Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
Sci Adv ; 10(23): eadn2877, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38838156

ABSTRACT

Alloying has proven power to upgrade metallic electrocatalysts, while the traditional alloys encounter limitation for optimizing electronic structures of surface metallic sites in a continuous manner. High-entropy alloys (HEAs) overcome this limitation by manageably tuning the adsorption/desorption energies of reaction intermediates. Recently, the marriage of nanotechnology and HEAs has made considerable progresses for renewable energy technologies, showing two important trends of size diminishment and multidimensionality. This review is dedicated to summarizing recent advances of HEAs that are rationally designed for energy electrocatalysis. We first explain the advantages of HEAs as electrocatalysts from three aspects: high entropy, nanometer, and multidimension. Then, several structural regulation methods are proposed to promote the electrocatalysis of HEAs, involving the thermodynamically nonequilibrium synthesis, regulating the (sub-)nanosize and anisotropic morphologies, as well as engineering the atomic ordering. The general relationship between the electronic structures and electrocatalytic properties of HEAs is further discussed. Finally, we outline remaining challenges of this field, aiming to inspire more sophisticated HEA-based nanocatalysts.

2.
Hematology ; 29(1): 2360339, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38828919

ABSTRACT

BACKGROUND: Hemolytic disease of the newborn (HDN) is a common condition that can have a severe impact on the health of newborns due to the hemolytic reactions it triggers. Although numerous studies have focused on understanding the pathogenesis of HDN, there are still many unanswered questions. METHODS: In this retrospective study, serum samples were collected from 15 healthy newborns and 8 infants diagnosed with hemolytic disease. The relationship between different metabolites and various IgG subtypes in Healthy, HDN and BLI groups was studied by biochemical technique and enzyme-linked immunosorbent assay (ELISA). Metabolomics analysis was conducted to identify the differential metabolites associated with HDN. Subsequently, Pearson's correlation analysis was used to determine the relation of these differential metabolites with IgG isoforms. The relationship between the metabolites and IgG subtypes was observed after treatment. RESULTS: The study results revealed that infants with hemolytic disease exhibited abnormal elevations in TBA, IgG1, IgG2a, IgG2b, IgG3, and IgG4 levels when compared to healthy newborns. Additionally, differences in metabolite contents were also observed. N, N-DIMETHYLARGININE showed negative correlations with TBA, IgG1, IgG2a, IgG2b, IgG3, and IgG4, while 2-HYDROXYBUTYRATE, AMINOISOBUTANOATE, Inosine, and ALLYL ISOTHIOCYANATE exhibited positive correlations with TBA, IgG1, IgG2a, IgG2b, IgG3, and IgG4. Through metabolomics-based research, we have discovered associations between differential metabolites and different IgG isoforms during the onset of HDN. CONCLUSION: These findings suggest that changes in metabolite and IgG isoform levels are linked to HDN. Understanding the involvement of IgG isoforms and metabolites can provide valuable guidance for the diagnosis and treatment of HDN.


Subject(s)
Immunoglobulin G , Metabolomics , Protein Isoforms , Humans , Immunoglobulin G/blood , Infant, Newborn , Metabolomics/methods , Female , Male , Retrospective Studies , Erythroblastosis, Fetal/blood , Erythroblastosis, Fetal/metabolism , Erythroblastosis, Fetal/diagnosis
3.
Adv Mater ; : e2405184, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38777567

ABSTRACT

Cathode-electrolyte interphase (CEI) is crucial for the reversibility of rechargeable batteries, yet receives less attention compared to solid-electrolyte interphase (SEI). The prevalent weakly-solvating electrolyte is usually proposed from the standing point of obtaining robust SEI, however, the resultant weak ion-solvent interaction gives rise to excessive free solvents and forms thick CEI with high kinetic barriers, which is disadvantageous for interfacial stability at the high working voltage. Herein, a highly-solvating electrolyte is reported to immobilize free solvents by generating stable ternary complexes and facilitate the growth of homogeneous and ultrathin CEI to boost the electrochemical performances of potassium-ion batteries (PIBs). Through time-of-flight secondary ion mass spectrometry and cryogenic transmission electron microscopy, It is revealed that the deliberately coordinated complexes are the key to forming mechanically stable and inorganic-rich CEI with superior diffusion kinetics for high-performing PIBs. Coupling with a K0.5MnO2 cathode and a soft carbon (SC) anode, a high energy density (202.3 Wh kg-1) is achieved with an exceptional cycle lifespan (92.5% capacity retention after 500 cycles) in a SC||K0.5MnO2 full cell, setting new performance benchmarks for PIBs.

