Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.059
1.
Cancer Res ; 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38861363

Colorectal cancer (CRC) is the second most common malignant tumor world-wide. Analysis of the changes that occur during CRC progression could provide insights into the molecular mechanisms driving CRC development and identify improved treatment strategies. Here, we performed an integrated multi-omics analysis of 435 trace-tumor-samples from 148 colorectal cancer (CRC) patients, covering non-tumor (NT), intraepithelial neoplasia (IEN), infiltration (IFT), and advanced-stage CRC (A-CRC) phases. Proteogenomics analyses demonstrated that KRAS and BRAF mutations were mutually exclusive and elevated oxidation phosphorylation in the IEN phase. Chr17q loss and chr20q gain were also mutually exclusive, occurred predominantly in the IEN and IFT phases, respectively, and impacted the cell cycle. Mutation of TP53 was frequent in the A-CRC phase and associated with tumor microenvironment, including increased extracellular matrix rigidity and stromal infiltration. Analysis of the profiles of CRC based on CMS and CRIS classifications revealed the progression paths of each subtype and indicated that microsatellite instability was associated with specific subtype classifications. Additional comparison of molecular characteristics of CRC based on location showed that ANKRD22 amplification by chr10q23.31 gain enhanced glycolysis in the right-sided CRC. The AOM/DSS-induced CRC carcinogenesis mouse model in mice indicated that DDX5 deletion due to chr17q loss promoted CRC development, consistent with the findings from the patient samples. Collectively, this study provides an informative resource for understanding the driving events of different stages of CRC and identifying the potential therapeutic targets.

2.
Opt Express ; 32(12): 20471-20482, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38859428

In this paper, we propose a novel and simple multi-channel broadband optical chaos generation scheme based on phase modulation and chirped fiber Bragg grating (CFBG). Firstly, phase modulation is introduced to generate more new frequency components to broaden the spectrum of the phase chaos. Meanwhile, the accumulated dispersion from CFBG distorts the intensity chaos, converts phase chaos to intensity chaos, and weakens the laser relaxation oscillation. This process would lead to energy redistribution in the power spectrum, effectively increasing the chaotic bandwidth. Then, the wavelength detuning between CFBG and the semiconductor laser is introduced to enhance the chaotic bandwidth further. The experiment results show that the 10 dB bandwidths of the five channels are up to 31.0 GHz, 34.3 GHz, 36.3 GHz, 40 GHz, and 40 GHz, respectively. Note that the maximum bandwidth of the PD in our experiment is limited to 40 GHz. In addition, the multi-channel chaotic signals obtained from the experiment system are used to generate multi-channel physical random numbers. After the post-processing operations, the total rate of five parallel high-speed physical random number generation channels is 4.64 Tbit/s (160 GSa/s × 5bit × 1 channel + 160 GSa/s × 6bit × 4 channels). As far as we know, this is the highest record of using external cavity feedback semiconductor lasers to generate random numbers, which has great potential to meet the security requirements of next-generation Tbit/s optical communication systems.

