Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 30
1.
Food Microbiol ; 119: 104458, 2024 May.
Article En | MEDLINE | ID: mdl-38225057

In this study, we conducted a comprehensive investigation into a GH3 family ß-glucosidase (BGL) from the wild-type strain of Oenococcus oeni and its mutated counterpart from the acid-tolerant mutant strain. Our analysis revealed the mutant BGL's remarkable capacity to adapt to wine-related stress conditions, including heightened tolerance to low pH, elevated ethanol concentrations, and metal ions. Additionally, the mutant BGL exhibited superior hydrolytic activity towards various substrates. Through de novo modeling, we identified specific amino acid mutations responsible for its resilience to low pH and high ethanol environments. In simulated wine conditions, the mutant BGL outperformed both wild-type and commercial BGLs, efficiently releasing terpene and phenolic aglycones from glycosides in wine grapes. These findings not only expand our understanding of O. oeni BGLs but also highlight their potential in enhancing wine production. The mutant BGL's enhanced adaptation to wine stress conditions opens promising avenue for improving wine quality and flavor.


Oenococcus , Wine , Wine/analysis , beta-Glucosidase/genetics , beta-Glucosidase/metabolism , Odorants/analysis , Ethanol/metabolism , Oenococcus/genetics , Oenococcus/metabolism , Fermentation
2.
Food Chem ; 438: 137958, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38000159

Methyl jasmonate (MeJA) is an important phytohormone that regulates the development of grape, but the effect and underpin mechanism of its preharvest application on secondary metabolites accumulation in postharvest grape berries are still unclear. In this study, the transcriptome profiles combined with metabolic components analysis were used to determine the effect of preharvest MeJA application on the quality formation of postharvest rose-flavor table grape Shine Muscat. The results indicated that preharvest MeJA treatment had no significant effect on TSS content, but had a down-regulation effect on the accumulation of reducing sugar and titratable acid in the berries. The content of chlorophylls and carotenoids in treated berries was significantly higher than that of the control. Many phenolic components, such as trans-ferulic acid, resveratrol, quercetin, and kaempferol, were sensitive to MeJA and their contents were also significantly higher than that of the control under MeJA treatments during the shelf life. Compared with other volatile aroma components, terpenoid components were more sensitive to preharvest MeJA signals, the content of which presented an overall upward trend with increasing MeJA concentration and prolonging storage time. Furthermore, most of the differentially expressed genes in the general phenylpropanoid pathway and terpenoid biosynthesis pathway were up-regulated responding to MeJA signals. The most upregulated regulatory factors, such as VvWRKY72, VvMYB24, and VvWRI1, may be involved in MeJA signal transduction and regulation. Preharvest MeJA may be an effective technique for enhancing the quality of postharvest Shine Muscat grape berries, with its positive effect on enhancing the characteristic aroma and nutritional components.


Vitis , Vitis/metabolism , Fruit/metabolism , Oxylipins/pharmacology , Oxylipins/metabolism , Acetates/pharmacology , Acetates/metabolism , Cyclopentanes/pharmacology , Cyclopentanes/metabolism , Terpenes/metabolism
3.
Hortic Res ; 10(11): uhad205, 2023 Nov.
Article En | MEDLINE | ID: mdl-38046853