4.
ACS Omega ; 9(19): 20927-20936, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38764618

ABSTRACT

Coal shale gas is an important type of shale gas. The microscopic pore size distribution and pore structure characteristics of coal shale determine the macroscopic storage and transportation of coal shale gas. In order to quantitatively characterize the microscopic pore size distribution and pore structure properties of coal shale from a multiscale perspective, the pore size distribution and pore structure of coal shale specimens with different grain sizes were quantitatively characterized using low-temperature N2/CO2 adsorption and high-pressure mercuric pressure methods, taking the coal shale of high-gas mines of the Dongbaowei Mine in the Shuangyashan Basin as the object of study. The pore size distribution fractal pattern and pore structure characteristics of coal shale were quantitatively analyzed by the joint characterization method of the coal shale pore fractal theory and pore size distribution. Relevant experimental studies found the following: (1) The specific surface area and volume of coal shale pores and fractures decrease gradually with the increase in coal shale grain size. (2) The pore size distribution of coal shale has obvious fractal characteristics at the stages of high and low mercury pressures, and the demarcation point of medium and large pores is 55 nm. (3) The difference in pore and fracture structural parameters between coal shale with different grain sizes and the original rock specimens is relatively small, and it is feasible to study the general rules of gas adsorption, desorption, diffusion, and seepage in the pores and fractures of coal shale by using coal shale shapes instead of the original rock specimens.

5.
J Agric Food Chem ; 72(21): 12100-12118, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38748649

ABSTRACT

This study aimed to investigate the chemical components and potential health benefits of the fruits of Cannabis sativa L. Fourteen new phenylpropanamides designated as cannabisin I-XIV (1-14) and 40 known analogs were isolated and characterized via nuclear magnetic resonance spectroscopy, high-resolution electrospray ionization mass spectrometry, and electronic circular dichroism. In vitro bioassay using H2O2-induced PC12 cell damage models demonstrated that hempseeds extract and compounds 1, 3, 15, 26, 30, 36, 41, and 48 exhibited neuroprotective properties. 3,3'-Demethylgrossamide (30) displayed encouraging protection activity, which was further investigated to relieve the oxidative stress and apoptosis of PC12 cells treated with H2O2. The isolation and characterization of these neuroprotective phenylpropanamides from the fruits of C. sativa provide insights into its health-promoting properties as a healthy food and herbal medicine for preventing and treating neurodegenerative diseases, especially Alzheimer's disease.


Subject(s)
Cannabis , Fruit , Neuroprotective Agents , Plant Extracts , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Rats , PC12 Cells , Animals , Fruit/chemistry , Cannabis/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Molecular Structure , Oxidative Stress/drug effects , Apoptosis/drug effects , Amides/chemistry , Amides/pharmacology , Hydrogen Peroxide , Humans
6.
Phytomedicine ; 127: 155487, 2024 May.
Article in English | MEDLINE | ID: mdl-38490078

ABSTRACT

AIM: To extend and form the "Grading of Recommendations Assessment, Development and Evaluation in Traditional Chinese Medicine" (GRADE-TCM). METHODS: Methodologies were systematically reviewed and analyzed concerning evidence-based TCM guidelines worldwide. A survey questionnaire was developed based on the literature review and open-end expert interviews. Then, we performed expert consensus, discussion meeting, opinion collection, external examination, and the GRADE-TCM was formed eventually. RESULTS: 265 Chinese and English TCM guidelines were included and analyzed. Five experts completed the open-end interviews. Ten methodological entries were summarized, screened and selected. One round of consensus was conducted, including a total of 22 experts and 220 valid questionnaire entries, concerning 1) selection of the GRADE, 2) GRADE-TCM upgrading criteria, 3) GRADE-TCM evaluation standard, 4) principles of consensus and recommendation, and 5) presentation of the GRADE-TCM and recommendation. Finally, consensus was reached on the above 10 entries, and the results were of high importance (with voting percentages ranging from 50 % to 81.82 % for "very important" rating) and strong reliability (with the Cr ranging from 0.93 to 0.99). Expert discussion meeting (with 40 experts), opinion collection (in two online platforms) and external examination (with 14 third-party experts) were conducted, and the GRADE-TCM was established eventually. CONCLUSION: GRADE-TCM provides a new extended evidence-based evaluation standard for TCM guidelines. In GRADE-TCM, international evidence-based norms, characteristics of TCM intervention, and inheritance of TCM culture were combined organically and followed. This is helpful for localization of the GRADE in TCM and internationalization of TCM guidelines.


