Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 110
Filter
1.
Cancer Commun (Lond) ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39016053

ABSTRACT

BACKGROUND: The initial randomized, double-blinded, actively controlled, phase III ANEAS study (NCT03849768) demonstrated that aumolertinib showed superior efficacy relative to gefitinib as first-line therapy in epidermal growth factor receptor (EGFR)-mutated advanced non-small cell lung cancer (NSCLC). Metastatic disease in the central nervous system (CNS) remains a challenge in the management of NSCLC. This study aimed to compare the efficacy of aumolertinib versus gefitinib among patients with baseline CNS metastases in the ANEAS study. METHODS: Eligible patients were enrolled and randomly assigned in a 1:1 ratio to orally receive either aumolertinib or gefitinib in a double-blinded fashion. Patients with asymptomatic, stable CNS metastases were included. Follow-up imaging of the same modality as the initial CNS imaging was performed every 6 weeks for 15 months, then every 12 weeks. CNS response was assessed by a neuroradiological blinded, independent central review (neuroradiological-BICR). The primary endpoint for this subgroup analysis was CNS progression-free survival (PFS). RESULTS: Of the 429 patients enrolled and randomized in the ANEAS study, 106 patients were found to have CNS metastases (CNS Full Analysis Set, cFAS) at baseline by neuroradiological-BICR, and 60 of them had CNS target lesions (CNS Evaluable for Response, cEFR). Treatment with aumolertinib significantly prolonged median CNS PFS compared with gefitinib in both cFAS (29.0 vs. 8.3 months; hazard ratio [HR] = 0.31; 95% confidence interval [CI], 0.17-0.56; P < 0.001) and cEFR (29.0 vs. 8.3 months; HR = 0.26; 95% CI, 0.11-0.57; P < 0.001). The confirmed CNS overall response rate in cEFR was 85.7% and 75.0% in patients treated with aumolertinib and gefitinib, respectively. Competing risk analysis showed that the estimated probability of CNS progression without prior non-CNS progression or death was consistently lower with aumolertinib than with gefitinib in patients with and without CNS metastases at baseline. No new safety findings were observed. CONCLUSIONS: These results indicate a potential advantage of aumolertinib over gefitinib in terms of CNS PFS and the risk of CNS progression in patients with EGFR-mutated advanced NSCLC with baseline CNS metastases. TRIAL REGISTRATION: ClinicalTrials.gov number, NCT03849768.

2.
J Transl Med ; 22(1): 688, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075517

ABSTRACT

BACKGROUND: Radioresistance and immune escape are crucial reasons for unsatisfactory therapeutic effects of glioblastoma (GBM). Although triggering receptor expressed on myeloid cells-2 (TREM2) involved in forming immunosuppressive microenvironment, but the underlying mechanism and its roles in mediating cancer radioresistance remain unclear, moreover, the efficient delivery of drugs targeting TREM2 to GBM encounters serious challenges. Hence, this study aimed to elucidate the effect and mechanisms of targeted TREM2 silencing on reversing the radioresistance and immune escape of GBM aided by a glutathione-responsive biomimetic nanoparticle (NP) platform. METHODS: Radioresistant GBM cell lines and TREM2 stable knockdown GBM cell lines were firstly established. RNA sequencing, colony formation assay, western blot, enzyme-linked immunosorbent assay and co-immunoprecipitation assay were used to detect the molecular mechanisms of TREM2 in regulating the radioresistance and immune escape of GBM. The glutathione-responsive biomimetic NP, angiopep-2 (A2)- cell membrane (CM)-NP/siTREM2/spam1, was then constructed to triply and targeted inhibit TREM2 for in vivo study. Orthotopic GBM-bearing mouse models were established to evaluate the anti-GBM effect of TREM2 inhibition, multiplex immunofluorescence assay was conducted to detect the infiltration of immune cells. RESULTS: TREM2 was a regulator in accelerating the radioresistance and immune escape of GBM through participating in DNA damage repair and forming a positive feedback loop with high mobility group box 1 (HMGB1) to cascade the activation of Toll-like receptor 4 (TLR4)/protein kinase B (Akt) signaling. A2-CM-NP/siTREM2/spam1 was successfully synthesized with excellent passive targeting, active targeting and homologous targeting, and the in vivo results exhibited its remarkable anti-GBM therapeutic effect through promoting the infiltration of type 1 helper T cells and CD8+T cells, reducing the infiltration of type 2 helper T cells and regulatory T cells, repolarizing macrophages to M1-type, and decreasing the secretion of pro-tumor and immunosuppressive cytokines. CONCLUSIONS: Targeting TREM2 therapy is a promising avenue for optimizing radiotherapy and immunotherapy to improve the prognosis of GBM patients.