Teinturier grapes are characterized by the typical accumulation of anthocyanins in grape skin, flesh, and vegetative tissues, endowing them with high utility value in red wine blending and nutrient-enriched foods developing. However, due to the lack of genome information, the mechanism involved in regulating teinturier grape coloring has not yet been elucidated and their genetic utilization research is still insufficient. Here, the cultivar 'Yan73' was used for assembling the telomere-to-telomere (T2T) genome of teinturier grapes by combining the High Fidelity (HiFi), Hi-C and ultralong Oxford Nanopore Technologies (ONT) reads. Two haplotype genomes were assembled, at the sizes of 501.68 Mb and 493.38 Mb, respectively. In the haplotype 1 genome, the transposable elements (TEs) contained 32.77% of long terminal repeats (LTRs), while in the haplotype 2 genome, 31.53% of LTRs were detected in TEs. Furthermore, obvious inversions were identified in chromosome 18 between the two haplotypes. Transcriptome profiling suggested that the gene expression patterns in 'Cabernet Sauvignon' and 'Yan73' were diverse depending on tissues, developmental stages, and varieties. The transcription program of genes in the anthocyanins biosynthesis pathway between the two cultivars exhibited high similarity in different tissues and developmental stages, whereas the expression levels of numerous genes showed significant differences. Compared with other genes, the expression levels of VvMYBA1 and VvUFGT4 in all samples, VvCHS2 except in young shoots and VvPAL9 except in the E-L23 stage of 'Yan73' were higher than those of 'Cabernet Sauvignon'. Further sequence alignments revealed potential variant gene loci and structure variations of anthocyanins biosynthesis related genes and a 816 bp sequence insertion was found in the promoter of VvMYBA1 of 'Yan73' haplotype 2 genome. The 'Yan73' T2T genome assembly and comparative analysis provided valuable foundations for further revealing the coloring mechanism of teinturier grapes and the genetic improvement of grape coloring traits.

4.
Food Chem X ; 20: 100976, 2023 Dec 30.
Article En | MEDLINE | ID: mdl-38144722

Low acid is the main defect in the northwest wine region of China in recent years. The fermentation of unripe grape (UG) and wine grapes with low acid contents was carried out. Compared with control group (CK), the addition of UG addressed the core flaw that low acid grape bring to wine firstly, it significantly increased titratable acid, tartaric acid and malic acid while significantly decreasing alcohol and volatile acids in wine. Secondly, UG significantly improved wine color, the color parameters a*, b*, C* and L* were significantly increased to different degrees. At the same time, the addition of UG significantly improves other qualities of wine, including the phenolic substances and antioxidant capacity of wine. In addition, adding UGJ2% significantly improved the sensory quality, and pleasant volatile substances such as phenethyl alcohol, ethyl hexanoate, ethyl butyrate and isoamyl acetate were significantly increased, giving the wine more prominent floral and fruity aromas.

5.
Foods ; 12(22)2023 Nov 17.
Article En | MEDLINE | ID: mdl-38002222

Protected cultivation is currently one of the main cultivation modes for grape production, but the long-term use of plastic film will have a certain negative impact on the light environment in vineyards, which in turn causes poor colouring, low sugar content and a lack of aroma in some red grape varieties. Supplementing light can be an effective way to mitigate these problems. In this study, vines of three red table grape varieties ('Summer Black', 'Xinyu' and 'Queen Nina') cultivated in a plastic greenhouse were supplemented with red, blue, white and red-blue light from veraison to harvest. All four supplemental light treatments increased the content of anthocyanins, sugars and volatile compounds in three grape varieties compared to CK (no supplemental lighting). Red-blue light treatment was the most favourable for the accumulation of anthocyanins and sugars, and the grapes treated with blue light had the highest content of volatile compounds. The grapes treated with red-blue light all obtained the highest composite scores via principal component analysis. For most of the sensory properties, the highest scores were obtained by the red-blue light-treated grapes. The results of this study will be useful in improving the colouring, sugar, and aroma content of grapes under protected cultivation.

