Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 649
Filter
1.
Chem Biol Interact ; 400: 111182, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39098740

ABSTRACT

Depression is a severe mental illness affecting patient's physical and mental health. However, long-term effects of existing therapeutic modalities for depression are not satisfactory. Geniposide is an iridoid compound highly expressed in gardenia jasminoides for removing annoyance. The activity of geniposide against depression has been widely studied while most studies concentrated on the expression levels of gene and protein. Herein, the aim of the present study was to employ non-target metabolomic platform of serum to investigate metabolic changes of depression mice and further verify in hippocampus for analyzing the antidepressant mechanism of geniposide. Then we discovered that 9 metabolites of serum were significantly increased in depressive group (prostaglandin E2, leukotriene C4, arachidonic acid, phosphatidylcholine (PC, 16:0/16:0), LysoPC (18:1 (9Z)/0:0), phosphatidylethanolamine (14:0/16:0), creatine, oleamide and aminomalonic acid) and 6 metabolites were decreased (indoxylsulfuric acid, testosterone, lactic acid, glucose 6-phosphate, leucine and valine). The levels of arachidonic acid, LysoPC, lactic acid and glucose 6-phosphate in hippocampus were consistent change with serum in depression mice. Most of them showed significant tendencies to be normal by geniposide treatment. Metabolic pathway analysis indicated that arachidonic acid metabolism and glucose metabolism were the main pathogenesis for the antidepressant effect of geniposide. In addition, the levels of serum tumor necrosis factor-α and interleukin-1 were increased in depressive mice and reversed after geniposide treatment. This study revealed that abnormal metabolism of inflammatory response and glucose metabolism of the serum and hippocampus involved in the occurrence of depressive disorder and antidepressant effect of geniposide.


Subject(s)
Antidepressive Agents , Depression , Disease Models, Animal , Glucose , Hippocampus , Inflammation , Iridoids , Animals , Iridoids/pharmacology , Iridoids/therapeutic use , Depression/drug therapy , Depression/metabolism , Mice , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Male , Hippocampus/metabolism , Hippocampus/drug effects , Inflammation/drug therapy , Inflammation/metabolism , Glucose/metabolism , Metabolomics
2.
Small ; : e2405126, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39106227

ABSTRACT

Biomass-encapsulated liquid metals (LMs) composite gels have aroused tremendous attention as epidermal smart materials due to their biocompatibility and sustainability. However, they can still not simultaneously possess toughness, adhesion, and recoverability. In this work, the tough, sticky, and recyclable protein-encapsulated LMs organogels (GLMx) are fabricated through the micro-interfacial stabilization of LMs by lignin and the following preparation of food-making inspired gels. With the help of lignin modification, the LMs micro-drops demonstrated uniform dispersion in the protein matrix, as well as dense non-covalent interactions (e.g., H─bond and hydrophobic interaction) with amino acid residues in peptide chains, which endowed the GLMx with high conductivity (≈5.4 S m-1), toughness (≈738.2 kJ m-3), self-adhesiveness (a maximal lap-shear strength of ≈58.3 kPa), and recoverability. By tightly adhering onto human skin, the GLMx can act as epidermal sensors to detect drastic (e.g., joint bending) and subtle body movements (e.g., swallowing) and even recognize handwriting and speaking in real-time. Moreover, the organogels can also harvest solar energy and convert it into heat and electricity, which is promising in self-powered intelligent devices. Thus, this work paves a facile way to prepare protein/LMs composite organogels that are suitable for multiple applications like healthcare, human-robot interactions, and solar energy conversion.

3.
Adv Healthc Mater ; : e2400466, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39091049

ABSTRACT

Chemical topology provides a unique dimension for making therapeutic protein bioconjugates with native structure and intact function, yet the effects of topology remain elusive. Herein, the design, synthesis, and characterization of therapeutic protein bioconjugates in three topologies (i.e., tadpole, macrocycle, and figure-of-eight), are reported. The interferon α2b (IFN) and albumin binding domain (ABD) are selected as the model proteins for bioconjugation and proof-of-concept. The biosynthesis of these topological isoforms is accomplished via direct expression in cells using SpyTag-SpyCatcher chemistry and/or split-intein-mediated ligation for topology diversification. The corresponding topologies are proven with combined techniques of LC-MS, SDS-PAGE, and controlled proteolytic digestion. While the properties of these topological isoforms are similar in most cases, the figure-of-eight-shaped bioconjugate, f8-IFN-ABD, exhibits the best thermal stability and anti-aggregation properties along with prolonged half-life and enhanced tumor retention relative to the tadpole-shaped control, tadp-IFN-ABD, and the macrocyclic control, c-IFN-ABD, showcasing considerable topological effects. The work expands the topological diversity of proteins and demonstrates the potential advantages of leveraging chemical topology for functional benefits beyond multi-function integration in protein therapeutics.