Subject(s)
Glioblastoma , HMGB1 Protein , Membrane Glycoproteins , Proto-Oncogene Proteins c-akt , Radiation Tolerance , Receptors, Immunologic , Signal Transduction , Toll-Like Receptor 4 , Glioblastoma/radiotherapy , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/immunology , Glioblastoma/genetics , Receptors, Immunologic/metabolism , Humans , Animals , Cell Line, Tumor , Membrane Glycoproteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Toll-Like Receptor 4/metabolism , HMGB1 Protein/metabolism , Tumor Escape , Mice , Feedback, Physiological , Mice, Nude , Brain Neoplasms/radiotherapy , Brain Neoplasms/metabolism , Brain Neoplasms/immunology , Brain Neoplasms/pathology
3.
Biochem Genet ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902482

ABSTRACT

With the emergence of combined surgical treatments, complemented by radiotherapy and chemotherapy, survival rates for esophageal cancer patients have improved, but the overall 5-year survival rate remains low. Therefore, there is an urgent need for further research into the pathogenesis of esophageal cancer and the development of effective prevention, diagnosis, and treatment methods. We initially utilized the GeneCards and DisGeNET databases to identify the esophageal cancer-associated gene WWOX (WW domain containing oxidoreductase). Subsequently, we employed RT-qPCR (Reverse transcription-quantitative PCR) and WB (western blot) to investigate the differential expression of WWOX in HEEC (human esophageal endotheliocytes) and various ESCC (esophageal squamous cell carcinoma) cell lines. We further evaluated alterations in cell proliferation, migration and apoptosis via CCK8 (cell counting kit-8) and clonal formation, Transwell assays and flow cytometry. Additionally, we investigated changes in protein expressions related to the Hippo signaling pathway (YAP/TEAD) through RT-qPCR and WB. Lastly, to further elucidate the regulatory mechanism of WWOX in ESCC, we performed exogenous YAP rescue experiments in ESCC cells with WWOX overexpression to investigate the alterations in apoptosis and proliferation. Results indicated that the expression of WWOX in ESCC was significantly downregulated. Subsequently, upon overexpression of WWOX, ESCC cell proliferation and migration decreased, while apoptosis increased. Additionally, the expression of YAP and TEAD were reduced. However, the sustained overexpression of YAP attenuated the inhibitory effects of WWOX on ESCC cell malignancy. In conclusion, WWOX exerts inhibitory effects on the proliferation and migration of ESCC and promotes apoptosis by suppressing the Hippo signaling pathway. These findings highlight the potential of WWOX as a novel target for the diagnosis and treatment of esophageal cancer.

5.
J Cell Physiol ; 239(8): e31296, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38742685

ABSTRACT

N6-methyladenosine (m6A) methylation has been widely regarded in numerous biological functions including CR. Nonetheless, the molecular process of m6A methylation behind CR in non-small cell lung cancer (NSCLC) has no apparent significance. We identified in this study that the expression of FTO alpha-ketoglutarate dependent dioxygenase (FTO) was downregulated in CR NSCLC tissues and cells in vivo and in vitro. Additionally, RIP-seq indicated that loss of FTO contributed to the elevated m6A methylation at 5'-untranslated region of RNAs which were closely connected with tumor resistance and malignancy, and FTO exerted to exclude the recruitment of eIF3A to these target genes in CR NSCLC. Moreover, FTO-enriched transcripts displayed a reduced translational capability in CR NSCLC compared to the regular NSCLC cells. Finally, we also identified RNA binding motif protein 5 (RBM5) that could specially interact with FTO in regular NSCLC compared to CR NSCLC. Deficiency of RBM5 resulted in the abnormal recognition of transcripts by FTO, and led to the translation silencing of genes associated with CR such as ATP7A, ERCC1, CD99, CDKN3, XRCC5, and NOL3. Taken together, our data characterized FTO as a novel translation regulator and revealed the molecular mechanism on gene translation through the synergistic effects with RBM5 and m6A methylation in CR NSCLC cells.


