified 292 chemical compounds in HYWD. 279 candidate targets were recognized, including IL-17A, IL-1ß, NFкB, stats, mmp3, and cxcl2. The pathways revealed that the possible target of HYWD related with the regulation of IL-17 signaling pathway and NF-κB pathway. Then in vivo study, HYWD reduced the levels of IL-6, TNF-α, IL-17 and IL-1ß in serum and inhibit the protein expression involved in IL-17/NF-κB signaling pathway. CONCLUSIONS: The study demonstrates that HYWD may improve T2DM by repressing with the IL-17/NF-κB signaling pathway, which offer encouraging support for using alternative medicine of type 2 diabetes mellitus.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Male , Rats , Animals , NF-kappa B , Diabetes Mellitus, Type 2/drug therapy , Interleukin-17 , Blood Glucose , Cholesterol, LDL , Diabetes Mellitus, Experimental/drug therapy , Rats, Wistar , Signal Transduction , Inflammation/drug therapy
11.
J Phys Chem A ; 127(44): 9334-9345, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37906738

ABSTRACT

The accurate determination of chemical properties is known to have a critical impact on multiple fundamental chemical problems but is deeply hindered by the steep algebraic scaling of electron correlation calculations and the exponential scaling of quantum nuclear dynamics. With the advent of new quantum computing hardware and associated developments in creating new paradigms for quantum software, this avenue has been recognized as perhaps one way to address exponentially complex challenges in quantum chemistry and molecular dynamics. In this paper, we discuss a new approach to drastically reduce the quantum circuit depth (by several orders of magnitude) and help improve the accuracy in the quantum computation of electron correlation energies for large molecular systems. The method is derived from a graph-theoretic approach to molecular fragmentation and enables us to create a family of projection operators that decompose quantum circuits into separate unitary processes. Some of these processes can be treated on quantum hardware and others on classical hardware in a completely asynchronous and parallel fashion. Numerical benchmarks are provided through the computation of unitary coupled-cluster singles and doubles (UCCSD) energies for medium-sized protonated and neutral water clusters using the new quantum algorithms presented here.

12.
Neurophotonics ; 10(3): 035009, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37705938

ABSTRACT

Significance: Brief disruptions in capillary flow, commonly referred to as capillary "stalling," have gained interest recently for their potential role in disrupting cerebral blood flow and oxygen delivery. Approaches to studying this phenomenon have been hindered by limited volumetric imaging rates and cumbersome manual analysis. The ability to precisely and efficiently quantify the dynamics of these events will be key in understanding their potential role in stroke and neurodegenerative diseases, such as Alzheimer's disease. Aim: Our study aimed to demonstrate that the fast volumetric imaging rates offered by Bessel beam two-photon microscopy combined with improved data analysis throughput allows for faster and more precise measurement of capillary stall dynamics. Results: We found that while our analysis approach was unable to achieve full automation, we were able to cut analysis time in half while also finding stalling events that were missed in traditional blind manual analysis. The resulting data showed that our Bessel beam system was captured more stalling events compared to optical coherence tomography, particularly shorter stalling events. We then compare differences in stall dynamics between a young and old group of mice as well as a demonstrate changes in stalling before and after photothrombotic model of stroke. Finally, we also demonstrate the ability to monitor arteriole dynamics alongside stall dynamics. Conclusions: Bessel beam two-photon microscopy combined with high throughput analysis is a powerful tool for studying capillary stalling due to its ability to monitor hundreds of capillaries simultaneously at high frame rates.

13.
Nanomaterials (Basel) ; 13(18)2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37764533

ABSTRACT

Bi2Se3, one of the most extensively studied topological insulators, has received significant attention, and abundant research has been dedicated to exploring its surface electronic properties. However, little attention has been given to its piezoelectric properties. Herein, we investigate the piezoelectric response in a five-layer Bi2Se3 nanosheet using scanning probe microscopy (SPM) techniques. The piezoelectricity of Bi2Se3 is characterized using both conventional piezoresponse force microscopy (PFM) and a sequential excitation scanning probe microscopy (SE-SPM) technique. To confirm the linear piezoelectricity of Bi2Se3 two-dimensional materials, measurements of point-wise linear and quadratic electromechanical responses are carried out. Furthermore, the presence of polarization and relaxation is confirmed through hysteresis loops. As expected, the Bi2Se3 nanosheet exhibits an electromechanical solid response. Due to the inevitable loss of translational symmetry at the crystal edge, the lattice of the odd-layer Bi2Se3 nanosheet is noncentrosymmetric, indicating its potential for linear piezoelectricity. This research holds promise for nanoelectromechanical systems (NEMS) applications and future nanogenerators.