6.
Hortic Res ; 10(5): uhad061, 2023 May.
Article En | MEDLINE | ID: mdl-37213686

Grapevine is one of the most economically important crops worldwide. However, the previous versions of the grapevine reference genome tipically consist of thousands of fragments with missing centromeres and telomeres, limiting the accessibility of the repetitive sequences, the centromeric and telomeric regions, and the study of inheritance of important agronomic traits in these regions. Here, we assembled a telomere-to-telomere (T2T) gap-free reference genome for the cultivar PN40024 using PacBio HiFi long reads. The T2T reference genome (PN_T2T) is 69 Mb longer with 9018 more genes identified than the 12X.v0 version. We annotated 67% repetitive sequences, 19 centromeres and 36 telomeres, and incorporated gene annotations of previous versions into the PN_T2T assembly. We detected a total of 377 gene clusters, which showed associations with complex traits, such as aroma and disease resistance. Even though PN40024 derives from nine generations of selfing, we still found nine genomic hotspots of heterozygous sites associated with biological processes, such as the oxidation-reduction process and protein phosphorylation. The fully annotated complete reference genome therefore constitutes an important resource for grapevine genetic studies and breeding programs.

7.
Sensors (Basel) ; 22(20)2022 Oct 12.
Article En | MEDLINE | ID: mdl-36298099

Along with the rapid development of autonomous driving technology, autonomous vehicles are showing a trend of practicality and popularity. Autonomous vehicles perceive environmental information through sensors to provide a basis for the decision making of vehicles. Based on this, this paper investigates the lane-changing decision-making behavior of autonomous vehicles. First, the similarity between autonomous vehicles and moving molecules is sought based on a system-similarity analysis. The microscopic lane-changing behavior of vehicles is analyzed by the molecular-dynamics theory. Based on the objective quantification of the lane-changing intention, the interaction potential is further introduced to establish the molecular-dynamics lane-changing model. Second, the relationship between the lane-changing initial time and lane-changing completed time, and the dynamic influencing factors of the lane changing, were systematically analyzed to explore the influence of the microscopic lane-changing behavior on the macroscopic traffic flow. Finally, the SL2015 lane-changing model was compared with the molecular-dynamics lane-changing model using the SUMO platform. SUMO is an open-source and multimodal traffic experimental platform that can realize and evaluate traffic research. The results show that the speed fluctuation of autonomous vehicles under the molecular-dynamics lane-changing model was reduced by 15.45%, and the number of passed vehicles was increased by 5.93%, on average, which means that it has better safety, stability, and efficiency. The molecular-dynamics lane-changing model of autonomous vehicles takes into account the dynamic factors in the traffic scene, and it reasonably shows the characteristics of the lane-changing behavior for autonomous vehicles.


Accidents, Traffic , Automobile Driving , Molecular Dynamics Simulation , Autonomous Vehicles
8.
Food Chem ; 396: 133629, 2022 Dec 01.
Article En | MEDLINE | ID: mdl-35839719

To improve the quality of grapes and wine in warm viticulture regions, the effects of pearl, red and black photoselective nets on the quality of grapes and wine were systematically investigated. Compared with the CK (open field), three nets improved the microclimate conditions and reduced grape sugar and wine alcohol levels. However, the nets differentially affected other quality profiles of the grapes and wine. The pearl net reduced the total flavanol contents in grapes and total aromatic volatiles in wine. The red net increased the total flavanol, tannin and total aromatic volatile contents in wine by approximately 40%, 95% and 10%, respectively, and the percentages for the black net were 30%, 45% and 3%, respectively. The red and pearl nets were more inclined to improve the taste and aroma sensory qualities of wine than the black net did. The red net had the highest comprehensive scores via principal component analysis.


Vitis , Volatile Organic Compounds , Wine , Fruit/chemistry , Odorants/analysis , Polyphenols/analysis , Taste , Vitis/metabolism , Volatile Organic Compounds/analysis , Wine/analysis
9.
Food Chem X ; 15: 100363, 2022 Oct 30.
Article En | MEDLINE | ID: mdl-35756461

