Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 25
1.
Se Pu ; 42(4): 360-367, 2024 Apr.
Article Zh | MEDLINE | ID: mdl-38566425

The macroporous anion exchange chromatographic medium (FastSep-PAA) was prepared through grafting polyallylamine (PAA) onto polyacrylate macroporous microspheres (FastSep-epoxy). The effects of the synthesis conditions, including the PAA concentration, reaction time, and reaction solution pH, on the ion exchange (IC) of the medium were investigated in detail. When the PAA concentration, reaction time, and reaction solution pH were increased, the IC of the medium increased, and optimal synthesis conditions were then selected in combination with changes of protein binding capacity. A scanning electron microscope was used to examine the surface morphology of the medium. The medium possessed high pore connectivity. Furthermore, the pore structure of the medium was preserved after the grafting of PAA onto the macroporous microspheres. This finding demonstrates that the density of the PAA ligands does not appear to have any discernible impact on the structure of the medium; that is, no difference in the structure of the medium is observed before and after the grafting of PAA onto the microspheres. The pore size and pore-size distribution of the medium before and after grafting were determined by mercury intrusion porosimetry and the nitrogen adsorption method to investigate the relationship between pore size (measured in the range of 300-1000 nm) and protein adsorption. When the pore size of the medium was increased, its protein binding capacity did not exhibit any substantial decrease. An increase in pore size may hasten the mass transfer of proteins within the medium. Among the media prepared, that with a pore size of 400 nm exhibited the highest dynamic-binding capacity (DBC: 70.3 g/L at 126 cm/h). The large specific surface area of the medium and its increased number of protein adsorption sites appeared to positively influence its DBC. When the flow rate was increased, the protein DBC decreased in media with original pore sizes of less than 700 nm. In the case of the medium with an original pore size of 1000 nm, the protein DBC was independent of the flow rate. The protein DBC decreased by 3.5% when the flow rate was increased from 126 to 628 cm/h. In addition, the protein DBC was maintained at 57.7 g/L even when the flow velocity was 628 cm/h. This finding reveals that the diffusion rate of protein molecules at this pore size is less restricted and that the prepared medium has excellent mass-transfer performance. These results confirm that the macroporous polymer anion exchange chromatographic medium developed in this study has great potential for the high-throughput separation of proteins.


Polyamines , Proteins , Chromatography, Ion Exchange/methods , Adsorption , Proteins/chemistry , Anions
2.
Front Microbiol ; 14: 1252709, 2023.
Article En | MEDLINE | ID: mdl-37849920

Phytoplasmas are phloem-limited plant pathogens, such as sugarcane white leaf (SCWL) phytoplasma, which are responsible for heavy economic losses to the sugarcane industry. Characterization of phytoplasmas has been limited because they cannot be cultured in vitro. However, with the advent of genome sequencing, different aspects of phytoplasmas are being investigated. In this study, we developed a DNA enrichment method for sugarcane white leaf (SCWL) phytoplasma, evaluated the effect of DNA enrichment via Illumina sequencing technologies, and utilized Illumina and Nanopore sequencing technologies to obtain the complete genome sequence of the "Candidatus Phytoplasma sacchari" isolate SCWL1 that is associated with sugarcane white leaf in China. Illumina sequencing analysis elucidated that only 1.21% of the sequencing reads from total leaf DNA were mapped to the SCWL1 genome, whereas 40.97% of the sequencing reads from the enriched DNA were mapped to the SCWL1 genome. The genome of isolate SCWL1 consists of a 538,951 bp and 2976 bp long circular chromosome and plasmid, respectively. We identified 459 protein-encoding genes, 2 complete 5S-23S-16S rRNA gene operons, 27 tRNA genes, and an incomplete potential mobile unit (PMU) in the circular chromosome. Phylogenetic analyses and average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values based on the sequenced genome revealed that SCWL phytoplasma and sugarcane grassy shoot (SCGS) phytoplasma belonged to the same phytoplasma species. This study provides a genomic DNA enrichment method for phytoplasma sequencing. Moreover, we report the first complete genome of a "Ca. Phytoplasma sacchari" isolate, thus contributing to future studies on the evolutionary relationships and pathogenic mechanisms of "Ca. Phytoplasma sacchari" isolates.