14.
Molecules ; 28(15)2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37570844

ABSTRACT

Photodynamic therapy (PDT) and photothermal therapy (PTT) have emerged as promising non-invasive approaches to cancer treatment. However, the development of multifunctional nanomedicines is necessary to enhance these approaches' effectiveness and safety. In this study, we investigated a polydopamine-based nanoparticle (PDA-ZnPc+ Nps) loaded with the efficient photosensitizer ZnPc(4TAP)12+ (ZnPc+) through in vitro and in vivo experiments to achieve synergistic PDT and PTT. Our results demonstrated that PDA-ZnPc+ Nps exhibited remarkable efficacy due to its ability to generate reactive oxygen species (ROS), induce photothermal effects, and promote apoptosis in cancer cells. Moreover, in both MCF-7 cells and MCF-7 tumor-bearing mice, the combined PDT/PTT treatment with PDA-ZnPc+ Nps led to synergistic effects. Subcellular localization analysis revealed a high accumulation of ZnPc+ in the cytoplasm of cancer cells, resulting in cellular disruption and vacuolation following synergistic PDT/PTT. Furthermore, PDA-ZnPc+ Nps exhibited significant antitumor effects without causing evident systemic damage in vivo, enabling the use of lower doses of photosensitizer and ensuring safer treatment. Our study not only highlights the potential of PDA-ZnPc+ Nps as a dual-functional anticancer agent combining PDA and PTT but also offers a strategy for mitigating the side effects associated with clinical photosensitizers, particularly dark toxicity.


Subject(s)
Nanoparticles , Photochemotherapy , Animals , Mice , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Photochemotherapy/methods , Photothermal Therapy , Nanomedicine , Cell Line, Tumor
15.
Molecules ; 28(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37446801

ABSTRACT

Trehalose is a reducing disaccharide, acting as a protectant against various environmental stresses in numerous organisms. In plants, trehalose-6-phosphate synthase (TPS) plays a crucial role in trehalose biosynthesis. Anoectochilus roxburghii (Wall.) Lindl. is a prominent species of the Anoectochilus genus, widely utilized as a health food. However, the functional analysis of TPS in this species has been limited. In this study, TPS genes were cloned from A. roxburghii. The ArTPS gene, with an open reading frame spanning 2850 bp, encodes 950 amino acids. Comparative and bioinformatics analysis revealed that the homology was presented between the ArTPS protein and TPSs from other plant species. The ORF sequence was utilized to construct a prokaryotic expression vector, Pet28a-ArTPS, which was then transformed into Escherichia coli. The resulting transformants displayed a significant increase in salt tolerance under the stress conditions of 300 mmol/L NaCl. Quantitative RT-PCR analysis demonstrated that the expression of ArTPS genes responded to NaCl stress. The accumulation of G6P was upregulated, whereas the content of T6P exhibited an opposite expression trend. The glycometabolism products, including trehalose, exhibited notable changes under NaCl stress, although their variations may differ in response to stimulation. The content of kinsenoside, a characteristic product of A. roxburghii, was significantly upregulated under NaCl stress. These results suggest that the ArTPS genes function in response to NaCl stimulation and play a key role in polysaccharide and glycoside metabolism in Anoectochilus. This study provides new insights into the engineering modification of the health food A. roxburghii to enhance the medicinal activity of its ingredients.


Subject(s)
Salt Tolerance , Trehalose , Salt Tolerance/genetics , Sodium Chloride , Glucosyltransferases/genetics , Glucosyltransferases/metabolism
16.
Article in English | MEDLINE | ID: mdl-36981951

ABSTRACT

Ciprofloxacin (CIP), a compound with bioaccumulation toxicity and antibiotic resistance, is frequently detected in water at alarming concentrations, which is becoming an increasing concern. In this study, a low-cost ceramsite was developed from industrial solid wastes through sintering to remove CIP from wastewater. The effects of adsorbent dosage, initial pH, contact time, initial CIP concentration, and temperature were explored. More than 99% of CIP (20-60 mg/L) was removed at around pH 2-4 by the ceramsite. The kinetic data fitted well with the pseudo-second-order model, revealing that chemisorption was the main rate-determining step. The isotherm data was better described by the Freundlich model, suggesting that CIP was removed by the formation of multiple layers on the heterogeneous surface. Moreover, the removal efficiency was practically higher than 95% during five regeneration cycles, when different regeneration methods were used, including calcination, HCl, and NaOH washing, indicating that the ceramsite exhibited outstanding reusability in removing CIP. The primary mechanism of CIP removal by the ceramsite was found to be the synergism of adsorption and flocculation, both of which depended on the release of Ca2+ from the ceramsite. In addition, strong Ca-CIP complexes could be formed through surface complexation and metal cation bridging between Ca2+ and different functional groups in CIP.


Subject(s)
Ciprofloxacin , Water Pollutants, Chemical , Ciprofloxacin/chemistry , Water Pollutants, Chemical/analysis , Temperature , Adsorption , Water , Kinetics , Hydrogen-Ion Concentration
17.
Int J Biol Macromol ; 233: 123369, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36693612