The biomass of thinned unripe grape (TUR) was investigated and estimated in China and the world. In addition, the physicochemical parameters, nutritional and functional components and antioxidant activity of nine TUR and ripe grape fruit (RGF) samples were determined and analyzed. The results showed that about 1695.75 kt TUR was produced in China and as much as 14436.16 kt worldwide, which was closely related to the fruit thinning time. The total sugar and protein contents of TUR were significantly lower than those of RGF (p < 0.05), while the organic acids (especially tartaric acid and malic acid) and crude fiber of TUR were significantly higher than those of RGF (p < 0.05). Moreover, the total polyphenol, flavonoid, tannin and flavan-3-ols contents of TUR were 4.2-13.5, 3.6-12.3, 4.3-62.8 and 1.5-7.6 times those of RGF, respectively. Meanwhile, the antioxidant capacity of TUR was significantly higher than that of RGF, as well (p < 0.05). This study aimed to conduct in-depth research into the nutritional characteristics of TUR, propose the targeted direction for their further investigation and then lay a theoretical foundation from which the research findings could be applied in practice.

10.
Food Chem ; 374: 131747, 2022 Apr 16.
Article En | MEDLINE | ID: mdl-34875429

This study investigated the metabolic differences of 'Zicui' raisins produced at different drying temperatures (30 °C, 40 °C and 50 °C). Glucose, fructose, malic acid, shikimic acid and succinic acid contents were the highest in raisins dried at 50 °C. Compared with others, the drying temperature of 40 °C was more conducive to the accumulation of chalcones, dihydroflavones, dihydroflavonols, flavanols, flavonoid carbonosides, proanthocyanidins, and other phenols, while the drying temperature of 30 °C was more conducive to the accumulation of anthocyanins, flavonoid, and flavonols. Most volatile ketones and acids accumulated more in raisins produced at 30 °C, of which the content of 2,6-dimethyl-4-heptanone with sweet odour reached 70.34 µg/L, significantly higher than that in other raisins. Overall, the appropriate drying temperature should be selected according to the demand for specific nutritional or aromatic metabolites during raisins production.


Vitis , Anthocyanins , Dehydration , Desiccation , Flavonoids , Humans , Temperature
11.
Front Nutr ; 8: 691784, 2021.
Article En | MEDLINE | ID: mdl-34222310

Wine is consumed by humans worldwide, but the functional components are lost and the color changes during its production. Here, we studied the effects of mannoprotein (MP) addition (0, 0.1, and 0.3 g/L) upon crushing and storage. We measured anthocyanins, phenolic acids profiles, color characteristics, and antioxidant activities of wine. The results showed that the addition of MP before fermentation significantly increased the total phenolic content (TPC), total anthocyanin content, total tannin content (TTC), total flavonoid content, and total flavanol content in wine, whereas the addition of MP during storage had the opposite effect. The addition of MP before alcohol fermentation significantly increased the amount of individual anthocyanins and individual phenolic acids, maintained the color, and increased the antioxidant capacity of wine. In addition, the addition of 0.3 g/L MP during storage increased the content of individual phenolic acids and TPC of wine. However, the addition of 0.1 g/L MP during storage significantly reduced the TPC, TAC, TTC, and individual anthocyanin content (except for malvidin-3-glucoside and malvidin-3-acetly-glucoside); meanwhile, the treatment attenuated the color stability and antioxidant capacity of wine. The results demonstrated that the addition of MP before alcohol fermentation could increase the functional components and improve the color stability and antioxidant capacity of wine.