3.
Int J Stroke ; : 17474930241262642, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38845180

RATIONALE: Clinical outcomes in acute ischemic stroke due to medium vessel occlusion (MeVO) are often poor when treated with best medical management. Data from non-randomized studies suggest that endovascular treatment (EVT) may improve outcomes in MeVO stroke, but randomized data on potential benefits and risks are hitherto lacking. Thus, there is insufficient evidence to guide endovascular treatment decision-making in MeVO stroke. AIM: The primary aim of the ESCAPE-MeVO trial is to demonstrate that acute, rapid EVT in patients with acute ischemic stroke due to MeVO results in better clinical outcomes compared to best medical management. Secondary outcomes are to demonstrate the safety of EVT, its impact on self-reported health-related quality of life, and cost-effectiveness. SAMPLE SIZE ESTIMATES: Based on previously published data, we estimate a sample size of 500 subjects to achieve a power of 85% with a two-sided alpha of 0.05. To account for potential loss to follow-up, 530 subjects will be recruited. METHODS AND DESIGN: ESCAPE-MeVO is a multicenter, prospective, randomized, open-label study with blinded endpoint evaluation (PROBE design), clinicaltrials.gov: NCT05151172. Subjects with acute ischemic stroke due to MeVO meeting the trial eligibility criteria will be allocated in a 1:1 ratio to best medical care plus EVT vs. best medical care only. Patients will be screened only at comprehensive stroke centers to determine if they are eligible for the trial, regardless of whether they were previously treated at a primary care center. Key eligibility criteria are 1) acute ischemic stroke due to MeVO that is clinically and technically eligible for EVT, 2) last-known well within the last 12 hours, 3) National Institutes of Health Stroke Scale >5 or 3-5 with disabling deficit, 4) high likelihood of salvageable tissue on non-invasive neuroimaging. STUDY OUTCOMES: The primary outcome is the modified Rankin scale 90 days after randomization (shift analysis), whereby modified Rankin Score 5 and 6 will be collapsed into one category. Secondary outcomes include dichotomizations of the modified Rankin Score at 90 days, 24-hour National Institutes of Health Stroke Score, difference between 24-hour and baseline National Institutes of Health Stroke Score, mortality at 90 days, health-related quality of life (EQ-5D-5L), Lawton scale of instrumental activities of daily living score, reperfusion quality (MeVO expanded Thrombolysis in Cerebral Infarction Score) and infarct volume at 24 hours, and cost-effectiveness of endovascular recanalization. Safety outcomes include symptomatic and asymptomatic intracranial hemorrhage and procedural complications. DISCUSSION: The ESCAPE-MeVO trial will demonstrate the effect of endovascular thrombectomy in addition to best medical management vis-à-vis best medical management in patients with acute ischemic stroke due to MeVO and provide data for evidence-based treatment decision-making in acute MeVO stroke.

4.
Nat Commun ; 15(1): 4371, 2024 May 22.
Article En | MEDLINE | ID: mdl-38778032

A protocol for trans-hydroboration of indole derivatives using heterogeneous photocatalysis with NHC-borane has been developed, addressing a persistent challenge in organic synthesis. The protocol, leveraging high crystalline vacancy-engineered polymeric carbon nitride as a catalyst, enables diastereoselective synthesis, expanding substrate scope and complementing existing methods. The approach emphasizes eco-friendliness, cost-effectiveness, and scalability, making it suitable for industrial applications, particularly in renewable energy contexts. The catalyst's superior performance, attributed to its rich carbon-vacancies and well-ordered structure, surpasses more expensive homogeneous alternatives, enhancing viability for large-scale use. This innovation holds promise for synthesizing bioactive compounds and materials relevant to medicinal chemistry and beyond.

5.
Sci Total Environ ; 933: 173222, 2024 Jul 10.
Article En | MEDLINE | ID: mdl-38750750

Ozone (O3) is a major air pollutant that directly threatens the respiratory system, lung fatty acid metabolism disorder is an important molecular event in pulmonary inflammatory diseases. Liver kinase B1 (LKB1) and nucleotide-binding domain leucine-rich repeat-containing protein 3 (NLRP3) inflammasome not only regulate inflammation, but also have close relationship with fatty acid metabolism. However, the role and mechanism of LKB1 and NLRP3 inflammasome in lung fatty acid metabolism, which may contribute to ozone-induced lung inflammation, remain unclear, and effective strategy for preventing O3-induced pulmonary inflammatory injury is lacking. To explore these, mice were exposed to 1.00 ppm O3 (3 h/d, 5 days), and pulmonary inflammation was determined by airway hyperresponsiveness, histopathological examination, total cells and cytokines in bronchoalveolar lavage fluid (BALF). Targeted fatty acids metabolomics was used to detect medium and long fatty acid in lung tissue. Then, using LKB1-overexpressing adenovirus and NLRP3 knockout (NLRP3-/-) mice to explore the mechanism of O3-induced lung fatty acid metabolism disorder. Results demonstrated that O3 exposure caused pulmonary inflammatory injury and lung medium and long chain fatty acids metabolism disorder, especially decreased dihomo-γ-linolenic acid (DGLA). Meanwhile, LKB1 expression was decreased, and NLRP3 inflammasome was activated in lung of mice after O3 exposure. Additionally, LKB1 overexpression alleviated O3-induced lung inflammation and inhibited the activation of NLRP3 inflammasome. And we found that pulmonary fatty acid metabolism disorder was ameliorated of NLRP3 -/- mice compared with those in wide type mice after O3 exposure. Furthermore, administrating DGLA intratracheally prior to O3 exposure significantly attenuated O3-induced pulmonary inflammatory injury. Taken together, these findings suggest that fatty acids metabolism disorder is involved in O3-induced pulmonary inflammation, which is regulated by LKB1-mediated NLRP3 pathway, DGLA supplement could be a useful preventive strategy to ameliorate ozone-associated lung inflammatory injury.