Subject(s)
5' Untranslated Regions , Adenosine , Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Carcinoma, Non-Small-Cell Lung , Cisplatin , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Lung Neoplasms , RNA-Binding Proteins , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Adenosine/analogs & derivatives , Adenosine/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Drug Resistance, Neoplasm/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Cisplatin/pharmacology , Gene Expression Regulation, Neoplastic/genetics , 5' Untranslated Regions/genetics , Methylation , Cell Line, Tumor , Protein Biosynthesis/genetics , Animals , A549 Cells , DNA-Binding Proteins , Cell Cycle Proteins , Tumor Suppressor Proteins
6.
Water Res ; 256: 121568, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38593607

ABSTRACT

Constructed wetlands (CWs) are widely used in sewage treatment in rural areas, but there are only a few studies on field-scale CWs in treating wastewater-borne pesticides. In this study, the treatment and metabolic transformation of 29 pesticides in rural domestic sewage by 10 field-scale horizontal flow CWs (HF-CWs), each with a treatment scale of 36‒5000 m3/d and operated for 2‒10 years, in Guangzhou, Southern China was investigated. The risk of pesticides in treated effluent and main factors influencing such risk were evaluated. Results demonstrated that HF-CWs could remove pesticides in sewage and reduce their ecological risk in effluent, but the degree varied among types of pesticides. Herbicides had the highest mean removal rate (67.35 %) followed by insecticides (60.13 %), and the least was fungicides (53.22 %). In terms of single pesticide compounds, the mean removal rate of butachlor was the highest (73.32 %), then acetochlor (69.41 %), atrazine (68.28 %), metolachlor (58.40 %), and oxadixyl (53.28 %). The overall removal rates of targeted pesticides in each HF-CWs ranged from 11 %‒57 %, excluding two HF-CWs showing increases in pesticides in treated effluent. Residues of malathion, phorate, and endosulfan in effluent had high-risks (RQ > 5). The pesticide concentration in effluent was mainly affected by that in influent (P = 0.042), and source control was the key to reducing risk. The main metabolic pathways of pesticide in HF-CWs were oxidation, with hydroxyl group to carbonyl group or to form sulfones, the second pathways by hydrolysis, aerobic condition was conducive to the transformation of pesticides. Sulfones were generally more toxic than the metabolites produced by hydrolytic pathways. The present study provides a reference on pesticides for the purification performance improvement, long-term maintenance, and practical sustainable application of field-scale HF-CWs.


Subject(s)
Pesticides , Wastewater , Water Pollutants, Chemical , Wetlands , Wastewater/chemistry , Risk Assessment , Waste Disposal, Fluid , China
8.
JAMA Oncol ; 10(4): 448-455, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38329745

ABSTRACT

Importance: The bioequivalence of denosumab biosimilar has yet to be studied in a 53-week, multicenter, large-scale, and head-to-head trial. A clinically effective biosimilar may help increase access to denosumab in patients with solid tumor-related bone metastases. Objectives: To establish the biosimilarity of MW032 to denosumab in patients with solid tumor-related bone metastases based on a large-scale head-to-head study. Design, Setting, and Participants: In this 53-week, randomized, double-blind, phase 3 equivalence trial, patients with solid tumors with bone metastasis were recruited from 46 clinical sites in China. Overall, 856 patients were screened and 708 eligible patients were randomly allocated to receive either MW032 or denosumab. Interventions: Patients were randomly assigned (1:1) to receive MW032 or reference denosumab subcutaneously every 4 weeks until week 49. Main Outcomes and Measures: The primary end point was percentage change from baseline to week 13 of natural logarithmic transformed urinary N-telopeptide/creatinine ratio (uNTx/uCr). Results: Among the 701 evaluable patients (350 in the MW032 group and 351 in the denosumab group), the mean (range) age was 56.1 (22.0-86.0) years and 460 patients were women (65.6%). The mean change of uNTx/uCr from baseline to week 13 was -72.0% (95% CI, -73.5% to -70.4%) in the MW032 group and -72.7% (95% CI, -74.2% to -71.2%) in the denosumab group. These percent changes corresponded to mean logarithmic ratios of -1.27 and -1.30, or a difference of 0.02. The 90% CI for the difference (-0.04 to 0.09) was within the equivalence margin (-0.13 to 0.13); the mean changes of uNTx/uCr and bone-specific alkaline phosphatase (s-BALP) at each time point were also similar during 53 weeks. The differences of uNTx/uCr change were 0.015 (95% CI, -0.06 to 0.09), -0.02 (95% CI, -0.09 to 0.06), -0.05 (95% CI, -0.13 to 0.03) and 0.001 (95% CI, -0.10 to 0.10) at weeks 5, 25, 37, and 53, respectively. The differences of s-BALP change were -0.006 (95% CI, 0.06 to 0.05), 0.00 (95% CI, -0.07 to 0.07), -0.085 (95% CI, -0.18 to 0.01), -0.09 (95% CI, -0.20 to 0.02), and -0.13 (95% CI, -0.27 to 0.004) at weeks 5, 13, 25, 37 and 53, respectively. No significant differences were observed in the incidence of skeletal-related events (-1.4%; 95% CI, -5.8% to 3.0%) or time to first on-study skeletal-related events (unadjusted HR, 0.86; P = .53; multiplicity adjusted HR, 0.87; P = .55) in the 2 groups. Conclusions and Relevance: MW032 and denosumab were biosimilar in efficacy, population pharmacokinetics, and safety profile. Availability of denosumab biosimilars may broaden the access to denosumab and reduce the drug burden for patients with advanced tumors. Trial Registration: ClinicalTrials.gov Identifier: NCT04812509.