12.
BMC Plant Biol ; 21(1): 279, 2021 Jun 19.
Article En | MEDLINE | ID: mdl-34147088

BACKGROUND: 3-Hydroxy-3-methylglutaryl-CoA reductase (HMGR) is a key enzyme in the mevalonate (MVA) pathway, which regulates the metabolism of terpenoids in the cytoplasm and determines the type and content of downstream terpenoid metabolites. RESULTS: Results showed that grapevine HMGR family has three members, such as VvHMGR1, VvHMGR2, and VvHMGR3. The expression of VvHMGRs in 'Kyoho' has tissue specificity, for example, VvHMGR1 keeps a higher expression, VvHMGR2 is the lowest, and VvHMGR3 gradually decreases as the fruit development. VvHMGR3 is closely related to CsHMGR1 and GmHMGR9 and has collinearity with CsHMGR2 and GmHMGR4. By the prediction of interaction protein, it can interact with HMG-CoA synthase, MVA kinase, FPP/GGPP synthase, diphosphate mevalonate decarboxylase, and participates in the synthesis and metabolism of terpenoids. VvHMGR3 have similar trends in expression with some of the genes of carotenoid biosynthesis and MEP pathways. VvHMGR3 responds to various environmental and phytohormone stimuli, especially salt stress and ultraviolet (UV) treatment. The expression level of VvHMGRs is diverse in grapes of different colors and aroma. VvHMGRs are significantly higher in yellow varieties than that in red varieties, whereas rose-scented varieties showed significantly higher expression than that of strawberry aroma. The expression level is highest in yellow rose-scented varieties, and the lowest in red strawberry scent varieties, especially 'Summer Black' and 'Fujiminori'. CONCLUSION: This study confirms the important role of VvHMGR3 in the process of grape fruit coloring and aroma formation, and provided a new idea to explain the loss of grape aroma and poor coloring during production. There may be an additive effect between color and aroma in the HMGR expression aspect.


Genes, Plant , Hydroxymethylglutaryl CoA Reductases/genetics , Vitis/enzymology , Vitis/genetics , Anthocyanins/metabolism , Evolution, Molecular , Fruit/genetics , Fruit/growth & development , Fruit/physiology , Gene Expression Profiling , Genetic Variation , Genotype , Multigene Family , Osmotic Pressure , Plant Growth Regulators/physiology , Terpenes/metabolism , Vitis/growth & development
13.
Food Chem ; 363: 130288, 2021 Nov 30.
Article En | MEDLINE | ID: mdl-34120043

Table grape is a popular fruit worldwide. The quality of the appearance of table grapes directly affects their commercial value. Table grape bunches are usually carefully managed during production. At different developmental stages, a large number of grape berries are pruned as waste for commercial appearance, which leads to wasted resources. Ultraviolet-C (UV-C) can regulate the accumulation of secondary metabolites in fruits. In this study, metabolomic profile was combined with transcriptomic analysis technology to explore the value of UV-C in improving the utilization of waste grapes. The berries of the 'Jumeigui' grape were subjected to UV-C radiation treatment in the green-berry stage, veraison stage, and maturation stage. The results showed that UV-C could brown grape berries and decrease their sugar content at different developmental stages. Compared with other samples, those treated with UV-C in the veraison stage had the most upregulated metabolites, while samples in the green-berry stage had the most down-regulated metabolites. UV-C promoted the accumulation of stilbenes and some flavonoids in the berries at each developmental stage (especially at the green-berry and veraison stages). Compared with other stages, UV-C treatment during the veraison stage led to the highest number of upregulated genes related to transcription factors, protein modification, indole-3-acetic acid (IAA), abscisic acid (ABA), gibberellin acid (GA), receptor kinases, and Ascorbic acid/Glutathione (Ascorb/Gluath). UV-C might promote the accumulation of phenolic components by upregulating the expression of their biosynthesis related genes. UV-C may be an effective in vitro approach for improving the application value of waste grape berries by enhancing the accumulation of the nutritious phenolic components.


Vitis , Abscisic Acid , Fruit/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Transcriptome , Vitis/genetics
14.
Foods ; 10(3)2021 Mar 23.
Article En | MEDLINE | ID: mdl-33807052