Fatty Acids , NLR Family, Pyrin Domain-Containing 3 Protein , Ozone , Animals , Mice , Fatty Acids/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pneumonia/metabolism , Pneumonia/prevention & control , Air Pollutants/toxicity , Lung/metabolism , Lung/drug effects , Lung/pathology , Inflammasomes/metabolism , Protein Serine-Threonine Kinases/metabolism , AMP-Activated Protein Kinases/metabolism
6.
Nano Lett ; 2024 May 22.
Article En | MEDLINE | ID: mdl-38776264

High-entropy-alloy nanoparticles (HEA NPs) exhibit promising potential in various catalytic applications, yet a robust synthesis strategy has been elusive. Here, we introduce a straightforward and universal method, involving the microexplosion of Leidenfrost droplets housing carbon black and metal salt precursors, to fabricate PtRhPdIrRu HEA NPs with a size of ∼2.3 nm. The accumulated pressure within the Leidenfrost droplet triggers an intense explosion within milliseconds, propelling the carbon support and metal salt rapidly into the hot solvent through explosive force. The exceptionally quick temperature rise ensures the coreduction of metal salts, and the dilute local concentration of metal ions limits the final size of the HEA NPs. Additionally, the explosion process can be fine-tuned by selecting different solvents, enabling the harvesting of diverse HEA NPs with superior electrocatalytic activity for alcohol electrooxidation and hydrogen electrocatalysis compared to commercial Pt (Pd) unitary catalysts.

7.
Pharmaceuticals (Basel) ; 17(5)2024 May 13.
Article En | MEDLINE | ID: mdl-38794195

Chronic kidney disease (CKD) affects more than 10% of the global population, and its incidence is increasing, partially due to an increase in the prevalence of disease risk factors. Acute kidney injury (AKI) is an independent risk factor for CKD and end-stage renal disease (ESRD). The pathogenic mechanisms of CKD provide several potential targets for its treatment. However, due to off-target effects, conventional drugs for CKD typically require high doses to achieve adequate therapeutic effects, leading to long-term organ toxicity. Therefore, ideal treatments that completely cure the different types of kidney disease are rarely available. Several approaches for the drug targeting of the kidneys have been explored in drug delivery system research. Nanotechnology-based drug delivery systems have multiple merits, including good biocompatibility, suitable degradability, the ability to target lesion sites, and fewer non-specific systemic effects. In this review, the development, potential, and limitations of low-molecular-weight protein-lysozymes, polymer nanomaterials, and lipid-based nanocarriers as drug delivery platforms for treating AKI and CKD are summarized.

8.
PeerJ ; 12: e17397, 2024.
Article En | MEDLINE | ID: mdl-38784391

Background: Osteosarcoma is the most common primary malignant bone tumor, but its pathogenesis remains unclear. Ubiquitin-specific processing peptidase 22 (USP22) is reported to be highly expressed and associated with tumor malignancy and prognosis in cancers. However, the role and mechanism of USP22 in osteosarcoma is not fully understood. This study aims to investigate the function and potential mechanism of USP22 in osteosarcoma using bioinformatics analysis combined with experimental validation. Methods: We first integrated transcriptomic datasets and clinical information of osteosarcoma from GEO and TCGA databases to assess the expression and prognostic value of USP22 in osteosarcoma. Then, differential expression analysis and weighted gene co-expression network analysis (WGCNA) were conducted to identify USP22-related co-expressed genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to explore the biological functions and signaling pathways of USP22 co-expressed genes. To validate the accuracy of bioinformatics analyses, we downregulated USP22 expression in osteosarcoma cell line Sao-2 using siRNA and assessed its effect on cell proliferation, migration, invasion, apoptosis, and regulation of key signaling pathways. Results: We found that USP22 was highly expressed in osteosarcoma tissues and correlated with poor prognosis in osteosarcoma patients. USP22 also showed potential as a diagnostic marker for osteosarcoma. In addition, 344 USP22-related co-expressed genes were identified, mainly involved in signaling pathways such as glycolysis, oxidative phosphorylation, spliceosome, thermogenesis, and cell cycle. The in vitro experiments confirmed the accuracy and reliability of bioinformatics analyses. We found that downregulation of USP22 could inhibit Sao-2 cell proliferation, migration, invasion, and induce apoptosis. Furthermore, downregulation of USP22 significantly reduced aerobic glycolysis levels in Sao-2 cells and inhibited the expression of key enzymes and transporters in aerobic glycolysis pathways such as HK2, PKM2, and GLUT1. Conclusions: USP22 plays a critical role in the occurrence, development, and prognosis of osteosarcoma. USP22 could influence Sao-2 cell proliferation, apoptosis, migration, and invasion by regulating the glycolysis pathway, thereby promoting osteosarcoma progression. Therefore, USP22 may be a potential therapeutic target for the treatment of osteosarcoma.


Bone Neoplasms , Cell Proliferation , Computational Biology , Glycolysis , Osteosarcoma , Ubiquitin Thiolesterase , Osteosarcoma/genetics , Osteosarcoma/metabolism , Osteosarcoma/pathology , Humans , Glycolysis/genetics , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Cell Line, Tumor , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Cell Proliferation/genetics , Prognosis , Gene Expression Regulation, Neoplastic , Apoptosis/genetics , Cell Movement/genetics , Signal Transduction/genetics
9.
Clinics (Sao Paulo) ; 79: 100387, 2024.
Article En | MEDLINE | ID: mdl-38805982

BACKGROUND & AIMS: The authors assess the diagnostic accuracy of the Transient Elastography-Controlled Attenuation Parameter (TE-CAP) in children of Southern China. METHODS: 105 obese or overweight children and adolescents were enrolled in the diagnostic test of TE-CAP assessment of hepatic steatosis using MRI-PDFF. Hepatic steatosis grades S0-S3 were classified. Statistical correlation, agreement and consistency between methods were evaluated. The diagnostic efficiency of TE-CAP was evaluated. The authors used the cutoff value of TE-CAP to detect hepatic steatosis in another 356 children. RESULTS: The Area Under Curve (AUC) of TE-CAP for grade ≥ S1, ≥ S2, and ≥ S3 steatosis were 0.975, 0.984, and 0.997, respectively. For detecting ≥ S1 steatosis, TE-CAP had a sensitivity of 96 % and a specificity of 97 %. For detecting ≥ S2 steatosis, TE-CAP had a sensitivity of 97 % and a specificity of 93 %. For detecting ≥ S3 steatosis, TE-CAP had a sensitivity of 1 and a specificity of 94 %. TE-CAP and MRI-PDFF had a linear correlation (r = 0. 0.87, p < 0.001). The hepatic steatosis was identified in 40.2 % (143/356) of children in which the obesity and overweight were 69.8 % (113/162) and 40.0 % (18/45). CONCLUSION: TE-CAP showed excellent diagnostic accuracy in pediatric hepatic steatosis.


Elasticity Imaging Techniques , Fatty Liver , Magnetic Resonance Imaging , Sensitivity and Specificity , Humans , Child , Elasticity Imaging Techniques/methods , Male , Female , Adolescent , Fatty Liver/diagnostic imaging , Magnetic Resonance Imaging/methods , Reproducibility of Results , China , Area Under Curve , Severity of Illness Index , Overweight/diagnostic imaging , Reference Values
10.
Carbohydr Res ; 540: 109144, 2024 Jun.
Article En | MEDLINE | ID: mdl-38733729

Chitooligosaccharides, the hydrolysis products of chitin, have superior biological activities and application value to those of chitin itself; however, the ordered and highly crystalline structure of chitin renders its degradation by chitinase difficult. Herein, the effects of plasma-activated water (PAW) pre-treatment on the physicochemical properties, crystal structure, and enzymatic hydrolysis of chitin were investigated. The hydrolysis of PAW-pre-treated chitin (PAW activation time of 5 min) using chitinase from Vibrio harveyi (VhChit2) yielded 71 % more reducing sugar, compared with that from untreated chitin, with the degree of chitin hydrolysis increasing from 13 % without pre-treatment to 23 % post-treatment. Moreover, the amount of VhChit2 adsorbed by chitin increased from 41.7 to 58.2 mg/g. Fourier transform infrared spectrometry revealed that PAW could break the ß-1,4-glycosidic bonds of chitin (but had no effects on the hydrogen and amido bonds), thereby decreasing the molecular weight and crystallinity of the polysaccharide, which caused its structural damage and enhanced its enzymatic hydrolysis by chitinase. Consequently, PAW pre-treatment can be considered a simple, effective, and environmentally-friendly method for the biotransformation of chitin as its easier hydrolysis yields high-value products.


Chitin , Chitinases , Molecular Weight , Vibrio , Water , Chitinases/chemistry , Chitinases/metabolism , Chitin/chemistry , Chitin/metabolism , Chitin/analogs & derivatives , Water/chemistry , Hydrolysis , Vibrio/enzymology
11.
Environ Sci Pollut Res Int ; 31(21): 30620-30632, 2024 May.
Article En | MEDLINE | ID: mdl-38613749

PPG-CNTs-nZVI bead was synthesized by polyvinyl alcohol, pumice, carbon nanotube, and guar gum-nanoscale zero-valent iron to be applied on simultaneously removal of polycyclic aromatic hydrocarbons (PAHs; phenanthrene) and heavy metals (Pb2+) via adsorption. The individual and simultaneous removal efficiency of phenanthrene and Pb2+ using the PPG-CNTs-nZVI beads was evaluated with a range of initial concentrations of these two pollutants. The kinetics and isotherms of phenanthrene and Pb2+ adsorption by the PPG-CNTs-nZVI beads were also determined. The PPG-CNTs-nZVI beads show reasonably high phenanthrene adsorption capacities (up to 0.16 mg/g), and they absorbed 85% of the phenanthrene (initial concentration 0.5 mg/L) in 30 min. High Pb2+ adsorption capabilities were also demonstrated by the PPG-CNTs-nZVI beads (up to 11.6 mg/g). The adsorption fits the Langmuir model better than the Freundlich model. The adsorption still remained stable with various ionic strength circumstances and a wide pH range (2-5). Additionally, the co-adsorption of phenanthrene and Pb2+ by the PPG-CNTs-nZVI beads resulted in synergistic effects. Particularly, phenanthrene-Pb2+ complex formation via π-cation interactions demonstrated a greater affinity than phenanthrene or Pb2+ alone. The present findings suggest that PPG-CNTs-nZVI beads may be effective sorbents for the simultaneous removal of PAHs and heavy metals from contaminated waters.


Lead , Phenanthrenes , Phenanthrenes/chemistry , Adsorption , Lead/chemistry , Nanotubes, Carbon/chemistry , Kinetics , Metals, Heavy/chemistry , Water Pollutants, Chemical/chemistry
12.
J Colloid Interface Sci ; 668: 366-374, 2024 Aug 15.
Article En | MEDLINE | ID: mdl-38678891

Metal-functionalized porphyrin-like graphene structures are promising electrocatalysts for carbon dioxide reduction reaction (CO2RR) as their metal centers can modulate activity. Yet, the role of metal center of metalloporphyrins (MTPPs) in CO2 reaction activity is still lacking deep understanding. Here, CO2RR mechanism on MTPPs with five different metal centers (M = Fe, Co, Cu, Zn and Ni) are examined by first-principles calculations. The *COOH formation is the rate determined step on the five MTPP structures, and the CoTPP exhibits the best CO2RR activity while ZnTPP and NiTPP are the worst, which is also verified by our experiment. The CO2RR activity is controlled by adsorption states of intermediates (*CO, *COOH), i.e., chemisorption (e.g., on CoTPP) and physisorption (on ZnTPP and NiTPP) of intermediates will lead to good and poor activity, respectively. The deeper the d-band center of the porphyrin ring complexed metal atom, the weaker bonding of MTPP with CO and COOH. Theoretical calculations and experimental results indicate that MTPPs with Co and Fe centers lead to a reduction in the energy barriers for the two uphill reaction steps in the electrocatalytic CO2 reduction process, thereby enhancing CO2 reduction electrocatalytic activity. Faradaic efficiency of CO is correlated with the reaction energy barrier of the first proton-coupled electron reduction process, displaying a strong linear correlation. This work provides a fundamental understanding of MTPPs used as electrocatalysts for CO2RR.

14.
J Am Chem Soc ; 146(15): 10655-10665, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38564662

While Ru-catalyzed hydrogenolysis holds significant promise in converting waste polyolefins into value-added alkane fuels, a major constraint is the high cost of noble metal catalysts. In this work, we propose, for the first time, that Co-based catalysts derived from CoAl-layered double hydroxide (LDH) are alternatives for efficient polyolefin hydrogenolysis. Leveraging the chemical flexibility of the LDH platform, we reveal that metallic Co species serve as highly efficient active sites for polyolefin hydrogenolysis. Furthermore, we introduced Ni into the Co framework to tackle the issue of restricted hydrogenation ability associated with contiguous Co-Co sites. In-situ analysis indicates that the integration of Ni induces electron transfer and facilitates hydrogen spillover. This dual effect synergistically enhances the hydrogenation/desorption of olefin intermediates, resulting in a significant reduction in the yield of low-value CH4 from 27.1 to 12.6%. Through leveraging the unique properties of LDH, we have developed efficient and cost-effective catalysts for the sustainable recycling and valorization of waste polyolefin materials.

15.
Heliyon ; 10(8): e29558, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38681620

As a well-known classical Chinese medicine prescription, Shengxian Decoction (SXD) has been applied for a century to treat cardiovascular diseases, especially coronary heart disease (CHD), but the potentially effective compounds and underlying mechanisms remain unclear. With ultra-performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF/MS) and network pharmacology analysis, the potential effective compounds of SXD and their pharmacological mechanisms against CHD were identified and revealed. 57 effective compounds with favorable pharmacokinetic characteristics and biological activities were screened through UPLC-Q-TOF/MS analysis, database and literature mining, interacting with 96 CHD-related targets to support potential synergistic therapeutic actions. Systematic analysis of the PPI network and microarray data further revealed six core targets, including TNF, IL-1ß, IL-6, TP53, VEGFA and PTGS2, which were mainly involved in fluid shear stress and atherosclerosis, lipid and atherosclerosis, PI3K-Akt signaling pathway et al. Moreover, the proposed contribution indexes of effective compounds indicated these compounds, including isoferulic acid, quercetin, calycosin, ferulic acid, kaempferol, calycosin 7-O-glycoside, formononetin, astragaloside IV and saikosaponin D, as the core compounds of SXD. The molecular docking results confirmed that those core compound-target pairs exhibited strong binding energy. Furthermore, we validated that SXD significantly alleviated myocardial tissue injury in CHD rats and reversed H/R-induced decreases in H9c2 cell viability by attenuating the production of TNF, IL-6 and IL-1ß, and reducing cardiomyocyte apoptosis via down-regulating the TP53, caspase3 and cytochrome C mRNA expression levels as well as caspase3, caspase9 and cytochrome C protein expression levels according to RT-qPCR and Western blot results. Our findings explained the pharmacological mechanisms underlying the effectiveness of SXD in the treatment of CHD, and laid a foundation for future basic and clinical research of SXD.

16.
ACS Nano ; 18(17): 11438-11448, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38627232

Hydro-depolymerization presents a promising avenue for transforming plastic waste into high-value hydrocarbons, offering significant potential for value-added recycling. However, a major challenge in this method arises from kinetic limitations due to insufficient hydrogen concentration near the active sites, requiring optimal catalytic performance only at higher hydrogen pressures. In this study, we address this hurdle by developing "hydrogen bubble catalysts" featuring Ru nanoparticles within mesoporous SBA-15 channels (Ru/SBA). The distinctive feature of Ru/SBA catalysts lies in their capacity for physical hydrogen storage and chemically reversible hydrogen spillover, ensuring a timely and ample hydrogen supply. Under identical reaction conditions, the catalytic activity of Ru/SBA surpassed that of Ru/SiO2 (no hydrogen storage capacity) by over 4-fold. This substantial enhancement in catalytic performance provides significant opportunities for near atmospheric pressure hydro-depolymerization of plastic waste.

17.
Open Forum Infect Dis ; 11(4): ofae137, 2024 Apr.
Article En | MEDLINE | ID: mdl-38577029

The immune mechanisms of long coronavirus disease 2019 (COVID) are not yet fully understood. We aimed to investigate the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific memory immune responses in discharged COVID-19 patients with and without long COVID symptoms. In this cross-sectional study, we included 1041 hospitalized COVID-19 patients with the original virus strain in Wuhan (China) 12 months after initial infection. We simultaneously conducted a questionnaire survey and collected peripheral blood samples from the participants. Based on the presence or absence of long COVID symptoms during the follow-up period, we divided the patients into 2 groups: a long COVID group comprising 480 individuals and a convalescent group comprising 561 individuals. Both groups underwent virus-specific immunological analyses, including enzyme-linked immunosorbent assay, interferon-γ-enzyme-linked immune absorbent spot, and intracellular cytokine staining. At 12 months after infection, 98.5% (1026/1041) of the patients were found to be seropositive and 93.3% (70/75) had detectable SARS-CoV-2-specific memory T cells. The long COVID group had significantly higher levels of receptor binding domain (RBD)-immunoglobulin G (IgG) levels, presented as OD450 values, than the convalescent controls (0.40 ± 0.22 vs 0.37 ± 0.20; P = .022). The magnitude of SARS-CoV-2-specific T-cell responses did not differ significantly between groups, nor did the secretion function of the memory T cells. We did not observe a significant correlation between SARS-CoV-2-IgG and magnitude of memory T cells. This study revealed that long COVID patients had significantly higher levels of RBD-IgG antibodies when compared with convalescent controls. Nevertheless, we did not observe coordinated SARS-CoV-2-specific cellular immunity. As there may be multiple potential causes of long COVID, it is imperative to avoid adopting a "one-size-fits-all" approach to future treatment modalities.

18.
Front Cardiovasc Med ; 11: 1323918, 2024.
Article En | MEDLINE | ID: mdl-38433757

Background: With the rapid development of technology, artificial intelligence (AI) has been widely used in the diagnosis and prognosis prediction of a variety of diseases, including cardiovascular disease. Facts have proved that AI has broad application prospects in rapid and accurate diagnosis. Objective: This study mainly summarizes the research on the application of AI in the field of cardiovascular disease through bibliometric analysis and explores possible future research hotpots. Methods: The articles and reviews regarding application of AI in cardiovascular disease between 2000 and 2023 were selected from Web of Science Core Collection on 30 December 2023. Microsoft Excel 2019 was applied to analyze the targeted variables. VOSviewer (version 1.6.16), Citespace (version 6.2.R2), and a widely used online bibliometric platform were used to conduct co-authorship, co-citation, and co-occurrence analysis of countries, institutions, authors, references, and keywords in this field. Results: A total of 4,611 articles were selected in this study. AI-related research on cardiovascular disease increased exponentially in recent years, of which the USA was the most productive country with 1,360 publications, and had close cooperation with many countries. The most productive institutions and researchers were the Cedar sinai medical center and Acharya, Ur. However, the cooperation among most institutions or researchers was not close even if the high research outputs. Circulation is the journal with the largest number of publications in this field. The most important keywords are "classification", "diagnosis", and "risk". Meanwhile, the current research hotpots were "late gadolinium enhancement" and "carotid ultrasound". Conclusions: AI has broad application prospects in cardiovascular disease, and a growing number of scholars are devoted to AI-related research on cardiovascular disease. Cardiovascular imaging techniques and the selection of appropriate algorithms represent the most extensively studied areas, and a considerable boost in these areas is predicted in the coming years.