Subject(s)
Biosimilar Pharmaceuticals , Bone Neoplasms , Humans , Female , Middle Aged , Aged , Aged, 80 and over , Male , Denosumab , Antibodies, Monoclonal, Humanized , Bone Neoplasms/secondary , Creatinine , Double-Blind Method
9.
Biochem Pharmacol ; 219: 115950, 2024 01.
Article in English | MEDLINE | ID: mdl-38043718

ABSTRACT

Metabolic network intertwines with cancerous signaling and drug responses. Malonate is a prevailing metabolite in cancer and a competitive inhibitor of succinate dehydrogenase (SDH). Recent studies showed that malonate induced reactive oxygen species (ROS)-dependent apoptosis in neuroblastoma cells, but protected cells from ischemia-reperfusion injury. We here revealed that malonate differentially regulated cell death and survival in cancer cells. While high-dose malonate triggered ROS-dependent apoptosis, the low-dose malonate induced autophagy and conferred resistance to multiple chemotherapeutic agents. Mechanistically, our results showed that malonate increased p53 stability and transcriptionally up-regulated autophagy modulator DRAM (damage-regulated autophagy modulator), thus promoting autophagy. We further proved that autophagy is required for malonate-associated chemoresistance. Collectively, our findings suggest that malonate plays a double-edge function in cancer response to stressors, and highlights a pro-cancer impact of p53-induced autophagy in response to malonate.


Subject(s)
Neoplasms , Tumor Suppressor Protein p53 , Humans , Reactive Oxygen Species/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Cell Survival , Drug Resistance, Neoplasm , Apoptosis , Autophagy , Malonates/pharmacology , Cell Line, Tumor
10.
Biomed Pharmacother ; 167: 115540, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37741255

ABSTRACT

The clearance of apoptotic cells by efferocytes such as macrophages and dendritic cells is termed as "efferocytosis", it plays critical roles in maintaining tissue homeostasis in multicellular organisms. Currently, available studies indicate that efferocytosis-related molecules and pathways are tightly associated with cancer development, metastasis and treatment resistance, efferocytosis also induces an immunosuppressive tumor microenvironment and assists cancer cells escape from immune surveillance. In this study, we reviewed the underlying mechanisms of efferocytosis in mediating the occurrence of cancer immune escape, and then emphatically summarized the strategies of using efferocytosis as therapeutic target to enhance the anti-tumor efficacies of immune checkpoint inhibitors, hoping to provide powerful evidences for more effective therapeutic regimens of malignant tumors.