Raisins are a popular and nutritious snack that is produced through the dehydration of postharvest grape berries under high temperature (HT). However, the response of the endogenous metabolism of white grape varieties to postharvest dehydration under different temperature have not been fully elucidated to date. In this study, the white grape cultivar 'Xiangfei' was chosen to investigate the effect of dehydration at 50 °C, 40 °C, and 30 °C on the transcriptomic programme and metabolite profiles of grape berries. Postharvest dehydration promoted the accumulation of soluble sugar components and organic acids in berries. The content of gallic acid and its derivatives increased during the dehydration process and the temperature of 40 °C was the optimal for flavonoids and proanthocyanidins accumulation. High-temperature dehydration stress might promote the accumulation of gallic acid by increasing the expression levels of their biosynthesis related genes and regulating the production of NADP+ and NADPH. Compared with that at 30 °C, dehydration at 40 °C accelerated the transcription programme of 7654 genes and induced the continuous upregulation of genes related to the heat stress response and redox homeostasis in each stage. The results of this study indicate that an appropriate dehydration temperature should be selected and applied when producing polyphenols-rich raisins.

15.
Foods ; 10(3)2021 Mar 16.
Article En | MEDLINE | ID: mdl-33809507

In this study, ultraviolet-C (UV-C) was utilized to improve the quality of post-harvest grape berries, and the transcriptomic and metabolomic basis of this improvement was elucidated. Berries of the red grape variety 'Zicui' and the white variety 'Xiangfei' were chosen to evaluate the effect of short- and long-term UV-C irradiation. Post-harvest UV-C application promoted malondialdehyde (MDA) and proline accumulation, and reduced the soluble solid content in berries. Both the variety and duration of irradiation could modulate the transcriptomic and metabolomic responses of berries to UV-C. Compared with the control, the differentially expressed genes (DEGs) identified under UV-C treatment were enriched in pathways related to metabolite accumulation, hormone biosynthesis and signal transduction, and reactive oxygen species (ROS) homeostasis. Flavonoid biosynthesis and biosynthesis of other secondary metabolites were the shared pathways enriched with differential metabolites. After long-term UV-C irradiation, cis-resveratrol accumulated in the berries of the two varieties, while the differential chalcone, dihydroflavone, flavonoid, flavanol, and tannin components primarily accumulated in 'Xiangfei', and some flavonols and anthocyanins primarily accumulated in 'Zicui'. Based on an exhaustive survey, we made a summary for the effect of UV-C in regulating the quality development of post-harvest grape berries. The results of this study may help to elucidate the mechanism by which UV-C functions and support its efficient application.

16.
Food Chem ; 351: 129308, 2021 Jul 30.
Article En | MEDLINE | ID: mdl-33652297

This study investigated the effects of foliar application of fulvic acid antitranspirant (FA-AT) on Cabernet Sauvignon (CS) and Riesling grapes and wines in a warm viticulture region of China. FA-AT controlled the contents of total soluble solids, fructose and glucose in mature grapes and alcohol in wines. FA-AT improved total phenols and flavonoids in Riesling grapes, and total tannin and individual flavanols in CS grapes and wine, while reducing total individual phenolic acids and flavonols in CS wine. Increased volatiles in CS grapes (hexyl acetate, linalool) and wine (isoamyl alcohol, 1-hexanol, 2-phenylethanol) detected by SPME-GC-MS can contribute to the fruity and floral aroma. FA-AT reduced the accumulation of anthocyanins in CS grapes and wine without an eventual reduction in the tonality of wine by sensory analysis, and improved the taste and balance of Riesling wine. Overall, FA-AT can improve the quality of grapes and wines produced in warm viticulture regions.


Agriculture/methods , Benzopyrans/chemistry , Fruit/chemistry , Sugars/analysis , Vitis/chemistry , Wine/analysis , Anthocyanins/analysis , China , Flavonoids/analysis , Flavonols/analysis , Gas Chromatography-Mass Spectrometry , Odorants/analysis , Phenols/analysis , Tannins/analysis , Volatile Organic Compounds/analysis
17.
Plant Biotechnol J ; 19(6): 1216-1239, 2021 06.
Article En | MEDLINE | ID: mdl-33440072