4.
Sci Adv ; 10(32): eadp1890, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39110806

ABSTRACT

Surface charges play a fundamental role in physics and chemistry, in particular in shaping the catalytic properties of nanomaterials. However, tracking nanoscale surface charge dynamics remains challenging due to the involved length and time scales. Here, we demonstrate time-resolved access to the nanoscale charge dynamics on dielectric nanoparticles using reaction nanoscopy. We present a four-dimensional visualization of the spatiotemporal evolution of the charge density on individual SiO2 nanoparticles under strong-field irradiation with femtosecond-nanometer resolution. The initially localized surface charges exhibit a biexponential redistribution over time. Our findings reveal the influence of surface charges on surface molecular bonding through quantum dynamical simulations. We performed semi-classical simulations to uncover the roles of diffusion and charge loss in the surface charge redistribution process. Understanding nanoscale surface charge dynamics and its influence on chemical bonding on a single-nanoparticle level unlocks an increased ability to address global needs in renewable energy and advanced health care.

5.
Heliyon ; 10(12): e32404, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975165

ABSTRACT

To ensure secure and flexible data sharing in cloud storage, attribute-based encryption (ABE) is introduced to meet the requirements of fine-grained access control and secure one-to-many data sharing. However, the computational burden imposed by attribute encryption renders it unsuitable for resource-constrained environments such as the Internet of Things (IoT) and edge computing. Furthermore, the issue of accountability for illegal keys is crucial, as authorized users may actively disclose or sell authorization keys for personal gain, and keys may also passively leak due to management negligence or hacking incidents. Additionally, since all authorization keys are generated by the attribute authorization center, there is a potential risk of unauthorized key forgery. In response to these challenges, this paper proposes an efficient and accountable leakage-resistant scheme based on attribute encryption. The scheme adopts more secure online/offline encryption mechanisms and cloud server-assisted decryption to alleviate the computational burden on resource-constrained devices. For illegal keys, the scheme supports accountability for both users and the authorization center, allowing the revocation of decryption privileges for malicious users. In the case of passively leaked keys, timely key updates and revocation of decryption capabilities for leaked keys are implemented. Finally, the paper provides selective security and accountability proofs for the scheme under standard models. Efficiency analysis and experimental results demonstrate that the proposed scheme enhances encryption/decryption efficiency, and the storage overhead for accountability is also extremely low.

6.
BMC Plant Biol ; 24(1): 626, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961401

ABSTRACT

BACKGROUND: The calmodulin (CaM) and calmodulin-like (CML) proteins play regulatory roles in plant growth and development, responses to biotic and abiotic stresses, and other biological processes. As a popular fruit and ornamental crop, it is important to explore the regulatory mechanism of flower and fruit development of passion fruit. RESULTS: In this study, 32 PeCaM/PeCML genes were identified from passion fruit genome and were divided into 9 groups based on phylogenetic analysis. The structural analysis, including conserved motifs, gene structure and homologous modeling, illustrates that the PeCaM/PeCML in the same subgroup have relative conserved structural features. Collinearity analysis suggested that the expansion of the CaM/CML gene family likely took place mainly by segmental duplication, and the whole genome replication events were closely related with the rapid expansion of the gene group. PeCaM/PeCMLs were potentially required for different floral tissues development. Significantly, PeCML26 had extremely high expression levels during ovule and fruit development compared with other PeCML genes, suggesting that PeCML26 had potential functions involved in the development of passion fruit flowers and fruits. The co-presence of various cis-elements associated with growth and development, hormone responsiveness, and stress responsiveness in the promoter regions of these PeCaM/PeCMLs might contribute to their diverse regulatory roles. Furthermore, PeCaM/PeCMLs were also induced by various abiotic stresses. This work provides a comprehensive understanding of the CaM/CML gene family and valuable clues for future studies on the function and evolution of CaM/CML genes in passion fruit. CONCLUSION: A total of 32 PeCaM/PeCML genes were divided into 9 groups. The PeCaM/PeCML genes showed differential expression patterns in floral tissues at different development stages. It is worth noting that PeCML26, which is highly homologous to AtCaM2, not only interacts with multiple BBR-BPC TFs, but also has high expression levels during ovule and fruit development, suggesting that PeCML26 had potential functions involved in the development of passion fruit flowers and fruits. This research lays the foundation for future investigations and validation of the potential function of PeCaM/PeCML genes in the growth and development of passion fruit.