3.
Plants (Basel) ; 12(15)2023 Jul 28.
Article En | MEDLINE | ID: mdl-37570959

Sugarcane mosaic disease, mainly caused by Sugarcane streak mosaic virus (SCSMV), has serious adverse effects on the yield and quality of sugarcane. Eukaryotic translation initiation factor 4E (eIF4E) is a natural resistance gene in plants. The eIF4E-mediated natural recessive resistance results from non-synonymous mutations of the eIF4E protein. In this study, two sugarcane varieties, CP94-1100 and ROC22, were selected for analysis of their differences in resistance to SCSMV. Four-base missense mutations in the ORF region of eIF4E resulted in different conserved domains. Therefore, the differences in resistance to SCSMV are due to the inherent differences in eIF4E of the sugarcane varieties. The coding regions of eIF4E included 28 SNP loci and no InDel loci, which were affected by negative selection and were relatively conserved. A total of 11 haploids encoded 11 protein sequences. Prediction of the protein spatial structure revealed three non-synonymous mutation sites for amino acids located in the cap pocket of eIF4E; one of these sites existed only in a resistant material (Yuetang 55), whereas the other site existed only in a susceptible material (ROC22), suggesting that these two sites might be related to the resistance to SCSMV. The results provide a strong basis for further analysis of the functional role of eIF4E in regulating mosaic resistance in sugarcane.

4.
Sci Total Environ ; 873: 162264, 2023 May 15.
Article En | MEDLINE | ID: mdl-36842596

As a high-performance liquid rocket fuel, unsymmetrical dimethylhydrazine (UDMH) will produce wastewater during transportation, storage and cleaning containers. The wastewater will have a bad impact on human health and ecological environment, and it must be properly handled. There are many reports about the technical feasibility of UDMH wastewater treatment. Less attention is paid to analyzing the impact on the environment during the treatment process. This paper quantifies the environmental impacts and economic benefits of four advanced oxidation processes for the treatment of UDMH wastewater based on life cycle assessment and life cycle costing methods. Taking the UDMH wastewater produced by an aerospace group of Tianjin, China as the research object, using Fenton method, UV-Fenton method, electro catalytic oxidation (EC) with ruthenium iridium titanium (Ti/TiO2-RuO2-IrO2) as electrode and electro catalytic oxidation with boron-doped diamond (BDD) as electrode as treatment methods, on the basis of the laboratory test, the industrialized device is adopted. The resource consumption, energy consumption, pollutant discharge and cost were compared when the TOC removal rate was the same, and a better method of treating unsymmetrical dimethyl hydrazine wastewater was discussed. The results show that the impact on most types of environments is as follows: UV-Fenton < Fenton < EC (BDD) < EC (Ti/TiO2-RuO2-IrO2), and the four advanced oxidation methods are all beneficial to reduce eutrophication. The life cycle cost of UV-Fenton is the lowest (US$1.53/m3). Combined with environmental and economic analysis, it can be seen that UV-Fenton is the best choice. Through sensitivity analysis, it can be seen that reducing chemical reagents and electricity consumption, and changing the way of generating electricity to renewable energy can significantly reduce the environmental and economic impact. The life cycle cost of EC(BDD) as the electrode is the highest (US$26.20/m3), but it can achieve a TOC removal rate of 97.75 %, so it is a better choice when only the removal rate is required regardless of cost.