Subject(s)
Evidence-Based Medicine , Medicine, Chinese Traditional , Medicine, Chinese Traditional/methods , Reproducibility of Results , Surveys and Questionnaires
7.
Abdom Radiol (NY) ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38472310

ABSTRACT

PURPOSE: To evaluate and compare the diagnostic performances of whole-lesion iodine map (IM) histogram analysis and single-slice IM measurement in the risk classification of gastrointestinal stromal tumors (GISTs). METHODS: Thirty-seven patients with GISTs, including 19 with low malignant underlying GISTs (LG-GISTs) and 18 with high malignant underlying GISTs (HG-GISTs), were evaluated with dual-energy computed tomography (DECT). Whole-lesion IM histogram parameters (mean; median; minimum; maximum; standard deviation; variance; 1st, 10th, 25th, 50th, 75th, 90th, and 99th percentile; kurtosis, skewness, and entropy) were computed for each lesion. In other sessions, iodine concentrations (ICs) were derived from the IM by placing regions of interest (ROIs) on the tumor slices and normalizing them to the iodine concentration in the aorta. Both quantitative analyses were performed on the venous phase images. The diagnostic accuracies of the two methods were assessed and compared. RESULTS: The minimum, maximum, 1st, 10th, and 25th percentile of the whole-lesion IM histogram and the IC and normalized IC (NIC) of the single-slice IC measurement significantly differed between LG- and HG-GISTs (p < 0.001 - p = 0.042). The minimum value in the histogram analysis (AUC = 0.844) and the NIC in the single-slice measurement analysis (AUC = 0.886) showed the best diagnostic performances. The NIC of single-slice measurements had a diagnostic performance similar to that of the whole-lesion IM histogram analysis (p = 0.618). CONCLUSIONS: Both whole-lesion IM histogram analysis and single-slice IC measurement can differentiate LG-GISTs and HG-GISTs with similar diagnostic performances.

8.
Sci Rep ; 14(1): 5566, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448463

ABSTRACT

The micro-scale gas adsorption-desorption characteristics determine the macro-scale gas transport and production behavior. To reveal the three-dimensional stress state-induced gas adsorption-desorption characteristics in coal-bearing shale reservoirs from a micro-scale perspective, the coal-bearing shale samples from the Dongbaowei Coal Mine in the Shuangyashan Basin were chosen as the research subject. Isothermal adsorption-desorption experiments under three-dimensional stress state were conducted using the low field nuclear magnetic resonance (L-NMR) T2 spectrum method to simulate the in-situ coal-bearing shale gas adsorption-desorption process. The average effective stress was used as the equivalent stress indicator for coal-bearing shale, and the integral of nuclear magnetic resonance T2 spectrum amplitude was employed as the gas characterization indicator for coal-bearing shale. A quantitative analysis was performed to examine the relationship between gas adsorption in coal-bearing shale and the average effective stress. And a quantitative analysis was performed to examine the relationship between the macroscopic and microscopic gas quantities of coal-bearing shale. Experimental findings: (1) The adsorption-desorption process of coal-bearing shale gas follows the L-F function model and the D-A-d function model respectively with respect to the amount of gas and the average effective stress. (2) There is a logarithmic relationship between the macroscopic and microscopic gas quantities of coal-bearing shale during the adsorption-desorption process. This quantitatively characterizes the differences in the curves, which may be related to the elastic-plastic deformation, damage and fracture of the micropores in coal-bearing shale, as well as the hysteresis of gas desorption and the stress field of the gas occurrence state.