11.
Lung Cancer ; 180: 107194, 2023 06.
Article in English | MEDLINE | ID: mdl-37163774

ABSTRACT

BACKGROUND: Rezivertinib (BPI-7711) is a novel third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) which revealed the systematic and central nervous system (CNS) antitumor activities for EGFR T790M-mutated advanced NSCLC in previous clinical studies and is further analyzed here. METHODS: Eligible patients from the previous phase I and phase IIb studies of rezivertinib were included for pooled analysis. Post-progressive patients who received a prescribed dosage (≥180 mg) of rezivertinib orally once daily were included in full analysis set (FAS), while those with stable, asymptomatic CNS lesions, including measurable and non-measurable ones at baseline were included in CNS full analysis set (cFAS). Patients with measurable CNS lesions were included in CNS evaluable for response set (cEFR). BICR-assessed CNS objective response rate (CNS-ORR), CNS disease control rate (CNS-DCR), CNS duration of response (CNS-DoR), CNS progression-free survival (CNS-PFS), and CNS depth of response (CNS-DepOR) were evaluated. RESULTS: 355 patients were included in FAS, among whom 150 and 45 patients were included in cFAS and cEFR. This pooled analysis showed the CNS-ORR was 32.0% (48/150; 95% CI: 24.6-40.1%) and the CNS-DCR was 42.0% (63/150; 95% CI: 34.0-50.3%) in cFAS, while that in cEFR were 68.9% (31/45; 95% CI: 53.4-81.8%) and 100% (45/45; 95% CI: 92.1-100.0%). In cEFR, the median CNS-DepOR and the mean of CNS-DepOR were -52.0% (range: -100.0 to 16.1%) and -46.8% (95% CI: -55.5 to -38.1%). In cFAS, the median CNS-DoR and CNS-PFS were 13.8 (95% CI: 9.6-not calculable [NC]) and 16.5 (95% CI: 13.7-NC) months. CONCLUSIONS: Rezivertinib demonstrated encouraging clinical CNS efficacy among advanced NSCLC patients with EGFR T790M mutation and CNS metastases.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Aniline Compounds/therapeutic use , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Central Nervous System/pathology , ErbB Receptors/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology
12.
Front Immunol ; 14: 1103695, 2023.
Article in English | MEDLINE | ID: mdl-36817460

ABSTRACT

Introduction: Epstein-Barr virus (EBV) is a widely spread pathogen associated with lymphoproliferative diseases, B/ T/ NK cell lymphomas, nasopharyngeal carcinoma (NPC) and gastric carcinoma (GC). EBV lytic reactivations contribute to the genomic instability, inflammation and tumorigenesis of NPC, promoting cancer progression. Patients with NPC refractory to standard therapies show dismal survival. EBV gp350 is an envelope protein detectable in NPC specimens intracellularly and on the cell membrane of malignant cells, and is a potential viral antigen for T cell-directed immunotherapies. The potency of T cells engineered with a chimeric antigen receptor (CAR) targeting gp350 against EBV+ lymphoproliferative disease was previously shown. Methods: Here, we advanced towards preclinical and non-clinical developments of this virus-specific CAR-T cell immunotherapy against NPC. Different gp350CAR designs were inserted into a lentiviral vector (LV) backbone. Results: A construct expressing the scFv 7A1-anti-gp350 incorporating the CD8 transmembrane and CD28.CD3ζ signaling domain (ZT002) was selected. High titer ZT002 (~1x108 TU/ml) was manufactured in HEK 293T/17 suspension cells in serum free media as large-scale production under good manufacturing practices (GMP). A LV multiplicity of infection (MOI) of 1 resulted in high frequencies of functional gp350CAR+ T cells (>70%) at a low (<2) vector copy numbers in the genome. ZT002 was therefore used to establish gp350CAR-T batch run production methods. GMP upscaling and validation of T cell transduction and expansion in several runs resulted in average 3x109 gp350CAR-T cells per batch. >80% CD3+ gp350CAR-T cells bound to purified gp350 protein. In vitro cytotoxicity and cytokine secretion assays (IFN-γ and TNF-α) confirmed the specificity of gp350CAR-T cells against gp350+ NPC, GC and lymphoma cell targets. Immunocompromised B-NDG mice (NOD.CB17-PrkdcscidIl2rgtm1/Bcgen) were challenged s.c. with a EBV+ NPC C666.1 cell line expressing gp350 and then treated with escalating doses of gp350CAR-T cells or with non-transduced T cells. gp350CAR-T cells promoted antitumor responses, bio-distributed in several tissues, infiltrated in tumors and rejected gp350+ tumor cells. Discussion: These results support the use of gp350CAR-T cells generated with ZT002 as an Innovative New Drug to treat patients with solid and liquid EBV-associated malignancies.


Subject(s)
Epstein-Barr Virus Infections , Nasopharyngeal Neoplasms , Animals , Mice , Herpesvirus 4, Human , Mice, Inbred NOD , Nasopharyngeal Carcinoma , T-Lymphocytes , Receptors, Chimeric Antigen/immunology
13.
Comput Methods Programs Biomed ; 231: 107377, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36739624