5.
Plant Dis ; 2022 Nov 16.
Article En | MEDLINE | ID: mdl-36383992

Sugarcane (Saccharum officinarum) is an economically important crop and is extensively planted across China. In August 2020, leaf midribs with red lesions were observed on cultivar 'Yunzhe 081609' in Kaiyuan (103.27°E, 23.71°N), Yunnan, Southwestern China. In July to August 2021, similar symptoms were observed on cultivar 'Liucheng 05-136' in Hechi (108.48°E, 24.47°N), Guangxi, and on cultivars 'Yingyu 91-59' and 'Yunzhe 081609' in Lingcang (99.45°E, 23.33°N), Yunnan. Initially symptoms appeared as red spots on the leaf midribs, which gradually expanded, forming elongated red lesions. At high severity, the leaves broke and hung down. Disease incidence of leaves was estimated at 30 to 50% across the locations. To identify the etiology of this disease, three symptomatic leaves were collected from cultivars 'Liucheng 05-136', 'Yingyu 91-59', and 'Yunzhe 081609', respectively. Symptomatic leaf midribs were cut to small fragments (3 × 5 mm), surface sterilized with 70% ethanol for 30 s followed by 1% NaClO for 1 min, rinsed with sterilized distilled water three times, air dried on sterile filter paper, plated on potato dextrose agar (PDA), and incubated at 28°C in the dark. Ten isolates with similar morphological characteristics were obtained. Colonies on PDA were white to grayish-white with aerial mycelium growing initially upward and then forming clusters. After 10 days, mycelia turned to grayish black. Immature conidia were initially hyaline, aseptate, and ellipsoid. Mature conidia became dark brown, septate, longitudinal striate, and measured 21.2 to 25.8 × 11.4 to 16.4 µm (n = 30). Morphologically, the isolates were identified as Lasiodiplodia theobromae (Alves et al. 2008). For molecular identification, genomic DNA of four representative isolates (LTGX1, LTGX2, LTYN1 and LTYN2) was extracted using the Ezup Column Fungi Genomic DNA Purification kit. The internal transcribed spacer (ITS) region of rDNA, translation elongation factor 1-alpha (TEF-1α) gene, and ß-tubulin (TUB) gene were amplified with primer pairs ITS1/ITS4 for ITS, EF1-728F/EF1-986R for TEF-1α, and Bt2a/Bt2b for TUB, respectively (Glass and Donaldson 1995; Carbone and Kohn 1999; White et al. 1990), and then sequenced. The ITS (ON533336-ON533339), TEF-1α (ON939550-ON939553) and TUB (OP747306-OP747309) sequences were deposited in GenBank. BLAST searches showed >99% nucleotide identity to the sequences of ex-type isolate CBS 164.96 of L. theobromae (ITS, 99.8% to AY640255; TEF-1α, 99.9% to AY640258; TBU, 100% to EU673110). Phylogenetic analysis using maximum likelihood based on the combined ITS, TEF-1α, and TUB sequences of the isolates and reference sequences of Lasiodiplodia spp. downloaded from the GenBank indicated the isolates obtained in this study formed a clade strongly supported based on bootstrap values (100%) to the ex-type isolate CBS 164.96 sequences of L. theobromae. For pathogenicity tests, three healthy 6-month-old potted sugarcane leaf midribs of cultivar 'Yunzhe 081609' were wounded with a sterile needle, then inoculated using 8-mm mycelial agar plugs from a 10-day-old culture of strain LTYN1, and covered with wet cotton to maintain high relative humidity. Sterile PDA plugs were used as controls. Plants were placed in a greenhouse at 28 to 32°C. The test was conducted twice. Five days after inoculation, red lesions appeared on the inoculated leaf midribs. These symptoms were similar to those observed in the field. The leaves used for negative controls remained symptomless. The same fungus (L. theobromae) was re-isolated from all inoculated-symptomatic tissues; and isolates had the same morphological traits mentioned above. The DNA sequence data of these isolates was also similar than the original isolates. The association of L. theobromae with S. officinarum was recorded earlier in Cuba (Urtiaga, 1986), Myanmar (Thaung, 2008) and the Philippines (Reinking, 1919). Leaf midribs with red lesions caused by Colletotrichum falcatum has already been described around the world (Costa et al. 2021; Hossain et al. 2021; Xie et al. 2019). All together, this information indicates that L. theobromae is one of the causal agent of the red lesions symptoms on the sugarcane leaf midribs. To our knowledge, this is the first report of L. theobromae causing red lesions on leaf midribs of sugarcane in China. Further research will focus on developing management strategies to control this disease effectively.

6.
J Chromatogr A ; 1681: 463461, 2022 Oct 11.
Article En | MEDLINE | ID: mdl-36108352

How to improve the performance of chromatographic media is very important in chromatography. Uniform agarose microspheres were successfully prepared using membrane emulsification method with a controllable particle size, followed by multi-step crosslinking and dextran-grafting, respectively. To obtain both fine pore structure and good pressure-resistant property, the effects of both dextran-grafting and crosslinking process were studied carefully and also, the preparation conditions were delicately adjusted. Inverse size-exclusion chromatography was used for determining the pore structure of these agarose microspheres. Uniform agarose microspheres with an average particle size of about 8 µm were obtained with regularly spherical, transparent and smooth appearance. By introducing a certain molecular weight of dextran or pentaerythritol glycidyl ether at different crosslinking steps, both the pressure-resistant and the chromatographic properties of microspheres were improved. Both the maximum flow velocity and the corresponding pressure drop increased with the decrease of the molecular weight of dextran, i.e., 99 cm/h and 3.22 MPa, respectively, using dextran T3 (3 kDa). The average pore size of agarose microspheres decreased from 6.04±0.56 nm to 2.50±0.12 nm with the increase of the molecular weight of dextran from dextran T3 (3 kDa) to dextran T100 (100 kDa), with a high resolution obtained for a certain molecular range of model proteins. Also, the pressure-resistant property was highly improved in multi-step crosslinking process, with a maximum flow velocity of 107 cm/h and a corresponding pressure drop of 3.62 MPa obtained after the whole crosslinking steps. The average pore size of agarose microspheres was 3.72±0.32, 3.90±0.21 and 3.60±0.27 nm for the introduction of pentaerythritol glycidyl ether as the crosslinking agent at different steps, respectively. These uniform dextran-grafted agarose microspheres have a finely controllable molecular range with a high resolution compared with traditional ones, which are beneficial for chromatographic selectivity. Therefore, they are very useful for high-resolution chromatography and have wide applications in downstream process.