9.
Biomed Opt Express ; 15(2): 506-523, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38404328

ABSTRACT

As endoscopic imaging technology advances, there is a growing clinical demand for enhanced imaging capabilities. Although conventional white light imaging (WLI) endoscopy offers realistic images, it often cannot reveal detailed characteristics of the mucosa. On the other hand, optical staining endoscopy, such as Compound Band Imaging (CBI), can discern subtle structures, serving to some extent as an optical biopsy. However, its image brightness is low, and the colors can be abrupt. These two techniques, commonly used in clinical settings, have complementary advantages. Nonetheless, they require different lighting conditions, which makes it challenging to combine their imaging strengths on living tissues. In this study, we introduce a novel endoscopic imaging technique that effectively combines the advantages of both WLI and CBI. Doctors don't need to manually switch between these two observation modes, as they can obtain the image information of both modes in one image. We calibrated an appropriate proportion for simultaneous illumination with the light required for WLI and CBI. We designed a new illumination spectrum tailored for gastrointestinal examination, achieving their fusion at the optical level. Using a new algorithm that focuses on enhancing specific hemoglobin tissue features, we restored narrow-band image characteristics lost due to the introduction of white light. Our hardware and software innovations not only boost the illumination brightness of the endoscope but also ensure the narrow-band feature details of the image. To evaluate the reliability and safety of the new endoscopic system, we conducted a series of tests in line with relevant international standards and validated the design parameters. For clinical trials, we collected a total of 256 sets of images, each set comprising images of the same lesion location captured using WLI, CBI, and our proposed method. We recruited four experienced clinicians to conduct subjective evaluations of the collected images. The results affirmed the significant advantages of our method. We believe that the novel endoscopic system we introduced has vast potential for clinical application in the future.

10.
Chemistry ; 30(25): e202303989, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38345999

ABSTRACT

Benzobicyclo[3.2.1]octane is a cage-like unique motif containing a bicyclo[3.2.1]octane structure fused with at least one benzene ring. It is found in various natural products that exhibit structural complexities and important biological activities. The total synthesis of natural products possessing this challenging structure has received considerable attention, and great advances have been made in this field during the past 15 years. This review summarizes thus far achieved chemical syntheses and synthetic studies of natural compounds featuring the benzobicyclo[3.2.1]octane core. It focuses on strategic approaches constructing the bridged structure, aiming to provide a useful reference for inspiring further advancements in strategies and total syntheses of natural products with such a framework.

11.
ChemSusChem ; : e202301719, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38411399

ABSTRACT

The electroreduction of CO2 to high-value products is a promising approach for achieving carbon neutrality. Among these products, formic acid stands out as having the most potential for industrialization due to its optimal economic value in terms of consumption and output. In recent years, the Faraday efficiency of formic acid from CO2 electroreduction has reached 90~100 %. However, this high selectivity cannot be maintained for extended periods under high currents to meet industrial requirements. This paper reviews excellent work from the perspective of catalyst stability, summarizing and discussing the performance of typical catalysts. Strategies for preparing stable and highly active catalysts are also briefly described. This review may offer a useful data reference and valuable guidance for the future design of long-stability catalysts.

12.
J Am Chem Soc ; 146(7): 4433-4443, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38329948

ABSTRACT

Potassium-sulfur (K-S) batteries are severely limited by the sluggish kinetics of the solid-phase conversion of K2S3/K2S2 to K2S, the rate-determining and performance-governing step, which urgently requires a cathode with facilitated sulfur accommodation and improved catalytic efficiency. To this end, we leverage the orbital-coupling approach and herein report a strong d-π coupling catalytic configuration of single-atom Co anchored between two alkynyls of graphdiyne (Co-GDY). The d-π orbital coupling of the Co-C4 moiety fully redistributes electrons two-dimensionally across the GDY, and as a result, drastically accelerates the solid-phase K2S3/K2S2 to K2S conversion and enhances the adsorption of sulfur species. Applied as the cathode, the S/Co-GDY delivered a record-high rate performance of 496.0 mAh g-1 at 5 A g-1 in K-S batteries. In situ and ex situ characterizations coupling density functional theory (DFT) calculations rationalize how the strong d-π orbital coupling of Co-C4 configuration promotes the reversible solid-state transformation kinetics of potassium polysulfide for high-performance K-S batteries.

