Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Am J Gastroenterol ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38619136

ABSTRACT

INTRODUCTION: Fully covered self-expandable metal stents (FCSEMSs) are commonly placed in patients with biliary stricture during endoscopic retrograde cholangiopancreatography (ERCP). However, up to 40% of migration has been reported, resulting in treatment failure or the requirement for further intervention. Here, we aimed to investigate the effects of metal clip anchoring on preventing the migration of FCSEMS. METHODS: Consecutive patients requiring placement of FCSEMS were included in this multicenter randomized trial. The enrolled patients were randomly assigned in a 1:1 ratio to receive clip anchoring (clip group) or not (control group). The primary outcome was the migration rate at 6 months after stent insertion. The secondary outcomes were the rates of proximal and distal migration and stent-related adverse events. The analysis followed the intention-to-treat principle. RESULTS: From February 2020 to November 2022, 180 patients with biliary stricture were enrolled, with 90 in each group. The baseline characteristics were comparable between the 2 groups. The overall rate of stent migration at 6 months was significantly lower in the clip group compared with the control group (16.7% vs 30.0%, P = 0.030). The proximal and distal migration rates were similar in the 2 groups (2.2% vs 5.6%, P = 0.205; 14.4% vs 22.2%, P = 0.070). Notably, none of the patients (0/8) who received 2 or more clips experienced stent migration. There were no significant differences in stent-related adverse events between the 2 groups. DISCUSSION: Our data suggest that clip-assisted anchoring is an effective and safe method for preventing migration of FCSEMS without increasing the adverse events.

3.
J Phys Chem Lett ; 15(7): 1866-1878, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38343090

ABSTRACT

Solid-state NMR spectroscopy has been playing a significant role in elucidating the structures and dynamics of materials and proteins at the atomic level for decades. As an extremely abundant nucleus with a very high gyromagnetic ratio, protons are widely present in most organic/inorganic materials. Thus, this Perspective highlights the advantages of proton detection at fast magic-angle spinning (MAS) and presents strategies to utilize and exhaust 1H polarization to achieve signal sensitivity enhancement of solid-state NMR spectroscopy, enabling substantial time savings and extraction of more structural and dynamics information per unit time. Those strategies include developing sensitivity-enhanced single-channel 1H multidimensional NMR spectroscopy, implementing multiple polarization transfer steps in each scan to enhance low-γ nuclei signals, and making full use of 1H polarization to obtain homonuclear and heteronuclear chemical shift correlation spectra in a single experiment. Finally, outlooks and perspectives are provided regarding the challenges and future for the further development of sensitivity-enhanced proton-based solid-state NMR spectroscopy.

4.
ACS Appl Mater Interfaces ; 16(5): 6208-6220, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38279946

ABSTRACT

Quantum dots (QDs) are colloidal semiconductor nanoparticles acting as fluorescent probes for detection, disease diagnosis, and photothermal and photodynamic therapy. However, their performance in cancer treatment is limited by inadequate tumor accumulation and penetration due to the larger size of nanoparticles compared to small molecules. To address this challenge, charge reversal nanoparticles offer an effective strategy to prolong blood circulation time and achieve enhanced endocytosis and tumor penetration. In this study, we leveraged the overexpressed γ-glutamyl transpeptidase (GGT) in many human tumors and developed a library of modular peptides to serve as water-soluble surface ligands of QDs. We successfully transferred the QDs from the organic phase to the aqueous phase within 5 min. And through systematic tuning of the peptide sequence, we optimized the fluorescent stability of QDs and their charge reversal behavior in response to GGT. The resulting optimal peptide stabilized QDs in aqueous solution with a high fluorescent retention rate of 93% after three months and realized the surface charge reversal of QDs triggered by GGT in vitro. The binding between the peptide and QD surface was investigated by using saturation transfer differential nuclear magnetic resonance (STD NMR). Thanks to its charge reversal ability, the GGT-responsive QDs exhibited enhanced cellular uptake in GGT-expressing cancer cells and deeper penetration in the 3D multicellular spheroids. This enzyme-responsive modular peptide can lead to specific tumor targeting and deeper tumor penetration, holding great promise to enhance the treatment efficacy of QD-based theranostics.


Subject(s)
Nanoparticles , Neoplasms , Quantum Dots , Humans , Quantum Dots/chemistry , Peptides/chemistry , Nanoparticles/chemistry , Neoplasms/drug therapy , Amino Acid Sequence
5.
Dig Liver Dis ; 56(3): 436-443, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37735023

ABSTRACT

AIMS: An easy-to-use preparation-related model (PRM) predicting inadequate bowel preparation (BP) was developed and proved superior to traditional models in our previous study. Here we aimed to investigate whether PRM-based individualized intervention can improve BP adequacy. METHODS: Patients undergoing morning colonoscopy were prospectively enrolled in 5 endoscopic centers in China. After standard BP of split-dose polyethylene glycol (PEG) was completed, patients were randomized (1:1) to the individualized group or standard group. High-risk patients predicted by PRM score ≥3 were instructed to drink an additional 1.5 L PEG in the individualized group while not in standard group. The primary endpoint was the rate of adequate BP, defined by segmental Boston bowel preparation scale ≥2. Secondary outcomes included adenoma detection rate (ADR) and adverse events. RESULTS: 900 patients were randomly allocated to the individualized group (n = 449) and the control (n = 451). Baseline characteristics were similar between the two groups. The rates of high-risk patients were 19.6 % in individualized group and 19.7 % in standard group. In intention-to-treat analysis, adequate BP was 91.8 % in individualized group and 84.7 % in the standard group (p = 0.001). Among high-risk patients, adequate BP rate was 94.3 % in individualized group and 49.3 % in standard group (p < 0.001), and ADR were 40.9 % vs 16.9 %, respectively (p < 0.001). No significant differences were found regarding the adverse events and willingness to repeat BP (all p >0.05). CONCLUSIONS: The individualized intervention using an additional dose of PEG to high-risk patients predicted by PRM, significantly improved BP quality. The intervention significantly improved ADR in high-risk patients. (ClinicalTrials.gov number: NCT04434625).


Subject(s)
Adenoma , Cathartics , Humans , Cathartics/adverse effects , Prospective Studies , Polyethylene Glycols/adverse effects , Colonoscopy , Research Design , Adenoma/diagnosis
6.
J Magn Reson ; 357: 107597, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37984029

ABSTRACT

Solid-state Nuclear Magnetic Resonance (NMR) has emerged as a pivotal technique for unraveling the microstructure and dynamics of intricate polymer and biological materials. Within this context, site-specific proton spin-lattice relaxation times in the laboratory frame (T1) and rotating frame (T1ρ) have become indispensable tools for investigating phase separation structures and molecular dynamics in multiphase polymer systems. Notably, the site-specific measurement of proton T1 and T1ρ is usually achieved via 13C detection in polymers, where 1H polarization is typically transferred to 13C via cross polarization (CP). Nevertheless, CP relies on the 1H-13C heteronuclear dipolar couplings, and thus it does not work well for the mobile components. In this study, via the integration of CP and RINEPT (refocused insensitive nuclei enhanced by polarization transfer), we propose a robust approach for the measurement of site-specific proton T1 and T1ρ in multiphase polymers. It overcomes the limitation of CP on transferring 1H polarization to 13C in mobile components, and thus enables simultaneous determination of site-specific proton T1 and T1ρ in rigid and mobile components in multiphase polymers in a single experiment. Such experiment can also be used for dynamics-based spectral editing due to the dynamic selectivity of CP- and RINEPT-based polarization transfer process. The proposed experiments are well demonstrated on three typical multiphase polymer systems, poly(methyl methacrylate)/polybutadiene (PMMA/PB) polymer blend, polyurethane (PU) and polystyrene-polybutadiene-polystyrene (SBS) elastomers. We envisage the proposed experiments can be a universal avenue for structural and dynamic elucidation of multiphase polymers containing both rigid and mobile components.

7.
J Phys Chem Lett ; 14(26): 5966-5974, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37345920

ABSTRACT

With the manipulation of surface charges and loadings, 1 nm super-acidic metal oxide clusters can co-crystallize with poly(ethylene glycol) (PEG) at molecular scale for thermoplastic anhydrous proton exchange membranes (PEMs). The coexistence of crystalline and amorphous regions endows the PEMs with a high Young's modulus and high flexibility, while the noncovalent complex interactions enable facile preparation and (re)processing. Furthermore, the diffusive dynamics of PEG chains is slowed by the confinement effect, while the local segmental dynamics is accelerated due to the transition of the chain conformation from helix to zigzag when confined in the crystalline framework. This greatly facilitates proton transportation in the crystalline region for an excellent anhydrous proton conductivity of 4.5 × 10-3 S cm-1 at 90 °C. The balanced proton conductivity, mechanical strength, and processability of the PEMs contribute to the promising power density of H2/O2 fuel cells assembled with co-crystalline PEMs at high temperatures under dry conditions.

8.
Entropy (Basel) ; 25(4)2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37190392

ABSTRACT

Micro gas turbines are widely used in distributed power generation systems. However, the combustion of gas turbine combustors produces a large amount of nitrogen oxides (NOx), which pollute the environment and endanger human life. To reduce environmental pollution, low-emission combustors have been developed. In recent years, there has been an increasing focus on the use of low-heat-value gas fuels, and it is necessary to study the NOx emissions from low heat value gas fuel combustors. Data-driven deep learning methods have been used in many fields in recent years. In this study, a variational autoencoder was introduced for the prediction of NOx production inside the combustor. The combustor used was a micro rich-quench-lean combustor designed by the research group using coal bed gas as a fuel. The internal NO distribution contour was obtained as the dataset using simulation methods, with a size of 60 images. The model architecture parameters were obtained through hyperparameter exploration using the grid search method. The model accurately predicted the distribution of NO inside the combustor. The method can be applied in the prediction of a wider range of parameters and offers a new way of designing combustors for the power industry.

9.
Angew Chem Int Ed Engl ; 62(10): e202211741, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36583606

ABSTRACT

The nanoconfinement of proton carrier molecules may contribute to the lowing of their proton dissociation energy. However, the free proton transportation does not occur as easily as in liquid due to the restricted molecular motion from surface attraction. To resolve the puzzle, herein, imidazole is confined in the channels of porous coordination polymers with tunable geometries, and their electric/structural relaxations are quantified. Imidazole confined in a square-shape channels exhibits dynamics heterogeneity of core-shell-cylinder model. The core and shell layer possess faster and slower structural dynamics, respectively, when compared to the bulk imidazole. The dimensions and geometry of the nanochannels play an important role in both the shielding of the blocking effect from attractive surfaces and the frustration filling of the internal proton carrier molecules, ultimately contributing to the fast dynamics and enhanced proton conductivity.

10.
J Magn Reson ; 346: 107338, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36463686

ABSTRACT

Proton-detected solid-state NMR spectroscopy is emerging as a unique tool for atomic characterization of organic solids due to the boost of resolution and sensitivity afforded by the combined use of high magnetic field and ultrafast magic angle spinning (MAS). Here, we proposed a new set of proton-detected solid-state NMR sequences that hybrid multi-dimensional 1H-1H homonuclear chemical shift correlation (HOMCOR) and two-dimensional 1H-13C heteronuclear chemical shift correlation (HETCOR) sequences into a single experiment, enabling the simultaneous acquisition of multidimensional HOMCOR and HETCOR spectra and thus significant time savings. Based on the core idea of exhausting 1H polarization in each transient scan, we firstly demonstrated that 3D 1H multiple-quantum (MQ) HOMCOR sequence can be combined with 2D HETCOR sequence into a single experiment, leading to the simultaneous acquisition of a 3D 1H MQ HOMCOR and a 2D 1H-13C HETCOR spectrum. Besides, we also showed that 2D 1H/1H double-quantum/single-quantum (DQ/SQ) and single-quantum/single-quantum (SQ/SQ) HOMCOR sequence can be simultaneously combined with HETCOR sequence either, and thus three spectra can be simultaneously obtained from one experiment, including 2D 1H DQ/SQ, 2D 1H SQ/SQ and 2D 1H-13C HETCOR spectra. Since there is only one recycle delay in each experiment, experimental time is substantially reduced compared to separate acquisition of each multi-dimensional solid-state NMR spectrum. Furthermore, those new sequences can be implemented on any standard solid-state spectrometer with only one receiver. Thus, we foresee that these approaches can be valuable for the study of a broad range of molecular systems, including polymers, pharmaceuticals, covalent-organic frameworks (COF) and so on.

11.
J Gastroenterol Hepatol ; 37(12): 2297-2305, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36181263

ABSTRACT

BACKGROUND AND AIM: Three models based on patient-related factors have been developed to predict inadequate bowel preparation (BP). However, the performance of the models seems suboptimal. This study aimed to develop a novel preparation-related model and compare it with the available patient-related models. METHODS: Patients receiving standard BP were prospectively enrolled from five endoscopic centers. Patient-related and preparation-related factors for inadequate BP (defined by segmental Boston Bowel Preparation Scale score < 2) were identified by logistic regression. A preparation-related model was derived and internally validated in 906 patients. The comparisons of models were assessed by discrimination and calibration. The preparation-related model was also externally validated. RESULTS: Several patient-related factors (male and American Society of Anesthesiologists Physical Status Classification System score ≥ 3) and preparation-related factors (drinking-to-stool interval ≥ 3 h, preparation-to-colonoscopy interval ≥ 6 h, and poor rectal effluent) were found to be independently associated with inadequate BP (all P < 0.05). C-statistics was 0.81 for the preparation-related model in the training cohort (n = 604), significantly higher than three available patient-based models (0.58-0.61). Similar results were observed in the validation cohort (n = 302). Calibration curves showed close agreement in the preparation-related model (R2  = 0.315 in the training cohort and 0.279 in the validation cohort). The preparation-related model was externally validated in another 606 patients with C-index of 0.80. CONCLUSIONS: A new preparation-related model (consisting of drinking-to-stool interval ≥ 3 h, preparation-to-colonoscopy interval ≥ 6 h, and poor last rectal effluent) was developed and performed better than three available patient-related models. This easy-to-use model may be a useful decision-support tool on individualized plans in patients undergoing BP.


Subject(s)
Prospective Studies , Humans , Male
12.
Polymers (Basel) ; 14(8)2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35458271

ABSTRACT

Understanding the structural evolution process after the yielding of networks in polymer nanocomposites can provide significant insights into the design and fabrication of high-performance nanocomposites. In this work, using hydroxyl-terminated 1,4-polybutadiene (HTPB)/organo-clay nanocomposite gel as a model, we explored the yielding and recovery process of a polymer network. Linear rheology results revealed the formation of a nanocomposite gel with a house-of-cards structure due to the fully exfoliated 6 to 8 wt% organo-clays. Within this range, nonlinear rheologic experiments were introduced to yield the gel network, and the corresponding recovery processes were monitored. It was found that the main driving force of network reconstruction was the polymer-clay interaction, and the rotation of clay sheets played an important role in arousing stress overshoots. By proton double-quantum (1H DQ) NMR spectroscopy, residual dipolar coupling and its distribution contributed by HTPB segments anchored on clay sheets were extracted to unveil the physical network information. During the yielding process of a house-of-cards network, e.g., 8 wt% organo-clay, nearly one-fourth of physical cross-linking was broken. Based on the rheology and 1H DQ NMR results, a tentative model was proposed to illustrate the yielding and recovery of the network in HTPB/organo-clay nanocomposite gel.

13.
J Am Chem Soc ; 143(50): 21433-21442, 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-34886669

ABSTRACT

Modern electrochemical and electronic devices require advanced electrolytes. Liquid crystals have emerged as promising electrolyte candidates due to their good fluidity and long-range order. However, the mesophase of liquid crystals is variable upon heating, which limits their applications as high-temperature electrolytes, e.g., implementing anhydrous proton conduction above 100 °C. Here, we report a highly stable thermotropic liquid-crystalline electrolyte based on the electrostatic self-assembly of polyoxometalate (POM) clusters and zwitterionic polymer ligands. These electrolytes can form a well-ordered mesophase with sub-10 nm POM-based columnar domains, attributed to the dynamic rearrangement of polymer ligands on POM surfaces. Notably, POMs can serve as both electrostatic cross-linkers and high proton conductors, which enable the columnar domains to be high-temperature-stable channels for anhydrous proton conduction. These nanochannels can maintain constant columnar structures in a wide temperature range from 90 to 160 °C. This work demonstrates the unique role of POMs in developing high-performance liquid-crystalline electrolytes, which can provide a new route to design advanced ion transport systems for energy and electronic applications.

14.
J Phys Chem Lett ; 12(50): 12067-12074, 2021 Dec 23.
Article in English | MEDLINE | ID: mdl-34910488

ABSTRACT

Solid-state nuclear magnetic resonance (NMR) often suffers from significant limitations due to the inherent low signal sensitivity when low-γ nuclei are involved. Herein, we report an elegant solid-state NMR approach for rapid structural analysis of minute amounts of organic solids. By encoding staggered chemical shift evolution in the indirect dimension and staggered acquisition in the 1H dimension, a proton-detected homonuclear 1H/1H and heteronuclear 13C/1H chemical shift correlation (HETCOR) spectrum can be obtained simultaneously in a single experiment at a fast magic-angle-spinning (MAS) condition with barely increasing the experimental time. We further show that during the conventional 1H-detected HETCOR experimental time, multiple homonuclear 1H/1H correlation spectra can be recorded in addition to the HETCOR spectrum, enabling the determination of 1H-1H distances. We establish that abundant 1H polarization can be efficiently manipulated and fully utilized in proton-detected solid-state NMR spectroscopy for extraction of more critical structural information and thus reduction of the total experimental time.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Protons , Quantum Theory
15.
Solid State Nucl Magn Reson ; 114: 101734, 2021 08.
Article in English | MEDLINE | ID: mdl-34052760

ABSTRACT

Solid-state NMR spectroscopy has played a significant role in elucidating the structure and dynamics of materials and biological solids at a molecular level for decades. In particular, the 1H double-quantum/single-quantum (DQ/SQ) chemical shift correlation experiment is widely used for probing the proximity of protons, rendering it a powerful tool for elucidating the hydrogen-bonding interactions and molecular packing of various complex molecular systems. Two factors, namely, the DQ filtering efficiency and t1-noise, dictate the quality of the 2D 1H DQ/SQ spectra. Experimentally different recoupling sequences show varied DQ filtering efficiencies and t1-noise. Herein, after a systematic search of symmetry-based DQ recoupling sequences, we report that the symmetry-based γ-encoded RNnν sequences show superior performance to other DQ recoupling sequences, which not only have a higher DQ recoupling efficiency but can also significantly reduce t1-noise. The origin of t1-noise is further discussed in detail via extensive numerical simulations. We envisage that such γ-encoded RNnν sequences are superior candidates for DQ recoupling in proton-based solid-state NMR spectroscopy due to its capability of efficiently exciting DQ coherences and suppressing t1-noise.


Subject(s)
Protons , Base Sequence , Hydrogen Bonding , Magnetic Resonance Spectroscopy/methods
16.
Sensors (Basel) ; 21(3)2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33498424

ABSTRACT

Flame monitoring of industrial combustors with high-reliability sensors is essential to operation security and performance. An ion current flame sensor with a simple structure has great potential to be widely used, but a weak ion current is the critical defect to its reliability. In this study, parameters of the ion current sensor used for monitoring flames on a Bunsen burner are suggested, and a method of further improving the ion current is proposed. Effects of the parameters, including the excitation voltage, electrode area, and electrode radial and vertical positions on the ion current, were investigated. The ion current grew linearly with the excitation voltage. Given that the electrodes were in contact with the flame fronts, the ion current increased with the contact area of the cathode but independent of the contact area of the anode. The smaller electrode radial position resulted in a higher ion current. The ion current was insensitive to the anode vertical position but largely sensitive to the cathode vertical position. Based on the above ion current regularities, the sensor parameters were suggested as follows: The burner served as a cathode and the platinum wire acted as an anode. The excitation voltage, anode radial and vertical positions were 120 V, 0 mm, and 6 mm, respectively. The method of further improving the ion current by adding multiple sheet cathodes near the burner exit was proposed and verified. The results show that the ion current sensor with the suggested parameters could correctly identify the flame state, including the ignition, combustion, and extinction, and the proposed method could significantly improve the magnitude of the ion current.

17.
Angew Chem Int Ed Engl ; 59(42): 18563-18571, 2020 Oct 12.
Article in English | MEDLINE | ID: mdl-32656991

ABSTRACT

Like other discotic molecules, self-assembled supramolecular structures of perylene bisimides (PBIs) are commonly limited to columnar or lamellar structures due to their distinct π-conjugated scaffolds and unique rectangular shape of perylene cores. The discovery of PBIs with supramolecular structures beyond layers and columns may expand the scope of PBI-based materials. A series of unconventional spherical packing phases in PBIs, including A15 phase, σ phase, dodecagonal quasicrystalline (DQC) phase, and body-centered cubic (BCC) phase, is reported. A strategy involving functionalization of perylene core with several polyhedral oligomeric silsesquioxane (POSS) cages achieved spherical assemblies of PBIs, instead of columnar assemblies, due to the significantly increased steric hindrance at the periphery. This strategy may also be employed for the discovery of unconventional spherical assemblies in other related discotic molecules by the introduction of similar bulky functional groups at their periphery. An unusual inverse phase transition sequence from a BCC phase to a σ phase was observed by increasing annealing temperature.