Dextrans , Chromatography, Gel , Dextrans/chemistry , Epoxy Compounds , Microspheres , Particle Size , Porosity , Propylene Glycols , Sepharose/chemistry
7.
J Sep Sci ; 44(18): 3429-3440, 2021 Sep.
Article En | MEDLINE | ID: mdl-34313005

A novel nanodisc-based immobilization method was developed for high-efficient purification and reconstitution of cytochrome P450 in one step. Using membrane scaffold protein containing a histidine tag, charged-nanodiscs were prepared in the form of self-assembly of lipid-protein nanoparticles. Their properties including the particle diameter and its distribution and Zeta potential were controlled well by adjusting molar ratios of phospholipids to membrane scaffold protein. At an optimum lipid-to-membrane scaffold protein molar ratio of 60:1, uniformly regular-shaped and discoidal nanodiscs with an average particle diameter of 10 nm and Zeta potential of -19 mV were obtained. They can be well fractionated by size exclusion chromatography. Charged-nanodiscs were successfully immobilized onto Ni-chelating microspheres via histidine tags with a density of 6.6 mg membrane scaffold protein/mL gel. After being packed in a column, chromatography studies demonstrated that this nanodisc-immobilized chromatographic medium had a specific binding to cytochrome P450 in rat liver microsome. Nanodiscs containing cytochrome P450 can be furthermore eluted from the column with a diameter of about 87.0 nm and height of about 8.0 nm, respectively. The purity of cytochrome P450 after purification increased 25 folds strikingly. This nanodisc-immobilized chromatography method is promising for the one-step purification and reconstitution of membrane protein.


Cytochrome P-450 Enzyme System/analysis , Cytochrome P-450 Enzyme System/isolation & purification , Immobilized Proteins/chemistry , Membrane Proteins/chemistry , Nanostructures/chemistry , Animals , Chromatography, Liquid , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/metabolism , Immobilized Proteins/metabolism , Male , Membrane Proteins/metabolism , Microsomes, Liver/metabolism , Rats , Rats, Sprague-Dawley
8.
J Chromatogr A ; 1640: 461948, 2021 Mar 15.
Article En | MEDLINE | ID: mdl-33561708

Fast-throughput and cost reduction of current purification platforms are becoming increasing requests during antibody manufacture. The macroporous-matrix absorbents have presented extensive potentiality in improving operational throughput during purification of macromolecule. And meanwhile the peptide ligand has become a promising alternative to recombinant protein ligands for cost reduction of chromatographic purification. Therefore, here we designed a functionalized microspheres resin with both macroporous matrix of polymerized glycidyl methacrylate and ethylene glycol dimethacrylate (PGMA-EDMA) and peptide ligand of hexapeptide (FYEILH). In order to circumvent the steric effect of peptides and amplify the binding sites on macroporous matrix, the peptide ligand was coupled on a liner PGMA polymer brushes grafted on microspheres. Comparing to the conventional agarose-matrix resin and the general peptide-grafted microspheres, the functionalized microspheres presented excellent permeability and high capacity to rapid loading hIgG by maintaining a stable level of dynamic binding capacity at fast flow rate above 110 column volume per hour (cv/h) and very short residence time below 0.5 min. Such functionalized microspheres provide a facile and broadly applicable strategy to develop the attractive candidate for rapid and cost-reduced purification of antibody.


Antibodies, Monoclonal/isolation & purification , Immunoglobulin G/isolation & purification , Microspheres , Peptides/chemistry , Polymers/chemistry , Adsorption , Animals , CHO Cells , Chromatography , Cricetulus , Diffusion , Humans , Ligands , Permeability , Polymerization , Porosity , Protein Domains , Recombinant Proteins/chemistry , Resins, Synthetic/chemistry , Sepharose/chemistry , Serum Albumin, Bovine/chemistry , Staphylococcal Protein A/chemistry , Surface Properties
9.
Plant Dis ; 2020 Nov 17.
Article En | MEDLINE | ID: mdl-33200971