13.
Angew Chem Int Ed Engl ; 63(11): e202319108, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38196079

ABSTRACT

Engineering isolated metal sites resembling the primary coordination sphere of metallocofactors enables atomically dispersed materials as promising nanozymes. However, most existing nanozymes primarily focus on replicating specific metallocofactors while neglecting other supporting cofactors within active pockets, leading to reduced electron transfer (ET) efficiency and thus inferior catalytic performances. Herein, we report a metal-organic framework UiO-67 nanozyme with atomically dispersed iron sites, which involves multiple tailored enzyme-like nanocofactors that synergistically drive the ET process for enhanced peroxidase-like catalysis. Among them, the linker-coupled atomic iron site plays a critical role in substrate activation, while bare linkers and zirconia nodes facilitate the ET efficiency of intermediates. The synergy of three nanocofactors results in a 4.29-fold enhancement compared with the single effort of isolated metal site-based nanocofactor, holding promise in immunoassay for sensitive detection of chlorpyrifos. This finding opens a new way for designing high-performance nanozymes by harmonizing various nanocofactors at the atomic and molecular scale.


Subject(s)
Oxidoreductases , Peroxidase , Peroxidases , Iron/chemistry , Catalysis
14.
Small ; : e2310469, 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38282141

ABSTRACT

Water splitting (or, water electrolysis) is considered as a promising approach to produce green hydrogen and relieve the ever-increasing energy consumption as well as the accompanied environmental impact. Development of high-efficiency, low-cost practical water-splitting systems demands elegant design and fabrication of catalyst-loaded electrodes with both high activity and long-life time. To this end, dimensional engineering strategies, which effectively tune the microstructure and activity of electrodes as well as the electrochemical kinetics, play an important role and have been extensively reported over the past years. Here, a type of most investigated electrode configurations is reviewed, combining particulate catalysts with 3D porous substrates (aerogels, metal foams, hydrogels, etc.), which offer special advantages in the field of water splitting. It is analyzed the design principles, structural and interfacial characteristics, and performance of particle-3D substrate electrode systems including overpotential, cycle life, and the underlying mechanism toward improved catalytic properties. In particular, it is also categorized the catalysts as different dimensional particles, and show the importance of building hybrid composite electrodes by dimensional control and engineering. Finally, present challenges and possible research directions toward low-cost high-efficiency water splitting and hydrogen production is discussed.

15.
Int J Comput Assist Radiol Surg ; 19(2): 331-344, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37603164

ABSTRACT

PURPOSE: White light imaging (WLI) is a commonly seen examination mode in endoscopy. The particular light in compound band imaging (CBI) can highlight delicate structures, such as capillaries and tiny structures on the mucosal surface. These two modes complement each other, and doctors switch between them manually to complete the examination. This paper proposes an endoscopy image fusion system to combine WLI and CBI. METHODS: We add a real-time rotatable color wheel in the light source device of the AQ-200 endoscopy system to achieve rapid imaging of two modes at the same position of living tissue. The two images corresponding to the pixel level can avoid registration and lay the foundation for image fusion. We propose a multi-scale image fusion framework, which involves Laplacian pyramid (LP) and convolutional sparse representation (CSR) and strengthens the details in the fusion rule. RESULTS: Volunteer experiments and ex vivo pig stomach trials are conducted to verify the feasibility of our proposed system. We also conduct comparative experiments with other image fusion methods, evaluate the quality of the fused images, and verify the effectiveness of our fusion framework. The results show that our fused image has rich details, high color contrast, apparent structures, and clear lesion boundaries. CONCLUSION: An endoscopy image fusion system is proposed, which does not change the doctor's operation and makes the fusion of WLI and CBI optical staining technology a reality. We change the light source device of the endoscope, propose an image fusion framework, and verify the feasibility and effectiveness of our scheme. Our method fully integrates the advantages of WLI and CBI, which can help doctors make more accurate judgments than before. The endoscopy image fusion system is of great significance for improving the detection rate of early lesions and has broad application prospects.