ABSTRACT

BACKGROUND AND OBJECTIVE: Integrating multi-omics data for the comprehensive analysis of the biological processes in human diseases has become one of the most challenging tasks of bioinformatics. Deep learning (DL) algorithms have recently become one of the most promising multi-omics data integration analysis methods. However, existing DL-based studies almost integrate the multi-omics data by concatenation in the input data space or the learned feature space, ignoring the correlations between patients and omics. METHODS: We propose a novel multi-omics integration method, called Multi-omics Attention Deep Learning Network (MOADLN), which is used for biomedical data classification. Firstly, for each type of omics data, we use three fully-connected layers and the self-attention mechanism to reduce dimensionality, and construct the correlations between patients, respectively. Then, we apply the feature vector learned from self-attention to generate the initial category labels. Secondly, for the initial label predicted of each omics data, we use an effective Multi-Omics Correlation Discovery Network (MOCDN) to learn the cross-omic correlations in the label space. Finally, we use the softmax classifier for label prediction. RESULTS: We demonstrate that our method outperforms several state-of-the-art methods on two datasets with mRNA expression data, DNA methylation data, and miRNA expression data. In addition, we identified essential biomarkers of relevant diseases by MOADLN, and the generality of MOADLN is also demonstrated in the KIRP and KIRC datasets. CONCLUSIONS: MOADLN jointly explores correlations between patients in intra-omics and correlations of cross-omics in label space, which is an effective DL-based classification of biomedical data.


Subject(s)
Deep Learning , MicroRNAs , Humans , Multiomics , Algorithms , Computational Biology/methods
14.
J Clin Transl Hepatol ; 11(2): 369-381, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-36643033

ABSTRACT

Background and Aims: Emerging evidence suggests that RNA-binding motif (RBM) proteins are involved in hepatocarcinogenesis and act either as oncogenes or tumor suppressors. The objective of this study was to investigate the role of RBM34, an RBM protein, in hepatocellular carcinoma (HCC). Methods: We first examined the expression of RBM34 across cancers. The correlation of RBM34 with clinicopathological features and the prognostic value of RBM34 for HCC was then investigated. Functional enrichment analysis of RBM34-related differentially expressed genes (DEGs) was performed to explore its biological function. RNA sequencing (RNA-seq) was applied to identify downstream genes and pathways affected upon RBM34 knockout. The correlation of RBM34 with immune characteristics was also analyzed. The oncogenic function of RBM34 was examined in in vitro and in vivo experiments. Results: RBM34 was highly expressed in hepatocellular carcinoma and correlated with poor clinicopathological features and prognosis. RBM34 was positively associated with tumor immune cell infiltration, biomarkers of immune cells, and immune checkpoint expression. A positive correlation was also observed between RBM34, T cell exhaustion, and regulatory T cell marker genes. Knockout of RBM34 significantly inhibited cell proliferation, migration, and xenograft tumor growth, and sensitized HCC cells to sorafenib treatment. RBM34 inhibition reduced FGFR2 expression and affected PI3K-AKT pathway activation in HCC cells. Conclusions: Our study suggests that RBM34 may serve as a new prognostic marker and therapeutic target of HCC.

15.
BMC Med ; 21(1): 11, 2023 01 08.
Article in English | MEDLINE | ID: mdl-36617560

ABSTRACT

BACKGROUND: Rezivertinib (BPI-7711) is a novel third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI). This phase IIa study was part of a phase I/IIa study (NCT03386955), aimed to evaluate the efficacy and safety of rezivertinib as the first-line treatment for patients with locally advanced or metastatic/recurrent EGFR mutated non-small cell lung cancer (NSCLC). METHODS: Patients received the first-line treatment of 180 mg rezivertinib orally once daily until disease progression, unacceptable toxicity, or withdrawal of consent. The primary endpoint was the objective response rate (ORR) assessed by blinded independent central review (BICR). Secondary endpoints included disease control rate (DCR), duration of response (DoR), progression-free survival (PFS), overall survival (OS), and safety. RESULTS: From Jun 12, 2019, to Oct 17, 2019, 43 patients were enrolled. At the data cutoff date on Dec 23, 2021, the ORR by BICR was 83.7% (95% CI: 69.3-93.2%). The median DoR was 19.3 (95% CI: 15.8-25.0) months. The median PFS by BICR was 20.7 (95% CI: 13.8-24.8) months and 22.0 (95% CI: 16.8-26.3) months by investigators. Data on OS was immature. Totally, 40 (93.0%) patients had at least one treatment-related adverse event while 4 (9.3%) of them were grade ≥ 3. CONCLUSIONS: Rezivertinib (BPI-7711) showed promising efficacy and a favorable safety profile for the treatment among the locally advanced or metastatic/recurrent NSCLC patients with EGFR mutation in the first-line setting. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03386955.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Antineoplastic Agents/adverse effects , Protein Kinase Inhibitors/adverse effects , ErbB Receptors/genetics , ErbB Receptors/therapeutic use , Mutation
16.
Front Oncol ; 12: 1000501, 2022.
Article in English | MEDLINE | ID: mdl-36483042

