Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Molecules ; 29(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38731567

A neutral Polygonatum cyrtonema polysaccharide (NPCP) was isolated and purified from Polygonatum cyrtonema by various chromatographic techniques, including DEAE-52 and Sephadex-G100 chromatography. The structure of NPCP was characterized by HPLC, HPGPC, GC-MS, FT-IR, NMR, and SEM. Results showed that NPCP is composed of glucose (55.4%) and galactose (44.6%) with a molecular weight of 3.2 kDa, and the sugar chain of NPCP was →1)-α-D-Glc-(4→1)-ß-D-Gal-(3→. In vitro bioactivity experiments demonstrated that NPCP significantly enhanced macrophages proliferation and phagocytosis while inhibiting the M1 polarization induced by LPS as well as the M2 polarization induced by IL-4 and IL-13 in macrophages. Additionally, NPCP suppressed the secretion of IL-6 and TNF-α in both M1 and M2 cells but promoted the secretion of IL-10. These results suggest that NPCP could serve as an immunomodulatory agent with potential applications in anti-inflammatory therapy.


Macrophages , Phagocytosis , Polygonatum , Polysaccharides , Macrophages/drug effects , Macrophages/metabolism , Macrophages/immunology , Polygonatum/chemistry , Mice , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Animals , Phagocytosis/drug effects , Immunologic Factors/pharmacology , Immunologic Factors/chemistry , Immunologic Factors/isolation & purification , RAW 264.7 Cells , Cytokines/metabolism , Cell Proliferation/drug effects , Immunomodulating Agents/pharmacology , Immunomodulating Agents/chemistry , Immunomodulating Agents/isolation & purification , Molecular Weight
2.
Front Chem ; 8: 526101, 2020.
Article En | MEDLINE | ID: mdl-33134268

Due to the hybrid effect of physical adsorption and hydration, methane storage capacity in pre-adsorbed water-activated carbon (PW-AC) under hydrate favorable conditions is impressive, and fast nucleation and growth kinetics are also anticipated. Those fantastic natures suggest the PW-AC-based hydrates to be a promising alternative for methane storage and transportation. However, hydrate formation refers to multiscale processes, the nucleation kinetics at molecule scale give rise to macrohydrate formation, and the presence of activated carbon (AC) causes this to be more complicated. Although adequate nucleation sites induced by abundant specific surface area and pore texture were reported to correspond to fast formation kinetics at macroperspective, the micronature behind that is still ambiguous. Here, we evaluated how methane would be adsorbed on PW-AC under hydrate favorable conditions to improve the understanding of hydrate fast nucleation and growth kinetics. Microbulges on AC surface were confirmed to provide numerous nucleation sites, suggesting the contribution of abundant specific surface area of AC to fast hydrate nucleation and growth kinetics. In addition, two-way convection of water and methane molecules in micropores induced by methane physical adsorption further increases gas-liquid contact at molecular scale, which may constitute the nature of confinement effect of nanopore space.

...