Subject(s)
Endoscopy, Gastrointestinal , Endoscopy , Humans , Animals , Swine , Light , Narrow Band Imaging/methods
16.
J Colloid Interface Sci ; 658: 137-147, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38100970

ABSTRACT

Hydrogel-based functional materials had attracted great attention in the fields of artificial intelligence, soft robotics, and motion monitoring. However, the gelation of hydrogels induced by free radical polymerization typically required heating, light exposure, and other conditions, limiting their practical applications and development in real-life scenarios. In this study, a simple and direct method was proposed to achieve rapid gelation at room temperature by incorporating reductive MXene sheets in conjunction with metal ions into the chitosan network and inducing the formation of a polyacrylamide network in an extremely short time (10 s). This resulted in a dual-network MXene-crosslinked conductive hydrogel composite that exhibited exceptional stretchability (1350 %), remarkably low dissipated energy (0.40 kJ m-3 at 100 % strain), high sensitivity (GF = 2.86 at 300-500 % strain), and strong adhesion to various substrate surfaces. The study demonstrated potential applications in the reliable detection of various motions, including repetitive fine movements and large-scale human body motions. This work provided a feasible platform for developing integrated wearable health-monitoring electronic systems.


Subject(s)
Chitosan , Nitrites , Transition Elements , Wearable Electronic Devices , Humans , Hydrogels , Artificial Intelligence , Electric Conductivity
17.
J Am Chem Soc ; 145(39): 21432-21441, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37728051

ABSTRACT

Although dispersing Pt atomic clusters (ACs) on a conducting support is a promising way to minimize the Pt amount required in hydrogen evolution reaction (HER), the catalytic mass activity and durability of Pt ACs are often unsatisfactory for alkaline HER due to their unfavorable water dissociation and challenges in stabilizing them against agglomeration and detachment. Herein, we report a class of single-atom Cr-N4 sites with high oxophilicity interfaced with Pt ACs on mesoporous carbon for achieving a highly active and stable alkaline HER in an anion-exchange-membrane water electrolyzer (AEMWE). The as-made catalyst achieves the highest reported Pt mass activity (37.6 times higher than commercial Pt/C) and outstanding operational stability. Experimental and theoretical studies elucidate that the formation of a unique Pt-Cr quasi-covalent bonding interaction at the interface of Cr-N4 sites and Pt ACs effectively suppresses the migration and thermal vibration of Pt atoms to stabilize Pt ACs and contributes to the greatly enhanced catalytic stability. Moreover, oxophilic Cr-N4 sites adjacent to Pt ACs with favorable adsorption of hydroxyl species facilitate nearly barrierless water dissociation and thus enhance the HER activity. An AEMWE using this catalyst (with only 50 µgPt cm-2) can operate stably at an industrial-level current density of 500 mA cm-2 at 1.8 V for >100 h with a small degradation rate of 90 µV h-1.

18.
Nat Commun ; 14(1): 6064, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37770453

ABSTRACT

Neurotoxicity of organophosphate compounds (OPs) can catastrophically cause nervous system injury by inhibiting acetylcholinesterase (AChE) expression. Although artificial systems have been developed for indirect neuroprotection, they are limited to dissociating P-O bonds for eliminating OPs. However, these systems have failed to overcome the deactivation of AChE. Herein, we report our finding that Al3+ is engineered onto the nodes of metal-organic framework to synthesize MOF-808-Al with enhanced Lewis acidity. The resultant MOF-808-Al efficiently mimics the catalytic behavior of AChE and has a self-defense ability to break the activity inhibition by OPs. Mechanism investigations elucidate that Al3+ Lewis acid sites with a strong polarization effect unite the highly electronegative -OH groups to form the enzyme-like catalytic center, resulting in superior substrate activation and nucleophilic attack ability with a 2.7-fold activity improvement. The multifunctional MOF-808-Al, which has satisfactory biosafety, is efficient in reducing neurotoxic effects and preventing neuronal tissue damage.