ABSTRACT

Objective: To investigate whether extending adjuvant temozolomide (TMZ) improved the prognosis of newly diagnosed glioblastoma (GBM) patients with different mutation statuses of O6-methylguanine DNA methyltransferase (MGMT), isocitrate dehydrogenase 1 (IDH1), p53 and different expression level of Ki67. Methods: This study was a retrospective cohort study that postoperative patients with newly diagnosed GBM who did not progress after receiving radiotherapy with concomitant and 6 cycles of adjuvant TMZ were enrolled in control group, and those received more than 6 cycles of adjuvant TMZ were incorporated in extended group. Patients were stratified by MGMT expression, IDH1 mutation, p53 mutation and expression level of Ki67. The primary endpoints were overall survival (OS) and progression-free survival (PFS). Result: A total of 93 postoperative patients with newly diagnosed GBM were included in this study, 40 and 53 cases were included in control group and extended group, respectively. On the whole, extended adjuvant TMZ chemotherapy significantly prolonged OS and PFS of patients with newly diagnosed GBM [median OS (mOS): 29.00 months vs. 16.70 months, P < 0.001; median PFS (mPFS): 13.80 months vs. 9.60 months, P = 0.002]. The results of subgroup analysis showed that patients with methylated MGMT in extended group had significantly longer OS and PFS than those in control group; patients with IDH1 mutation benefited more from extended adjuvant TMZ chemotherapy than those with wild-type IDH1; there was no significant difference in the effect of extended TMZ chemotherapy on OS between GBM patients with wild-type p53 and those with mutant p53; compared with GBM patients with lower expression of Ki67, extended adjuvant TMZ treatment dramatically improved the OS and PFS of those with higher expression of Ki67. Conclusion: The therapeutic schedule of extended adjuvant TMZ significantly prolonged OS and PFS of patients with newly diagnosed GBM regardless of p53 mutation status, and patients with different MGMT methylation, IDH1 mutation and Ki67 expression level benefited differently from extended adjuvant TMZ chemotherapy.

17.
Front Oncol ; 12: 887068, 2022.
Article in English | MEDLINE | ID: mdl-36249018

ABSTRACT

Pancreatic adenocarcinoma (PAAD) is one of the most aggressive digestive system tumors in the world, with a low early diagnosis rate and a high mortality. Integrin beta 5 (ITGB5) is demonstrated to be a potent tumor promoter in several carcinomas. However, it is unknown whether ITGB5 participates in the occurrence and development of PAAD. In this study, we confirmed a high expression of ITGB5 in PAAD and its role in promoting invasiveness and transitivity in PAAD. Besides, the knockdown of ITGB5 increased cell sensitivity to radiation by promoting DNA damage repair and the MEK/ERK signaling pathway. Collectively, these results show that ITGB5 plays an essential role in pancreatic cancer growth and survival.

18.
J Thorac Oncol ; 17(11): 1306-1317, 2022 11.
Article in English | MEDLINE | ID: mdl-36049654

ABSTRACT

INTRODUCTION: Rezivertinib (BPI-7711) is a novel third-generation EGFR tyrosine kinase inhibitor (TKI) targeting both EGFR-sensitizing mutations and EGFR T790M mutation. This study aimed to evaluate the efficacy and safety of rezivertinib in patients with locally advanced or metastatic/recurrent EGFR T790M-mutated NSCLC. METHODS: Patients with locally advanced or metastatic/recurrent NSCLC with confirmed EGFR T790M mutation who progressed after first-/second-generation EGFR TKI therapy or primary EGFR T790M mutation were enrolled. Patients received rezivertinib at 180 mg orally once daily until disease progression, unacceptable toxicity, or withdrawal of consent. The primary end point was objective response rate (ORR) assessed by blinded independent central review per Response Evaluation Criteria in Solid Tumors version 1.1. Secondary end points included disease control rate (DCR), duration of response, progression-free survival (PFS), overall survival, and safety. This study is registered with Clinical Trials.gov (NCT03812809). RESULTS: A total of 226 patients were enrolled from July 5, 2019, to January 22, 2020. By the data cutoff date on January 24, 2022, the median duration of follow-up was 23.3 months (95% confidence interval [CI]: 22.8-24.0). The ORR by blinded independent central review was 64.6% (95% CI: 58.0%-70.8%), and DCR was 89.8% (95% CI: 85.1%-93.4%). The median duration of response was 12.5 months (95% CI: 10.0-13.9), and median PFS was 12.2 months (95% CI: 9.6-13.9). The median overall survival was 23.9 months (95% CI: 20.0-not calculated [NC]). Among 91 (40.3%) patients with central nervous system (CNS) metastases, the median CNS PFS was 16.6 months (95% CI: 11.1-NC). In 29 patients with more than or equal to one brain target lesion at baseline, the CNS ORR and CNS DCR were 69.0% (95% CI: 49.2%-84.7%) and 100% (95% CI: 88.1%-100%), respectively. Time to progression of CNS was 16.5 months (95% CI: 9.7-NC). Of 226 patients, 188 (83.2%) had at least one treatment-related adverse event, whereas grade more than or equal to 3 occurred in 45 (19.9%) patients. No interstitial lung disease was reported. CONCLUSIONS: Rezivertinib was found to have promising efficacy and favorable safety profile for patients with locally advanced or metastatic/recurrent NSCLC with EGFR T790M mutation.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , ErbB Receptors , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
19.
Comput Math Methods Med ; 2022: 9547166, 2022.
Article in English | MEDLINE | ID: mdl-35936378