Subject(s)
Calmodulin , Flowers , Fruit , Passiflora , Phylogeny , Plant Proteins , Passiflora/genetics , Passiflora/growth & development , Flowers/genetics , Flowers/growth & development , Flowers/metabolism , Fruit/genetics , Fruit/growth & development , Fruit/metabolism , Calmodulin/genetics , Calmodulin/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Genome, Plant , Genes, Plant , Gene Expression Profiling
7.
Ren Fail ; 46(2): 2383727, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39082753

ABSTRACT

INTRODUCTION: Chronic kidney disease is a growing health issue, and the options of prevention and therapy remain limited. Although a number of observational studies have linked higher Lp(a) [lipoprotein(a)] levels to the kidney impairment, the causal relationship remains to be determined. The purpose of this study was to assess the causal association between Lp(a) levels and CKD. METHODS: We selected eight single-nucleotide polymorphisms (SNPs) significantly associated with Lp(a) levels as instrumental variables. Genome-wide association study (GWAS) from CKDGen consortium yielded the summary data information for CKD. We designed the bidirectional two-sample Mendelian randomization (MR) analyses. The estimates were computed using inverse-variance weighted (IVW), simple median, weighted median, and maximum likelihood. MR-Egger regression was used to detect pleiotropy. RESULTS: Fixed-effect IVW analysis indicated that genetically predicted Lp(a) levels were associated with CKD significantly (odds ratio, 1.039; 95% CI, 1.009-1.069; p = 0.010). The SNPs showed no pleiotropy according to result of MR-Egger test. Results from sensitivity analyses were consistent. In the inverse MR analysis, random-effect IVW method showed CKD had no causal effect on the elevated Lp(a) (odds ratio, 1.154; 95% CI, 0.845-1.576; p = 0.367). CONCLUSION: In this bidirectional two-sample MR analysis, the causal deteriorating effects of genetically predicted plasma Lp(a) levels on the risk of CKD were identified. On the contrary, there is no evidence to support a causal effect of CKD on Lp(a) levels.


Subject(s)
Genome-Wide Association Study , Lipoprotein(a) , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Renal Insufficiency, Chronic , Humans , Lipoprotein(a)/blood , Lipoprotein(a)/genetics , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/blood , White People/genetics , Genetic Predisposition to Disease , Risk Factors
8.
Int J Appl Earth Obs Geoinf ; 131: 103949, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38993519

ABSTRACT

Timely and precise detection of emerging infections is imperative for effective outbreak management and disease control. Human mobility significantly influences the spatial transmission dynamics of infectious diseases. Spatial sampling, integrating the spatial structure of the target, holds promise as an approach for testing allocation in detecting infections, and leveraging information on individuals' movement and contact behavior can enhance targeting precision. This study introduces a spatial sampling framework informed by spatiotemporal analysis of human mobility data, aiming to optimize the allocation of testing resources for detecting emerging infections. Mobility patterns, derived from clustering point-of-interest and travel data, are integrated into four spatial sampling approaches at the community level. We evaluate the proposed mobility-based spatial sampling by analyzing both actual and simulated outbreaks, considering scenarios of transmissibility, intervention timing, and population density in cities. Results indicate that leveraging inter-community movement data and initial case locations, the proposed Case Flow Intensity (CFI) and Case Transmission Intensity (CTI)-informed spatial sampling enhances community-level testing efficiency by reducing the number of individuals screened while maintaining a high accuracy rate in infection identification. Furthermore, the prompt application of CFI and CTI within cities is crucial for effective detection, especially in highly contagious infections within densely populated areas. With the widespread use of human mobility data for infectious disease responses, the proposed theoretical framework extends spatiotemporal data analysis of mobility patterns into spatial sampling, providing a cost-effective solution to optimize testing resource deployment for containing emerging infectious diseases.

9.
J Hazard Mater ; 476: 135112, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38981234

ABSTRACT

In light of the significant risks that mycotoxins posed to public health and environmental safety, this research developed an adsorbent MIPs/Apt/AuNPs@ZIF-67 (MA-AZ) utilizing a dual-recognition approach combining molecularly imprinted polymers (MIPs) and aptamer (Apt). This innovative method enabled the effective and highly selective recognition and enrichment of ochratoxin A (OTA). ZIF-67 was utilized as a carrier with a substantial specific surface area, and gold nanoparticles (AuNPs) were loaded on its surface to fix the thiol-modified Apt on the surface of the carrier. Then, an initiator was used to initiate a polymerization reaction, and the generated MIPs coated Apt/AuNPs@ZIF-67, thereby synthesizing the MA-AZ with a "synergistic recognition" effect. The Apt significantly increased the number of recognition sites within the imprinted cavities, and MIPs played roles in identifying targets, fixing and protecting Apt. The combination of the both produced the effect of "1+1>2". The study on the adsorption performance of MA-AZ found that the adsorption capacity of MA-AZ could reach 65.1 mg/g, and the imprinted factor was 5.48. In addition, MA-AZ exhibited excellent stability, specificity, reusability and recovery rate. Thus, this study offers valuable insights for the recognition and enrichment of hazardous substances, and helps to promote the rapid development of safety detection.