Sugarcane (Saccharum officinarum L.) is the main sugar crop in China. Yunnan is the second largest sugarcane production province in China. In December 2018, leaf blight was first observed on almost every leaf of sugarcane on 'Huanan 54-11', 'Baimei' and 'Chongan' in Kaiyuan (103°27' E, 23°72' N), Yunnan. In October 2019, during our survey in the field in Lingcang (100°08' E, 23°88' N), Yunnan, this disease was also observed on 'ROC 25'. Symptoms of the disease initially appeared as wilted, which seemed to be cause by water stress. As the disease progressed, irregular straw-yellow and blighted lesion ran throughout the leaf lamina from leaf tip to entire leaf sheath, many small black conidia formed in the dead leaf tissue under humid conditions. Symptomatic leaf tissues were surface-sterilized with 70% ethanol for 30 s, 0.1% HgCl2 for 1 min, and rinsed with sterilized water three times, air dried on sterile filter paper, and plated on potato dextrose agar (PDA). Six isolates were obtained from six symptomatic leaf samples and were transferred onto potato carrot agar (PCA). Colonies on PDA were white with loose aerial hyphae at first, then turned to dark olive or dark. Colonies on PCA were grayish with sparse hyphae, then turned to dark gray. Conidiophores were brown, simple or branched, and produced numerous conidia in short chains. Conidia (n = 50) were obclavate to obpyriform or ellipsoid, brown to dark brown, with a cylindrical short beak at the tip (2.3 to 17.3 µm in length), and 15.3 to 46.6 µm × 4.2 to 17.9 µm, 2 to 7 transverse septa and 0 to 3 longitudinal septa. Morphologically, the isolates were identified as Alternaria tenuissima (Simmons 2007). Two representative isolates C4 and C5 were selected for molecular identification. The internal transcribed spacers (ITS), Histone 3 genes and plasma membrane ATPase were amplified with primer pairs ITS1/ITS4, H3-1a/H3-1b and ATPDF1/ATPDR1, respectively (Glass et al. 1995; Lawrence et al. 2013). The sequences were deposited in GenBank (ITS, MT679707-MT679708; Histone 3, MT710929-MT710930; ATPase, MT833928-MT833929). BLAST searches showed ≥99% nucleotide identity to the sequence of A. tenuissima (ITS, 100% to MN822571; Histone 3, 100% to MN481955; ATPase, 99% to JQ671875, 100% to MH492703, respectively). Thus, the fungus was identified as A. tenuissima based on morphological and molecular characteristics. For pathogenicity tests, five healthy 2-month-old potted sugarcane leaves were wounded with one sterile needle and inoculated with 20 µl of suspension of 106 conidia/ mL, and five plants were inoculated with distilled water as the controls. Plants were placed in a greenhouse at 25 to 35°C. After two months, the leaf wound inoculated with the putative pathogen displayed blighted as those observed in the field whereas the controls remained symptomless. The fungus was reisolated from symptomatic leaves with the same morphological and molecular traits as the original isolates. The fungus was not isolated from the control plants. Pathogenicity tests were repeated two times. A. tenuissima causing leaf blight on barley in China was reported in 2008 (Luo et al. 2008). Leaf spot disease of sugarcane caused by A. tenuis has been recorded in Maharashtra (Patil et al. 1974). To our knowledge, this is the first report on A. tenuissima affecting leaf blight on sugarcane in Yunnan Province, China. Identification of the causes of the disease is important to develop effective disease management strategies. The author(s) declare no conflict of interest. Funding: This research was supported by Sugar Crop Research System (CARS-170303), the Yunling Industry and Technology Leading Talent Training Program "Prevention and Control of Sugarcane Pests" (2018LJRC56), and the Yunnan Province Agriculture Research System. References: Glass, N. L., et al. 1995. Appl. Environ. Microbiol. 61:1323. Lawrence, D. P., et al. 2013. Mycologia 105:530. Luo, Z., et al. 2008. Acta Phytophy. Sin. 35(5): 469-470. Patil, A.O., et al. 1974. Res. J. Mahatma Phule Agric. Univ. 5(2): 122-123. Simmons, E. G. 2007. Alternaria: An Identification Manual. CBS Fungal Biodiversity Centre, Utrecht, The Netherlands. Caption for supplementary Figure 1 Supplementary Figure S1. Disease symptoms of sugarcane leaf blight disease and morphological characteristics of Alternaria tenuissima. (A) Typical straw-yellow and blighted lesions on naturally-infected leaves of sugarcane; (B) Infected symptoms on wounded leaves of sugarcane two months after artificial infection with A. tenuissima; (C) Colony of A. tenuissima on PDA; (D) Colony of A. tenuissima on PCA; and (E-F) Sporulation and conidia of A. tenuissima on PCA. (Scale bars = 100 µm; 20 µm).

10.
Eng Life Sci ; 20(11): 504-513, 2020 Nov.
Article En | MEDLINE | ID: mdl-33204237

Agarose microspheres with a controllable pore structure were manufactured by varying agarose types and crosslinking degrees. Various agarose could tailor the gel formation of microspheres matrix and thus affect the final pore structures. Small pores in microspheres could be fabricated by agarose with a higher molecular weight, which was demonstrated by the packed column with lower distribution coefficient (Kav ) values measured by gel filtration chromatography. Further, higher Kav values also demonstrated that more and larger pores were formed with increasing the crosslinking degree of agarose microspheres. Either using agarose with a high molecular weight or increasing the crosslinking degree would finally lead to the enhancement of the flow rate during flow performance of packed column as necessary for improving separation efficiency. This provides a foundation for high-resolution chromatography with a controllable separation range as beneficial for downstream process.