ABSTRACT

Objective: This study is aimed at analyzing the factors affecting the recurrence patterns and recurrence-free survival (RFS) of high-grade gliomas (HGG). Methods: Eligible patients admitted to the Affiliated Hospital of Xuzhou Medical University were selected. Subsequently, the effects of some clinical data including age, gender, WHO pathological grades, tumor site, tumor size, clinical treatments, and peritumoral edema (PTE) area and molecular markers (Ki-67, MGMT, IDH-1, and p53) on HGG patients' recurrence patterns and RFS were analyzed. Results: A total number of 77 patients were enrolled into this study. After analyzing all the cases, it was determined that tumor size and tumor site had a significant influence on the recurrent patterns of HGG, and PTE was an independent predict factor of recurrence patterns. Specifically, when the PTE was mild (<1 cm), the recurrence pattern tended to be local; in contrast, HGG was more likely to progress to marginal recurrence and distant recurrence. Furthermore, age and PTE were significantly associated with RFS; the median RFS of the population with PTE < 1 cm (23.60 months) was obviously longer than the population with PTE ≥ 1 cm (5.00 months). Conclusions: PTE is an independent predictor of recurrence patterns and RFS for HGG. Therefore, preoperative identification of PTE in HGG patients is crucially important, which is helpful to accurately estimate the recurrence pattern and RFS.


Subject(s)
Brain Neoplasms , Glioma , Brain Neoplasms/pathology , Edema , Glioma/pathology , Humans
20.
J Cell Mol Med ; 26(18): 4859-4871, 2022 09.
Article in English | MEDLINE | ID: mdl-35989423

ABSTRACT

RNA-binding Motif Protein39 (RBM39) is identified as a splicing factor and transcription coactivator. Despite mounting evidence that RBM39 plays a critical role in the development of specific malignancies, no systematic pan-cancer investigation of RBM39 has been conducted. As a result, we set out to investigate RBM39's prognostic significance and putative immunological activities in 33 different cancers. Based on TCGA and CCLE, GTEx, cBioportal and HPA, we used a series of bioinformatics approaches to explore the potential oncogenic role of RBM39, including analysis of the expression of the pan-cancer species RBM39, the prognostic relationship between RBM39 expression and overall survival (OS), disease-specific survival (DSS) and progression-free interval (PFI), the relationship between RBM39 expression and clinical phenotype, analysis of the relationship between RBM39 expression and tumour mutational burden (TMB), microsatellite instability (MSI), DNA methylation and immune cell infiltration. Our results showed that RBM39 is overexpressed in most cancers. RBM39 was positively or negatively correlated with the prognosis of different tumours. RBM39 expression was associated with TMB and MSI in 9 and 12 cancer types. In addition, RBM39 expression was associated with DNA methylation in almost all tumours. There are eight tumours were screened for further study, including BRCA, COAD, HNSC, LIHC, LUSC, SKCM, STAD, UCEC. In the screed tumours, RBM39 was found to be negatively correlated with the infiltration of most immune cells. In addition, the correlation with RBM39 expression varied by immune cell subtype. Based on RBM39's role in tumorigenesis and tumour immunity, we suggest it can serve as a surrogate prognostic marker.


Subject(s)
Neoplasms , RNA-Binding Proteins , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Humans , Microsatellite Instability , Neoplasms/pathology , Prognosis , RNA-Binding Motifs , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL