Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Trials ; 25(1): 358, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38835091

ABSTRACT

BACKGROUND: This multicenter, double-blinded, randomized controlled trial (RCT) aims to assess the impact of an artificial intelligence (AI)-based model on the efficacy of intracranial aneurysm detection in CT angiography (CTA) and its influence on patients' short-term and long-term outcomes. METHODS: Study design: Prospective, multicenter, double-blinded RCT. SETTINGS: The model was designed for the automatic detection of intracranial aneurysms from original CTA images. PARTICIPANTS: Adult inpatients and outpatients who are scheduled for head CTA scanning. Randomization groups: (1) Experimental Group: Head CTA interpreted by radiologists with the assistance of the True-AI-integrated intracranial aneurysm diagnosis strategy (True-AI arm). (2) Control Group: Head CTA interpreted by radiologists with the assistance of the Sham-AI-integrated intracranial aneurysm diagnosis strategy (Sham-AI arm). RANDOMIZATION: Block randomization, stratified by center, gender, and age group. PRIMARY OUTCOMES: Coprimary outcomes of superiority in patient-level sensitivity and noninferiority in specificity for the True-AI arm to the Sham-AI arm in intracranial aneurysms. SECONDARY OUTCOMES: Diagnostic performance for other intracranial lesions, detection rates, workload of CTA interpretation, resource utilization, treatment-related clinical events, aneurysm-related events, quality of life, and cost-effectiveness analysis. BLINDING: Study participants and participating radiologists will be blinded to the intervention. SAMPLE SIZE: Based on our pilot study, the patient-level sensitivity is assumed to be 0.65 for the Sham-AI arm and 0.75 for the True-AI arm, with specificities of 0.90 and 0.88, respectively. The prevalence of intracranial aneurysms for patients undergoing head CTA in the hospital is approximately 12%. To establish superiority in sensitivity and noninferiority in specificity with a margin of 5% using a one-sided α = 0.025 to ensure that the power of coprimary endpoint testing reached 0.80 and a 5% attrition rate, the sample size was determined to be 6450 in a 1:1 allocation to True-AI or Sham-AI arm. DISCUSSION: The study will determine the precise impact of the AI system on the detection performance for intracranial aneurysms in a double-blinded design and following the real-world effects on patients' short-term and long-term outcomes. TRIAL REGISTRATION: This trial has been registered with the NIH, U.S. National Library of Medicine at ClinicalTrials.gov, ID: NCT06118840 . Registered 11 November 2023.


Subject(s)
Artificial Intelligence , Computed Tomography Angiography , Intracranial Aneurysm , Humans , Intracranial Aneurysm/diagnostic imaging , Double-Blind Method , Prospective Studies , Predictive Value of Tests , Multicenter Studies as Topic , Cerebral Angiography/methods , Male , Female , Time Factors , Randomized Controlled Trials as Topic , Adult
2.
Yi Chuan ; 46(4): 333-345, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38632095

ABSTRACT

China has a high dependence on soybean imports, yield increase at a faster rate is an urgent problem that need to be solved at present. The application of heterosis is one of the effective ways to significantly increase crop yield. In recent years, the development of an intelligent male sterility system based on recessive nuclear sterile genes has provided a potential solution for rapidly harnessing the heterosis in soybean. However, research on male sterility genes in soybean has been lagged behind. Based on transcriptome data of soybean floral organs in our research group, a soybean stamen-preferentially expressed gene GmFLA22a was identified. It encodes a fasciclin-like arabinogalactan protein with the FAS1 domain, and subcellular localization studies revealed that it may play roles in the endoplasmic reticulum. Take advantage of the gene editing technology, the Gmfla22a mutant was generated in this study. However, there was a significant reduction in the seed-setting rate in the mutant plants at the reproductive growth stage. The pollen viability and germination rate of Gmfla22a mutant plants showed no apparent abnormalities. Histological staining demonstrated that the release of pollen grains in the mutant plants was delayed and incomplete, which may due to the locule wall thickening in the anther development. This could be the reason of the reduced seed-setting rate in Gmfla22a mutants. In summary, our study has preliminarily revealed that GmFLA22a may be involved in regulating soybean male fertility. It provides crucial genetic materials for further uncovering its molecular function and gene resources and theoretical basis for the utilization of heterosis in soybean.