11.
Plant Dis ; 104(10): 2665-2668, 2020 Oct.
Article En | MEDLINE | ID: mdl-32749946

Sugarcane white leaf (SCWL) is a devastating sugarcane (Saccharum officinarum) disease caused by a 16SrXI group phytoplasma, which is extremely harmful to sugarcane production. To determine the occurrence of SCWL in different varieties in 2018, we conducted a field survey and performed nested PCR detection of SCWL phytoplasma in cane-planting areas of Mangweng and Hepai in Gengma, Yunnan province, which are the areas most severely affected by SCWL in China. The results of the field survey showed that the symptomatic incidence of SCWL differed among varieties. The mean symptomatic incidence of SCWL on variety Yuetang60 was the highest (73.50%), and it was the lowest on Liucheng05-136 (13.67%). Using nested PCR, the SCWL phytoplasma was detected in symptomatic plants of all varieties more than 90% of the time; the SCWL phytoplasma was detected in 91 and 97% of symptomatic plants of Yingyu91-59 and Liucheng05-136 varieties, respectively. The SCWL phytoplasma was detected by PCR in 82% of the asymptomatic plant samples. The results of this study showed that field survey based on white leaf symptoms did not accurately reflect the actual occurrence of the SCWL phytoplasma.


Saccharum , China , Incidence , Plant Diseases , Polymerase Chain Reaction , Surveys and Questionnaires
12.
J Chromatogr A ; 1610: 460578, 2020 Jan 11.
Article En | MEDLINE | ID: mdl-31623846

The macroporous microspheres with core-shell structure, based on a copolymer of 4-Vinylbenzyl chloride, glycidyl methacrylate, and ethylene glycol dimethacrylate, were fabricated through atom transfer radical polymerization suspension polymerization. The microspheres showed 100-200 nm pores in shell and 500-900 nm pores in core. The shell was hydrophilic modified through grafting of poly(N-hydroxyethyl acrylamide) onto the shell surface for reducing adsorption of proteins. The core was coupled with a ligand of poly(ethylene imine) that could bind the proteins. Feedstock of avian influenza virus could be purified on these modified microspheres through negative chromatography. Avian influenza virus cannot enter the core and was recovered from the flow-through, while other proteins with negative charges were able to penetrate into the core and bind to the poly(ethylene imine) ligands. The dynamic binding capacity of proteins was higher on this medium (61 mg/mL) than the commercially available resin (12 mg/mL, Capto Core 700).


Microspheres , Orthomyxoviridae/isolation & purification , Adsorption , Chromatography , Hydrophobic and Hydrophilic Interactions , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Polymers/chemistry , Porosity
13.
Article En | MEDLINE | ID: mdl-31525722

Activators regenerated by electron transfer atom transfer radical polymerization (AGET ATRP) were firstly used in suspension polymerization to prepare macroporous microspheres based on a copolymer of glycidyl methacrylate and ethylene glycol dimethacrylate. Compared to conventional radical polymerization (CRP), the microspheres by AGET ATRP showed more homogeneous structure, larger pores, and higher protein binding capacity. The body of microspheres are formed by the large clusters resulted from the aggregated little particles. The size of the particles in microspheres by AGET ATRP was 10-300 nm which was smaller than that (400-800 nm) of the microspheres by CRP. AGET ATRP gave larger pore size (275 ±â€¯5 nm) and surface area (59.3 ±â€¯1 m2/g) than CRP (234 ±â€¯5 nm, 37.5 ±â€¯1 m2/g). The microspheres were modified with polyethylene imine for anion resins that were evaluated in term of its protein binding capacity. The results indicated that the static (69 ±â€¯0.5 mg/mL) and dynamic binding capacity (61 ±â€¯0.5 mg/mL) of proteins on modified microspheres by AGET ATRP were higher than that (34 ±â€¯0.5 mg/mL and 19 ±â€¯0.5 mg/mL) by CRP. Meanwhile, the proteins binding capacity on the microspheres by AGET ATRP decreased only less than 10% when the flow rate increased 10 times. These macroporous media show a large potential in rapid separation of proteins.


Ethylene Glycols/chemistry , Methacrylates/chemistry , Microspheres , Proteins/isolation & purification , Chromatography, Gel/methods , Particle Size , Polymerization , Porosity , Protein Binding , Proteins/chemistry , Proteins/metabolism
14.
Talanta ; 200: 547-552, 2019 Aug 01.
Article En | MEDLINE | ID: mdl-31036221

A droplet-based microfluidic synthesis approach for preparation of ficin capped gold nano clusters (AuNCs) was developed. Well dispersed AuNCs could be procured within 8 min. Upon excitation wavelength at 340 nm, the resultant AuNCs exhibited a strong blue fluorescence with the maximum emission at 450 nm. Due to the aggregation-induced "turn-off" fluorescence mechanism, the synthesized AuNCs as a fluorescent probe displayed high sensitivity and good selectivity for sensing ferric ions. The relative fluorescence intensity versus ferric ions concentration yielded a good linear calibration in the range of 10.0-1000.0 µM (R2 = 0.998) and the limit of detection was 4.1 µM. Moreover, the possible mechanism for abated fluorescence intensity of AuNCs by adding ferric ions was discussed briefly. Further, the as-prepared fluorescent AuNCs was successfully applied for the detection of serum ferric ions. The results indicated that the droplet-based microfluidic synthesis system could provide a new way for the rapid preparation of AuNCs with good polydispersity and have potential as the sensing probes for the analysis of ferric ions in real biological samples.


