Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Opt Express ; 32(10): 16809-16822, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38858878

ABSTRACT

The X-ray sources for Compton radiography of ICF experiments are generated by using intense picosecond lasers to irradiate wire targets. The wire diameter must be designed thin enough, for example ∼ 10 µm in many published works, to comply a high spatial resolution. This results in a low laser-target interception, which limits the photon yield. We investigated a technique of coded-source radiography based on laser-driven annular sources via Monte Carlo and PIC simulations. The annular X-ray source is formed by laser irradiating tube target in which the effect of electron recirculation plays an important role. We proved that this technique has an increased spatial resolution and contrast than that using the Gaussian source produced by wire targets. Therefore, the diameter of the backlighter target can be significantly increased to uplift laser-target interception without compromising on spatial resolution. This contributes towards a reconciliation between the spatial resolution and photon yield for Compton radiography. The results predict the possibility of improving source photon yield by several times in future experiments.

2.
J Comput Phys ; 4502022 Feb 01.
Article in English | MEDLINE | ID: mdl-35355617

ABSTRACT

The dynamics of thin, membrane-like structures are ubiquitous in nature. They play especially important roles in cell biology. Cell membranes separate the inside of a cell from the outside, and vesicles compartmentalize proteins into functional microregions, such as the lysosome. Proteins and/or lipid molecules also aggregate and deform membranes to carry out cellular functions. For example, some viral particles can induce the membrane to invaginate and form an endocytic vesicle that pulls the virus into the cell. While the physics of membranes has been extensively studied since the pioneering work of Helfrich in the 1970's, simulating the dynamics of large scale deformations remains challenging, especially for cases where the membrane composition is spatially heterogeneous. Here, we develop a general computational framework to simulate the overdamped dynamics of membranes and vesicles. We start by considering a membrane with an energy that is a generalized functional of the shape invariants and also includes line discontinuities that arise due to phase boundaries. Using this energy, we derive the internal restoring forces and construct a level set-based algorithm that can stably simulate the large-scale dynamics of these generalized membranes, including scenarios that lead to membrane fission. This method is applied to solve for shapes of single-phase vesicles using a range of reduced volumes, reduced area differences, and preferred curvatures. Our results match well the experimentally measured shapes of corresponding vesicles. The method is then applied to explore the dynamics of multiphase vesicles, predicting equilibrium shapes and conditions that lead to fission near phase boundaries.

3.
Rev Sci Instrum ; 89(11): 115106, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30501278

ABSTRACT

The dynamic fragmentation of shock-loaded high-Z metal is of considerable importance for both basic and applied science. The areal density and mass-velocity distribution of dynamic fragmentation are crucial factors in understanding this issue. Experimental methods, such as pulsed X-ray radiography and proton radiography, have been utilized to obtain information on such factors; however, they are restricted to a complex device, and the spatial resolution is in the order of 100 µm. In this work, we present the high-quality radiography of the dynamic fragmentation of laser shock-loaded tin, with good two-dimensional (2D) spatial resolution. Dynamic fragmentation is generated via high-intensity ns-laser shock-loaded tin. A high-energy X-ray source in the 50-200 keV range is realized by the interaction of a high-intensity ps-pulse with an Au microwire target, attached to a low-Z substrate material. A high 2D resolution of 12 µm is achieved by point-projection radiography. The dynamic-fragmentation radiography is clear, and the signal-to-noise ratio is sufficiently high for a single-shot experiment. This unique technique has potential application in high-energy density experiments.

4.
Rev Sci Instrum ; 83(11): 113505, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23206060

ABSTRACT

Monte-Carlo simulation of neutron coded imaging based on encoding aperture for Z-pinch of large field-of-view with 5 mm radius has been investigated, and then the coded image has been obtained. Reconstruction method of source image based on genetic algorithms (GA) has been established. "Residual watermark," which emerges unavoidably in reconstructed image, while the peak normalization is employed in GA fitness calculation because of its statistical fluctuation amplification, has been discovered and studied. Residual watermark is primarily related to the shape and other parameters of the encoding aperture cross section. The properties and essential causes of the residual watermark were analyzed, while the identification on equivalent radius of aperture was provided. By using the equivalent radius, the reconstruction can also be accomplished without knowing the point spread function (PSF) of actual aperture. The reconstruction result is close to that by using PSF of the actual aperture.


Subject(s)
Algorithms , Image Processing, Computer-Assisted/methods , Models, Genetic , Monte Carlo Method , Neutrons , Genetic Fitness
SELECTION OF CITATIONS
SEARCH DETAIL