Subject(s)
Glycine max , Infertility, Male , Male , Humans , Plants , Pollen/genetics , Fertility , Plant Infertility/genetics , Gene Expression Regulation, Plant
3.
Oncol Lett ; 26(4): 460, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37745980

ABSTRACT

The tumor microenvironment (TME) and Warburg effect are critical for the regulation of tumor metastasis. The monocarboxylate transporter (MCT) family members, particularly MCT4, which is encoded by the solute carrier family 16 member 3 gene, play an important role in the regulation of the TME and mediation of the Warburg effect by transporting lactate out of cancer cells. Migration and invasion are two key features of metastasis. Few studies have investigated the mechanism by which MCT4 promotes cell migration, and the suggested mechanisms by which MCT4 promotes migration vary in different tumor cell models. The purpose of the present study was to use non-cancerous cells as a research model to investigate the specific mechanism underlying the promotion of migration by MCT4. In a previous study, murine L929 cells overexpressing human MCT4 (MCT4-L929 cells) were generated and MCT4 was demonstrated to promote the migration and invasion of these non-cancerous cells. In the present study, MCT4-L929 cells and control-L929 cells were used to investigate the potential pathways and mechanisms through which MCT4 promotes cell migration. RNA sequencing analysis revealed 872 differentially expressed genes, comprising 337 and 535 upregulated and downregulated genes, respectively, in the MCT4-L929 cells. Reverse transcription-quantitative analysis and western blotting revealed that MCT4 overexpression increased the transcription and protein levels of insulin-like growth factor 1 (IGF1). In a wound healing assay, the migration of exogenous mouse IGF1-treated control-L929 cells was similar to that of MCT4-L929 cells. Additionally, the inhibition of IGF1 receptor (IGF1R) or serum/glucocorticoid regulated kinase 1 (SGK1), a downstream protein in the IGF1 and phosphoinositide 3-kinase PI3K regulatory subunit 3 (PIK3R3) pathways, in MCT4-L929 cells mitigated the cell migration-promoting effect of MCT4. These novel findings suggest that MCT4 may promote the migration of L929 fibroblast cells via activation of the IGF1/IGF1R/PIK3R3/SGK1 axis.

4.
Am J Obstet Gynecol ; 229(3): 288.e1-288.e13, 2023 09.
Article in English | MEDLINE | ID: mdl-36858096

ABSTRACT

BACKGROUND: Despite previous research findings on higher risks of stillbirth among pregnant individuals with SARS-CoV-2 infection, it is unclear whether the gestational timing of viral infection modulates this risk. OBJECTIVE: This study aimed to examine the association between timing of SARS-CoV-2 infection during pregnancy and risk of stillbirth. STUDY DESIGN: This retrospective cohort study used multilevel logistic regression analyses of nationwide electronic health records in the United States. Data were from 75 healthcare systems and institutes across 50 states. A total of 191,403 pregnancies of 190,738 individuals of reproductive age (15-49 years) who had childbirth between March 1, 2020 and May 31, 2021 were identified and included. The main outcome was stillbirth at ≥20 weeks of gestation. Exposures were the timing of SARS-CoV-2 infection: early pregnancy (<20 weeks), midpregnancy (21-27 weeks), the third trimester (28-43 weeks), any time before delivery, and never infected (reference). RESULTS: We identified 2342 (1.3%) pregnancies with COVID-19 in early pregnancy, 2075 (1.2%) in midpregnancy, and 12,697 (6.9%) in the third trimester. After adjusting for maternal and clinical characteristics, increased odds of stillbirth were observed among pregnant individuals with SARS-CoV-2 infection only in early pregnancy (odds ratio, 1.75, 95% confidence interval, 1.25-2.46) and midpregnancy (odds ratio, 2.09; 95% confidence interval, 1.49-2.93), as opposed to pregnant individuals who were never infected. Older age, Black race, hypertension, acute respiratory distress syndrome or acute respiratory failure, and placental abruption were found to be consistently associated with stillbirth across different trimesters. CONCLUSION: Increased risk of stillbirth was associated with COVID-19 only when pregnant individuals were infected during early and midpregnancy, and not at any time before the delivery or during the third trimester, suggesting the potential vulnerability of the fetus to SARS-CoV-2 infection in early pregnancy. Our findings underscore the importance of proactive COVID-19 prevention and timely medical intervention for individuals infected with SARS-CoV-2 during early and midpregnancy.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Pregnancy , Female , Humans , Adolescent , Young Adult , Adult , Middle Aged , COVID-19/epidemiology , Stillbirth/epidemiology , SARS-CoV-2 , Gestational Age , Pregnancy Complications, Infectious/epidemiology , Retrospective Studies , Placenta , Pregnancy Outcome
5.
Toxicol Appl Pharmacol ; 466: 116457, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36914120