19.
Int J Mol Sci ; 25(5)2024 Mar 06.
Article En | MEDLINE | ID: mdl-38474320

Recent mechanistic studies have indicated that combinations of radiotherapy (RT) plus immunotherapy (via CSF-1R inhibition) can serve as a strategy to overcome RT resistance and improve the survival of glioma mice. Given the high mortality rate for glioma, including low-grade glioma (LGG) patients, it is of critical importance to investigate the mechanism of the combination of RT and immunotherapy and further translate the mechanism from mouse studies to improve survival of RT-treated human glioma patients. Using the RNA-seq data from a glioma mouse study, 874 differentially expressed genes (DEGs) between the group of RT-treated mice at glioma recurrence and the group of mice with combination treatment (RT plus CSF-1R inhibition) were translated to the human genome to identify significant molecular pathways using the KEGG enrichment analysis. The enrichment analysis yields statistically significant signaling pathways, including the phosphoinositide 3-kinase (PI3K)/AKT pathway, Hippo pathway, and Notch pathway. Within each pathway, a candidate gene set was selected by Cox regression models as genetic biomarkers for resistance to RT and response to the combination of RT plus immunotherapies. Each Cox model is trained using a cohort of 295 RT-treated LGG patients from The Cancer Genome Atlas (TCGA) database and validated using a cohort of 127 RT-treated LGG patients from the Chinese Glioma Genome Atlas (CGGA) database. A four-DEG signature (ITGB8, COL9A3, TGFB2, JAG1) was identified from the significant genes within the three pathways and yielded the area under time-dependent ROC curve AUC = 0.86 for 5-year survival in the validation set, which indicates that the selected DEGs have strong prognostic value and are potential intervention targets for combination therapies. These findings may facilitate future trial designs for developing combination therapies for glioma patients.


Brain Neoplasms , Glioma , Radiation Oncology , Humans , Animals , Mice , Phosphatidylinositol 3-Kinases , Phosphatidylinositol 3-Kinase , Immunotherapy
20.
J Am Chem Soc ; 146(10): 7076-7087, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38428949

The present polyolefin hydrogenolysis recycling cases acknowledge that zerovalent Ru exhibits high catalytic activity. A pivotal rationale behind this assertion lies in the propensity of the majority of Ru species to undergo reduction to zerovalent Ru within the hydrogenolysis milieu. Nonetheless, the suitability of zerovalent Ru as an optimal structural configuration for accommodating multiple elementary reactions remains ambiguous. Here, we have constructed stable Ru0-Ruδ+ complex species, even under reaction conditions, through surface ligand engineering of commercially available Ru/C catalysts. Our findings unequivocally demonstrate that surface-ligated Ru species can be stabilized in the form of a Ruδ+ state, which, in turn, engenders a perturbation of the σ bond electron distribution within the polyolefin carbon chain, ultimately boosting the rate-determining step of C-C scission. The optimized catalysts reach a solid conversion rate of 609 g·gRu-1·h-1 for polyethylene. This achievement represents a 4.18-fold enhancement relative to the pristine Ru/C catalyst while concurrently preserving a remarkable 94% selectivity toward valued liquid alkanes. Of utmost significance, this surface ligand engineering can be extended to the gentle mixing of catalysts in ligand solution at room temperature, thus rendering it amenable for swift integration into industrial processes involving polyolefin degradation.

...