Ferric Compounds/blood , Ficain/chemistry , Fluorescent Dyes/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Ficain/metabolism , Humans , Ions/blood , Microfluidic Analytical Techniques , Particle Size , Spectrometry, Fluorescence , Surface Properties
15.
J Immunol Methods ; 460: 45-50, 2018 09.
Article En | MEDLINE | ID: mdl-29894748

Protein A chromatography has been a popular method for purification of therapeutic monoclonal antibodies (mAb). Protein A chromatographic media using alkali-resistant rProtein A ligands from site-directed coupling method have been pursued for both high dynamic capacities and excellent stabilities. However, the mechanism of rProtein A leaking under cleaning-in-place (CIP) conditions is not very clear and difficulties have been commonly encountered when improving the media's chromatographic performance. We investigated the chromatographic performance of site-directed coupled rProtein A chromatographic media during CIP procedure. Trace amount of ligands leaked during the chromatographic media's incubation in 0.5 M NaOH was detected, explaining for the decline of chromatographic media's CIP performance. Decrease of rProtein A's concentration in 0.5 M NaOH was consistent with chromatographic media's binding capacity. A novel rProtein A chromatographic media were prepared by site-directed coupling a newly-constructed alkali-resistant rProtein A to highly cross-linked agarose-based matrix. The media had a dynamic binding capacity of 63.2 mg hIgG/mL higher than 48.1 mg hIgG/mL of the commercial one, and the CIP performance was improved greatly with the remained dynamic binding capacity increased from 86% to 95% of the initial value after 40 CIP cycles.


Chromatography, Affinity/methods , Immunoglobulin G/isolation & purification , Staphylococcal Protein A/chemistry , Humans , Immunoglobulin G/chemistry , Recombinant Proteins/chemistry , Sodium Hydroxide/chemistry
16.
J Sep Sci ; 40(7): 1493-1499, 2017 Apr.
Article En | MEDLINE | ID: mdl-28234424

Dextran-grafted Protein A affinity chromatographic medium was prepared by grafting dextran to agarose-based matrix, followed by epoxy-activation and Protein A coupling site-directed to sulfhydryl groups of cysteine molecules. An enhancement of both the binding performance and the stability was achieved for this dextran-grafted Protein A chromatographic medium. Its dynamic binding capacity was 61 mg immunoglobulin G/mL suction-dried gel, increased by 24% compared with that of the non-grafted medium. The binding capacity of dextran-grafted medium decreased about 7% after 40 cleaning-in-place cycles, much lower than that of the non-grafted medium as decreased about 15%. Confocal laser scanning microscopy results showed that immunoglobulin G was bound to both the outside and the inside of dextran-grafted medium faster than that of non-grafted one. Atomic force microscopy showed that this dextran-grafted Protein A medium had much rougher surface with a vertical coordinate range of ±80 nm, while that of non-grafted one was ±10 nm. Grafted dextran provided a more stereo surface morphology and immunoglobulin G molecules were more easily to be bound. This high-performance dextran-grafted Protein A affinity chromatographic medium has promising applications in large-scale antibody purification.


Chromatography, Affinity , Dextrans/chemistry , Staphylococcal Protein A/metabolism , Adsorption , Immunoglobulin G/metabolism , Protein Binding , Sepharose/chemistry , Staphylococcal Protein A/chemistry
17.
Anal Chem ; 89(3): 2080-2085, 2017 02 07.
Article En | MEDLINE | ID: mdl-28035804

A microfluidic droplet synthesis approach for the preparation of poly N-isopropylacrylamide protected gold nanoparticles (PNIPAm@AuNPs) was presented here. Well-dispersed PNIPAm@AuNPs could be generated within 8 min. On the basis of the aggregation-induced UV-vis adsorption intensity increasing mechanism, the PNIPAm@AuNPs-based colorimetric probe displayed high sensitivity and good selectivity for sensing copper ions. A linear calibration of relative UV-vis adsorption intensity increasing versus copper ions concentration was obtained within 5.0-750.0 µM, and the limit of detection was 2.5 µM. Furthermore, after copper ions were injected in rat, a metabolic assay was developed with the proposed probe. The results indicated that the droplet microfluidic synthesis system could provide a new way for preparation of polymer@AuNPs with good polydispersity index and showed great potential of polymer@AuNPs-based sensing probe for application in biological and clinical analysis.