ABSTRACT

With the world pandemic of methamphetamine (METH), METH-associated cardiomyopathy (MAC) has become a widespread epidemic and is also recognized as a cause of heart failure in young people. The mechanism of occurrence and development of MAC is not clear. In this study, firstly, the animal model was evaluated by echocardiography and myocardial pathological staining. The results revealed that the animal model exhibited cardiac injury consistent with clinical alterations of MAC, and the mice developed cardiac hypertrophy and fibrosis remodeling, which led to systolic dysfunction and left ventricular ejection fraction (%LVEF) < 40%. The expression of cellular senescence marker proteins (p16 and p21) and senescence-associated secretory phenotype (SASP) was significantly increased in mouse myocardial tissue. Secondly, mRNA sequencing analysis of cardiac tissues revealed the key molecule GATA4, and Western blot, qPCR and immunofluorescence results showed that the expression level of GATA4 was significantly increased after METH exposure. Finally, knockdown of GATA4 expression in H9C2 cells in vitro significantly attenuated METH-induced cardiomyocyte senescence. Consequently, METH causes cardiomyopathy through cellular senescence mediated by the GATA4/NF-κB/SASP axis, which is a feasible target for the treatment of MAC.


Subject(s)
Cardiomyopathies , Methamphetamine , Animals , Mice , NF-kappa B/metabolism , Methamphetamine/metabolism , Stroke Volume , Ventricular Function, Left , Cellular Senescence/genetics , Myocytes, Cardiac/metabolism , GATA4 Transcription Factor/genetics
6.
Toxicol Appl Pharmacol ; 451: 116172, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35863504

ABSTRACT

Methamphetamine (METH) abuse is a significant public health concern globally. Cardiac toxicity is one of the important characteristics of METH, in addition to its effects on the nervous system. However, to date, research on the cardiotoxic injury induced by METH consumption has been insufficient. To systematically analyze the potential molecular mechanism of cardiac toxicity in METH-associated heart failure (HF), a rat model was constructed with a dose of 10 mg/kg of METH consumption. Cardiac function was evaluated by echocardiography, and HE staining was used to clarify the myocardial histopathological changes. Integrated analyses, including mRNA, miRNA and lncRNA, was performed to analyze the RNA expression profile and the potential molecular mechanisms involved in METH-associated HF. The results showed that METH caused decreased myocardial contractility, with a decreased percent ejection fraction (%EF). Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses of the RNAs with expression changes revealed abnormal circadian rhythm regulation in the METH groups, with circadian rhythm-related genes and their downstream effectors expressed differentially, especially the aryl hydrocarbon receptor nuclear translocator-like (Arntl). Competing endogenous RNA (ceRNA) networks associated with circadian rhythm, including Arntl, was also observed. Therefore, this study revealed that long-term METH consumption was associated with the HF in a rat model by decreasing the %EF, and that the abnormal circadian rhythm could provide new directions for investigating the METH-associated HF, and that the differentially expressed genes in this model could provide candidate genes for the identification and assessment of cardiac toxicity in METH-associated HF, which is fundamental for further understanding of the disease.


Subject(s)
Chronobiology Disorders , Heart Failure , Methamphetamine , MicroRNAs , RNA, Long Noncoding , ARNTL Transcription Factors/genetics , Animals , Cardiotoxicity , Gene Regulatory Networks , Heart Failure/chemically induced , Heart Failure/genetics , Methamphetamine/toxicity , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Rats , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...