Subject(s)
Acetylcholinesterase , Biomimetics , Acetylcholinesterase/chemistry , Neuroprotection , Organophosphates
19.
Hum Vaccin Immunother ; 19(2): 2236538, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37530139

ABSTRACT

To evaluated the risk ratio of Allergic rhinitis (AR) people on the symptoms after COVID-19 infection, and explored the relationship between AR and the symptoms after COVID-19 infection. An observational study was performed of people from outpatient department of the Hospital of Chengdu University of Chinese Medicine. Participants completed an electronic survey and between January 10 to January 20, 2023. We divided the participants into three groups according to the disease information of the population: non-AR people group (AR-N), AR patients with sublingual immunotherapy group (AR-S), and AR patients with conventional therapy group (AR-C). A total of 1116 participants were included in the study, with an average age of 21.76 ± 8.713, women accounted for 62.5%, men accounted for 37.5%. The final results showed that the risk of most symptoms after AR-C infection was not different from that of AR-N, except for sore throat, dry and itchy, chest distress, shortness of breath, and dyspnea. AR-S could effectively reduce the risk of post-infection symptoms including: dry and itchy (OR = 0.484, 95%CI: 0.335-0.698), pain (OR = 0.513, 95%CI:0.362-0.728), cough (OR = 0.506, 95% CI:0.341-0.749), expectoration (OR = 0.349, 95% CI:0.244-0.498), fever (OR = 0.569, 95% CI:0.379-0.853), head and body pain (OR = 0.456, 95% CI:0.323-0.644), fatigue (OR = 0.256, 95% CI:0.177-0.371), cold limbs (OR = 0.325, 95%CI:0.227-0.465), diarrhea (OR = 0.246, 95% CI:0.132-0.457), constipation (OR = 0.227, 95%CI:0.100-0.513), hyposmia (OR = 0.456, 95% CI:0.296-0.701), hypogeusia (OR = 0.397, 95% CI:0.259-0.607), chest distress (OR = 0.534, 95% CI:0.343-0.829), shortness of breath (OR = 0.622, 95% CI:0.398-0.974), palpitations (OR = 0.355, 95% CI:0.206-0.613). The risk of symptoms after COVID-19 infection in allergic rhinitis population receiving sublingual immunotherapy is lower.


Subject(s)
COVID-19 , Rhinitis, Allergic , Sublingual Immunotherapy , Male , Humans , Female , Adolescent , Young Adult , Adult , Sublingual Immunotherapy/adverse effects , Sublingual Immunotherapy/methods , COVID-19/therapy , Rhinitis, Allergic/therapy , Dyspnea/etiology , Pain/etiology
20.
Front Pediatr ; 11: 1228737, 2023.
Article in English | MEDLINE | ID: mdl-37601128

ABSTRACT

Background: Allergic rhinitis is a chronic and refractory disease that can be affected by a variety of factors. Studies have shown an association between cesarean section and the risk of pediatric allergic rhinitis. Methods: The PubMed, Springer, Embase, Cochrane Library, and Web of Science databases were searched to retrieve all studies published from January 2000 to November 2022, focusing on the relationship between cesarean section and the risk of pediatric allergic rhinitis. A meta-analysis was conducted to find a correlation between cesarean section and the risk of pediatric allergic rhinitis. A subgroup analysis was performed, considering the region and family history of allergy, after adjusting for confounding factors. Pooled odds ratios (ORs) were calculated, publication bias was assessed using a funnel plot, and heterogeneity between study-specific relative risks was taken into account. Results: The results showed that cesarean section was significantly associated with an increased risk of pediatric allergic rhinitis (OR: 1.27, 95% CI: 1.20-1.35). Subgroup analysis stratified by region indicated that cesarean section increased the risk of pediatric allergic rhinitis, with the highest increase in South America (OR: 1.67, 95% CI: 1.10-2.52) and the lowest in Europe (OR: 1.13, 95% CI: 1.02-1.25). The results of the subgroup analysis stratified by family history of allergy indicate that family history of allergy was not associated with the risk of pediatric allergic rhinitis. Conclusion: An association exists between cesarean section as the mode of delivery and the increased risk of pediatric allergic rhinitis, and cesarean section is a risk factor for allergic rhinitis.

SELECTION OF CITATIONS
SEARCH DETAIL
...