In grape, MYBA1 and MYBA2 at the colour locus are the major genetic determinants of grape skin colour, and the mutation of two functional genes (VvMYBA1 and VvMYBA2) from these loci leads to white skin colour. This study aimed to elucidate the regulation of grape berry coloration by isolating and characterizing VvMYBA2w and VvMYBA2r alleles. The overexpression of VvMYBA2r up-regulated the expression of anthocyanin biosynthetic genes and resulted in higher anthocyanin accumulation in transgenic tobacco than wild-type (WT) plants, especially in flowers. However, the ectopic expression of VvMYBA2w inactivated the expression of anthocyanin biosynthetic genes and could not cause obvious phenotypic modulation in transgenic tobacco. Unlike in VvMYBA2r, CA dinucleotide deletion shortened the C-terminal transactivation region and disrupted the transcriptional activation activity of VvMYBA2w. The results indicated that VvMYBA2r positively regulated anthocyanin biosynthesis by forming the VvMYBA2r-VvMYCA1-VvWDR1 complex, and VvWDR1 enhanced anthocyanin accumulation by interacting with the VvMYBA2r-VvMYCA1 complex; however, R44 L substitution abolished the interaction of VvMYBA2w with VvMYCA1. Meanwhile, both R44 L substitution and CA dinucleotide deletion seriously affected the efficacy of VvMYBA2w to regulate anthocyanin biosynthesis, and the two non-synonymous mutations were additive in their effects. Investigation of the colour density and MYB haplotypes of 213 grape germplasms revealed that dark-skinned varieties tended to contain HapC-N and HapE2, whereas red-skinned varieties contained high frequencies of HapB and HapC-Rs. Regarding ploidy, the higher the number of functional alleles present in a variety, the darker was the skin colour. In summary, this study provides insight into the roles of VvMYBA2r and VvMYBA2w alleles and lays the foundation for the molecular breeding of grape varieties with different skin colour.


Vitis , Alleles , Anthocyanins , DNA Shuffling , Fruit/genetics , Fruit/metabolism , Gene Expression Regulation, Plant/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Skin Pigmentation , Vitis/genetics , Vitis/metabolism
18.
J Sci Food Agric ; 101(4): 1288-1300, 2021 Mar 15.
Article En | MEDLINE | ID: mdl-32869302

Nitrogen is involved in the winemaking process from grapevine growth to wine fermentation, and its precise utilization in vineyards can regulate grape and wine quality. Foliar nitrogen application during veraison (FNAV) could prevent nitrogen deficiency in grape and must in nitrogen-deficient vineyards. Moreover, FNAV also could improve certain flavor components of grape and wine, but little attention has been paid to FNAV. Therefore, this paper mainly reviews the difficulties encountered in current applications of nitrogen in vineyards and wineries, and the advantages of FNAV over the addition of nitrogen in soil and wineries. And it discusses that FNAV can increase yeast-assimilable nitrogen and phenolics, and scarcely affect volatile components of grape (must and wine), and points out the existing problems including the core issue and then puts forward future research directions. This information may indicate future directions for research, and provide a reference for viticulturists and winemakers on the precise application of nitrogen on grapevine and must to further improve grape and wine quality in nitrogen-deficient vineyards. © 2020 Society of Chemical Industry.


Flavoring Agents/chemistry , Nitrogen/metabolism , Vitis/chemistry , Wine/analysis , Farms , Flavoring Agents/metabolism , Fruit/chemistry , Fruit/growth & development , Fruit/metabolism , Fruit/microbiology , Humans , Saccharomyces cerevisiae/metabolism , Vitis/growth & development , Vitis/metabolism , Vitis/microbiology
19.
Mol Biol Rep ; 47(10): 7349-7363, 2020 Oct.
Article En | MEDLINE | ID: mdl-32914265