Acrylic Resins/chemistry , Biosensing Techniques , Copper/blood , Gold/chemistry , Metal Nanoparticles/chemistry , Microfluidic Analytical Techniques/instrumentation , Animals , Cations/blood , Colorimetry/methods , Limit of Detection , Male , Rats, Sprague-Dawley , Spectrophotometry, Ultraviolet/methods
18.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1017-1018: 129-135, 2016 Apr 01.
Article En | MEDLINE | ID: mdl-26970847

A high cross-linking polystyrene(PSt)-based anion-exchange material with uniformly size, high ion exchange capacity, and high hydrophilicity was synthesized by a novel surface functionalization approach in this study. Uniformly sized PSt microspheres were prepared by the membrane emulsion polymerization strategy, and then modified by (1) conversing resid ual surface vinyl groups to epoxy groups followed by quaternization, and (2) decorating aromatic ring matrix including nitration, reduction and attachment of glycidyltrimethylammonium chloride. The 3-D morphology and porous features of microspheres were observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The surface of the modified PSt became roughness but the particle size remained same. Meanwhile, FT-IR spectra and laser scanning confocal microscope (LCSM) indicated that the modification groups had been successfully covalently coated onto the PSt microspheres. Modified PSt microspheres showed greatly improved hydrophilicity and biocompatibility with 0.387mmol/mL ion exchange capacity (IEC). In the application evaluation procedure, exenatide can be purified from 42.9% (peptide crudes) to 88.6% by modified PSt column with 97.1% recovery yield. This modified PSt microspheres had a large potential in application for efficient separation of peptides.


Peptides/isolation & purification , Polystyrenes/chemistry , Venoms/isolation & purification , Exenatide , Hydrophobic and Hydrophilic Interactions , Mass Spectrometry , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Peptides/chemistry , Venoms/chemistry
19.
J Sep Sci ; 39(6): 1130-6, 2016 Mar.
Article En | MEDLINE | ID: mdl-26786724

Novel high-capacity Ni(2+) immobilized metal ion affinity chromatographic media were prepared through the dextran-grafting process. Dextran was grafted to an allyl-activated agarose-based matrix followed by functionalization for the immobilized metal ion affinity chromatographic media. With elaborate regulation of the allylation degree, dextran was completely or partly grafted to agarose microspheres, namely, completely dextran-grafted agarose microspheres and partly dextran-grafted ones, respectively. Confocal laser scanning microscope results demonstrated that a good adjustment of dextran-grafting degree was achieved, and dextran was distributed uniformly in whole completely dextran-grafted microspheres, while just distributed around the outside of the partly dextran-grafted ones. Flow hydrodynamic properties were improved greatly after the dextran-grafting process, and the flow velocity increased by about 30% compared with that of a commercial chromatographic medium (Ni Sepharose FF). A significant improvement of protein binding performance was also achieved by the dextran-grafting process, and partly dextran-grafted Ni(2+) chelating medium had a maximum binding capacity for His-tagged lactate dehydrogenase about 2.5 times higher than that of Ni Sepharose FF. The results indicated that this novel chromatographic medium is promising for applications in high-efficiency and large-scale protein purification.


Chelating Agents/chemistry , Chromatography, Affinity/methods , Dextrans/chemistry , Nickel/chemistry , Chelating Agents/chemical synthesis , Hydrodynamics , Ions/chemistry , Particle Size , Surface Properties
20.
Int J Syst Evol Microbiol ; 66(1): 487-491, 2016 Jan.
Article En | MEDLINE | ID: mdl-26508111

Sugar cane white leaf (SCWL) is a serious disease caused by phytoplasmas. In this study, we performed nested PCR with phytoplasma universal primer pairs (P1/P7 and R16F2n/R16R2) for the 16S rRNA gene to detect SCWL phytoplasmas in 31 SCWL samples collected from Baoshan and Lincang, Yunnan, China. We cloned and sequenced the nested PCR products, revealing that the 16S rRNA gene sequences from 31 SCWL samples were all 1247 bp in length and shared more than 99 % nucleotide sequence similarity with the 16S rRNA gene sequences of SCWL phytoplasmas from various countries. Based on the reported 16S rRNA gene sequence data from SCWL isolates of various countries, we conducted phylogenetic and virtual RFLP analysis. In the resulting phylogenetic tree, all SCWL isolates clustered into two branches, with the Lincang and Baoshan SCWL phytoplasma isolates belonging to different branches. The virtual RFLP patterns show that phytoplasmas of the Lincang branch belong to subgroup 16SrXI-B. However, the virtual RFLP patterns revealed by HaeIII digestion of phytoplasmas of the Baoshan branch differed from those of subgroup 16SrXI-B. According to the results of phylogenetic and virtual RFLP analysis, we propose that the phytoplasmas of the Baoshan branch represent a new subgroup, 16SrXI-D. These findings suggest that SCWL is caused by phytoplasmas from group 16SrXI, including subgroup 16SrXI-B and a new subgroup, 16SrXI-D.


Phylogeny , Phytoplasma/classification , Plant Diseases/microbiology , Saccharum/microbiology , China , DNA, Bacterial/genetics , Phytoplasma/genetics , Phytoplasma/isolation & purification , Plant Leaves/microbiology , Polymorphism, Restriction Fragment Length , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
...