18.
ACS Nano ; 14(7): 8266-8275, 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32579333

ABSTRACT

Recently, ordered structures constructed from rigid three-dimensional (3D) shaped polyhedra have been drawing general interest, with the tetrahedron being the simplest one but showing complicated assembly behaviors. Rigid tetrahedron building blocks have been shown to form quasicrystalline and crystalline phases with high packing fractions by both simulation and experiments. Nevertheless, the study of 3D tetrahedral building blocks is limited, especially in the field of supramolecular self-assembly. Here, we present an experimental study of rigid giant tetrahedral molecules constructed by attaching four bulky polyhedral oligomeric silsesquioxane (POSS) cages to a tetrahedral perylene bisimide (PBI) scaffold. Self-assembly of these giant tetrahedra is mediated by π-π interaction between the tetrahedral PBI-based scaffolds and their overall tetrahedral symmetry. A monolithic nearly centimeter-sized hexagonal supramolecular structure was observed in the giant tetrahedron with short flexible linkers between PBI and POSS cages, while a micrometer-sized crystalline helical structure formed in that with completely rigid aromatic linkers. Their significant difference in electrical conductivity could be explained by two completely different packing models of the giant tetrahedra.

19.
J Magn Reson ; 313: 106717, 2020 04.
Article in English | MEDLINE | ID: mdl-32240957

ABSTRACT

The advent of ultrahigh magnetic field and fast magic-angle-spinning (MAS) probe technology has led to dramatically enhanced spectral resolution and sensitivity in solid-state NMR spectroscopy. In particular, proton-based multidimensional solid-state NMR techniques have become feasible to investigate the structure and dynamics at atomic resolution, due to the increased chemical shift span and spectral resolution. Herein, the benefits of faster MAS and higher magnetic field are demonstrated on a self-assembled diphenylalanine (Phe-Phe) nanomaterial. Proton-detected 2D 1H/1H single-quantum/single-quantum (SQ/SQ) correlation, double-quantum/single-quantum (DQ/SQ) correlation, and 1H chemical shift anisotropy/chemical shift (CSA/CS) correlation spectra obtained at two different spinning speeds (60 and 100 kHz) and two different magnetic fields (600 and 900 MHz) are reported. The dramatic enhancement of proton spectral resolution achieved with the use of a 900 MHz magnetic field and 100 kHz MAS is remarkable and enabled the measurement of proton CSA tensors, which will be useful to better understand the self-assembled structures of Phe-Phe nanotubes. We also show through numerical simulations that the unaveraged proton-proton dipolar couplings can result in broadening of CSA lines, leading to inaccurate determination of CSA tensors of protons. Thus, our results clearly show the insufficiency of a 600 MHz magnetic field to resolve 1H spectra lines and the inability of a moderate spinning speed of 60 kHz to completely suppress 1H-1H dipolar couplings, which further justify the pursuit of ultrahigh magnetic field beyond 1 GHz and ultrafast MAS beyond 100 kHz.


Subject(s)
Nanotubes/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Anisotropy , Magnetic Fields , Phenylalanine/chemistry , Protons
20.
Angew Chem Int Ed Engl ; 59(13): 5226-5234, 2020 03 23.
Article in English | MEDLINE | ID: mdl-31957938

ABSTRACT

How biomembranes are self-organized to perform their functions remains a pivotal issue in biological and chemical science. Understanding the self-assembly principles of lipid-like molecules hence becomes crucial. Herein, we report the mesostructural evolution of amphiphilic sphere-rod conjugates (giant lipids), and study the roles of geometric parameters (head-tail ratio and cross-sectional area) during this course. As a prototype system, giant lipids resemble natural lipidic molecules by capturing their essential features. The self-assembly behavior of two categories of giant lipids (I-shape and T-shape, a total of 8 molecules) is demonstrated. A rich variety of mesostructures is constructed in solution state and their molecular packing models are rationally understood. Giant lipids recast the phase behavior of natural lipids to a certain degree and the abundant self-assembled morphologies reveal distinct physiochemical behaviors when geometric parameters deviate from natural analogues.

SELECTION OF CITATIONS
SEARCH DETAIL