Chitinases (Chi), an important resistance-related protein, act against fungal pathogens by catalyzing the fungal cell wall, whereas are involved in different biological pathways in grape. In this study, we found 42 Chi family genes in Vitis vinifera L. (VvChis) and evaluated their expression levels after Botrytis infection, stress hormones like ethylene (ETH) and methyl-jasmonate (MeJA), and abiotic stresses like salinity and temperature changes in ripened fruits. VvChis were categorized into five groups including A, B, C, D, and E belonged to glycoside hydrolase family 18 and 19 (GH18 and GH19) according to genes structure, which expression analysis showed distinct temporal and spatial expression patterns changed in different tissues and various development stages. Different responsive elements to biotic and abiotic stresses were determined in the promoter regions of VvChis, specially elicitor-responsive element that was conserved among all VvChis genes. The expression levels of VvChis in groups A, B, and E increased after Botrytis cinerea infection in leaves and berries. Meanwhile, VvChis in glycoside hydrolase family 18 (GH18) were up-regulated under MeJA and ETH treatment, although the induction of VvChis by low temperature was more significant than high temperature. The expression of VvChis was also positively correlated with the concentration of NaCl treatment. Furthermore, differential gene-overexpression of VvChi5, VvChi17, VvChi22, VvChi26, and VvChi31 in strawberry and tomato fruits demonstrated the involvement of various isoforms in resistance to Botrytis infection through antioxidant system and lignin accumulation, which led to a reduction of damage. Among different isoforms of VvChis, we confirmed the interaction of Chi17 with Metallothionein (MTL) as oxidative stress protection, which suggests VvChis can modulate oxidative stress during postharvest storage in ripened fruits.


Botrytis/growth & development , Chitinases , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Plant Diseases , Plant Proteins , Vitis , Chitinases/biosynthesis , Chitinases/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Proteins/biosynthesis , Plant Proteins/genetics , Vitis/enzymology , Vitis/genetics , Vitis/microbiology
20.
BMC Plant Biol ; 20(1): 409, 2020 Sep 03.
Article En | MEDLINE | ID: mdl-32883203

BACKGROUND: Grapevine (Vitis vinifera L.), which has important nutritional values and health benefits, is one of the most economically important fruit crops cultivated worldwide. Several studies showed a large number of microRNAs (VvmiRNAs) involved in the modulation of grape growth and development, and many VvmiRNA families have multiple members. However, the way by which various members from the same miRNA family work is unclear, particularly in grapes. RESULTS: In this study, an important conserved VvmiR172 family (VvmiR172s) and their targets were set as a good example for elucidating the interaction degree, mechanism, and spatio-temporal traits of diverse members from the same miRNA family. miR-RACE and Stem-loop RT-PCR were used to identify the spatio-temporal expressions of various members of VvmiR172s; together with RLM-RACE, PPM-RACE, Western blot, transgenic technologies, their interaction degree, and regulation mechanism were further validated. The expression of VvmiR172c was significantly higher than that of VvmiR172a, b, and d and showed a positive correlation with the abundance of VvAP2 cleavage products. These findings indicated that VvmiR172c might be one of the main action factors of the VvmiR172 family in flower development. The ability of VvmiR172c to cleave target genes differed due to divergence in complementary degree with VvAP2 and expression levels of various members. In VvmiR172 transgenic lines, we observed that 35S::VvmiR172c resulted in the earliest and abundant flowering, indicating the strong function of VvmiR172c. In contrast, the non-significant phenotypic changes were detected in the VvAP2 transgenic lines. The qRT-PCR and Western bolt results demonstrated that VvmiR172c plays a major role in targeting VvAP2. CONCLUSIONS: VvmiR172 up-regulated the expression of NtFT and decreased the expression of NtFLC. The up/down regulation of VvmiR172c was the most pronounced. The functions of four VvmiR172 members in grape differed, and miR172c had the strongest regulation on AP2.


Flowers/growth & development , Gene Expression Regulation, Plant , MicroRNAs/genetics , RNA, Plant/genetics , Vitis/genetics , Flowers/genetics , MicroRNAs/metabolism , RNA, Plant/metabolism , Vitis/growth & development , Vitis/metabolism
...