ABSTRACT

Abiotic stress has great impacts on plant germination, growth and development and crop yield. Therefore, it is important to understand the molecular mechanism of plants response to abiotic stress. In this study, we identified a plant specific protein AtSIEK (stress-induced protein with EXD1-like domain and KH domain) response to salt stress. AtSIEK encodes a hnRNP K homology (KH) protein localized in nucleus. Amino acid sequences analysis found that SIEK protein is specific in plants, containing two domains with EXD1-like domain and KH domain, while SIEK homolog in animals only had EXD1-like domain without KH domain. Physiology experiments revealed that AtSIEK was significantly induced under salt stress and the siek mutant shows sensitive to salt stress, indicating that AtSIEK was a positive regulator in stress response. Further, molecular, biochemical, and genetic assays suggested that AtSIEK interacts with FRY2/CPL1, a known regulator in response to abiotic stress, and they function synergistically in response to salt stress. Taken together, these results shed new light on the regulation of plant adaption to abiotic stress, which deepen our understanding of the molecular mechanisms of abiotic stress regulation in plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Animals , Transcription Factors/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Phosphoprotein Phosphatases/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Salt Stress , Stress, Physiological , Gene Expression Regulation, Plant , Plants, Genetically Modified/metabolism , RNA-Binding Proteins/metabolism
18.
Mater Today Bio ; 17: 100497, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36420056

ABSTRACT

Tumor vaccines can inhibit or eliminate tumors by vaccinating hosts with tumor antigens to activate antigen-specific immune responses and have gained wild attention. However, their clinical application efficacy is often comprised due to the low safety and poor efficiency of vaccine adjuvants/carriers. Specifically, the adjuvants/carriers usually could not efficiently recruit antigen presenting cells (APCs) to capture the vaccines or directly damage these cells. Therefore, ideal tumor vaccine adjuvants/carriers should effectively recruit APCs and be friendly to the cells for well keeping their bio-functions. In this work, injectable natural blood plasma hydrogel was used for the first time to encapsulate tumor antigens and adjuvant (Mn2+) for the construction of a personalized tumor vaccine. This kind of natural hydrogel with extremely high bio-safety has great potential to friendly recruit APCs in a biomimetic manner by simulating the natural degradation process of subcutaneous blood stasis. The obtained results show that the natural blood plasma hydrogel-based tumor vaccines could significantly promote the recruitment of APCs, well maintain the immuno-functions of the cells, and finally induce efficient anti-tumor immune responses. Compared with traditional tumor vaccines, this natural blood plasma-based hydrogel provides a new strategy for the development of safe and effective tumor vaccines.

19.
Front Genet ; 13: 939255, 2022.
Article in English | MEDLINE | ID: mdl-36134030

ABSTRACT

Plants usually respond to the external environment by initiating a series of signal transduction processes mediated by protein kinases, especially calcineurin B-like protein-interacting protein kinases (CIPKs). In this study, 54 CIPKs were identified in the peanut genome, of which 26 were from cultivated species (named AhCIPKs) and 28 from two diploid progenitors (Arachis duranensis-AdCIPKs and Arachis ipaensis-AiCIPKs). Evolution analysis revealed that the 54 CIPKs were composed of two different evolutionary branches. The CIPK members were unevenly distributed at different chromosomes. Synteny analysis strongly indicated that whole-genome duplication (allopolyploidization) contributed to the expansion of CIPK. Comparative genomics analysis showed that there was only one common collinear CIPK pairs among peanut, Arabidopsis, rice, grape, and soybean. The prediction results of cis-acting elements showed that AhCIPKs, AdCIPKs, and AiCIPKs contained different proportions of transcription factor binding motifs involved in regulating plant growth, abiotic stress, plant hormones, and light response elements. Spatial expression profiles revealed that almost all AhCIPKs had tissue-specific expression patterns. Furthermore, association analysis identified one polymorphic site in AdCIPK12 (AhCIPK11), which was significantly associated with pod length, seed length, hundred seed weight, and shoot root ratio. Our results provide valuable information of CIPKs in peanut and facilitate better understanding of their biological functions.

20.
Front Plant Sci ; 13: 979585, 2022.
Article in English | MEDLINE | ID: mdl-35979082

ABSTRACT

Verticillium, representing one of the world's major pathogens, causes Verticillium wilt in important woody species, ornamentals, agricultural, etc., consequently resulting in a serious decline in production and quality, especially in cotton. Gossupium hirutum and Gossypium barbadense are two kinds of widely cultivated cotton species that suffer from Verticillium wilt, while G. barbadense has much higher resistance toward it than G. hirsutum. However, the molecular mechanism regarding their divergence in Verticillium wilt resistance remains largely unknown. In the current study, G. barbadense cv. Hai7124 and G. hirsutum acc. TM-1 were compared at 0, 12, 24, 48, 72, 96, 120, and 144 h post-inoculation (hpi) utilizing high throughput RNA-Sequencing. As a result, a total of 3,549 and 4,725 differentially expressed genes (DEGs) were identified, respectively. In particular, the resistant type Hai7124 displayed an earlier and faster detection and signaling response to the Verticillium dahliae infection and demonstrated higher expression levels of defense-related genes over TM-1 with respect to transcription factors, plant hormone signal transduction, plant-pathogen interaction, and nucleotide-binding leucine-rich repeat (NLR) genes. This study provides new insights into the molecular mechanisms of divergence in Verticillium wilt resistance between G. barbadense and G. hirsutum and important candidate genes for breeding V. dahliae resistant cotton cultivars.

SELECTION OF CITATIONS
SEARCH DETAIL
...