Subject(s)
Aptamers, Nucleotide , Gold , Metal Nanoparticles , Molecularly Imprinted Polymers , Ochratoxins , Ochratoxins/chemistry , Ochratoxins/analysis , Aptamers, Nucleotide/chemistry , Adsorption , Molecularly Imprinted Polymers/chemistry , Metal Nanoparticles/chemistry , Gold/chemistry , Molecular Imprinting , Limit of Detection , Solid Phase Extraction/methods
10.
J Craniofac Surg ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953580

ABSTRACT

Condylar is one of the most vulnerable sites to be traumatized in pediatric mandible fracture, while temporomandibular joint ankylosis might be the most severe complication of condylar fracture in children. There exists a long-time controversy on the treatment of condylar fractures in children. Considering the risk of facial nerve injury and a certain probability of absorption or even ankylosis after open reduction and internal fixation (ORIF) of condylar fractures, a series of nonsurgical approaches are preferred in cases without severe malocclusion or shortening of the ramus. Our treatment plan was carried out through combining procedures of Botulinum toxin A injection in lateral pterygoid muscle with ORIF of para symphyseal fracture; subsequently, a conservative way of the occlusal splint with elastic traction was performed. Three patients of bilateral or unilateral condylar fractures, aged between 2 y and 6 y, were involved in this treatment. After more than 1 year's follow-up, the occlusion was satisfactory in all patients. Condylar remodeling was approximately complete in 3 months, and no unwanted complications were observed. We may expect this method to offer a new idea when dealing with children's condylar fracture.

11.
Front Endocrinol (Lausanne) ; 15: 1437709, 2024.
Article in English | MEDLINE | ID: mdl-39072271

ABSTRACT

Background: The triglyceride glucose (TyG) index, a metric computed from the levels of fasting triglyceride (TG) and fasting plasma glucose (FPG), has emerged as a simple surrogate measure for insulin resistance (IR) in recent years. In multiple critical care scenarios, such as contrast-induced acute kidney injury (AKI) and cardiorenal syndrome, a high TyG index levels shows a notable correlation with AKI incidence. However, its predictive value for AKI in critically ill hypertensive patients remains uncertain. Methods: Participants were selected from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database and divided into quartiles based on the TyG index. The primary focus of the study was to investigate the risk of acute kidney injury (AKI), with in-hospital mortality as a secondary endpoint, assessed among all study subjects as well as specifically among AKI patients. The use of renal replacement therapy (RRT), indicative of AKI progression, was also considered a secondary endpoint reflecting renal outcomes. To explore the correlation between the TyG index and AKI risk in critically ill hypertensive patients, the study employed a restricted cubic splines model and Cox proportional hazards (CPH) models. Additionally, Kaplan-Meier survival analysis was utilized to assess differences in primary and secondary outcomes across groups categorized by their TyG index. Analyses were conducted to ensure the consistency of the predictive capability of TyG index across various subgroups. Results: Our study included 4,418 participants, with 57% being male patients. AKI occurred in 56.1% of cases. Through the CPH analysis, we identified a significant association between the TyG index and AKI occurrence in critically ill hypertensive patients. With the help of a restricted cubic splines model, we observed a direct relationship between an elevated TyG index and an increased AKI. Subgroup examinations consistently proved the predictive value of the TyG index across categories. Furthermore, Kaplan-Meier survival analysis revealed notable differences in RRT among AKI patients. Conclusion: The findings underscore the importance of the TyG index as a reliable predictor for the occurrence of AKI and adverse renal outcomes among hypertensive patients in critical ill states. Nevertheless, validating causality mandates extensive prospective investigations.


Subject(s)
Acute Kidney Injury , Blood Glucose , Critical Illness , Hypertension , Triglycerides , Humans , Acute Kidney Injury/blood , Acute Kidney Injury/etiology , Acute Kidney Injury/diagnosis , Acute Kidney Injury/epidemiology , Male , Female , Hypertension/blood , Hypertension/complications , Hypertension/epidemiology , Middle Aged , Aged , Triglycerides/blood , Blood Glucose/analysis , Databases, Factual , Risk Factors , Hospital Mortality , Prognosis
12.
Adv Mater ; : e2405885, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39082203

ABSTRACT

Near-field radiative heat transfer (NFRHT) can exceed the blackbody limit by several orders of magnitude owing to the tunneling evanescent waves. Exploiting this near-field enhancement holds significant potential for emerging technologies. It has been suggested that coupled polaritons can give rise to orders of magnitude enhancement of NFRHT. However, a thorough experimental verification of this phenomenon is still missing. Here this work experimentally shows that NFRHT mediated by coupled polaritons in millimeter-size graphene/SiC/SiO2 composite devices in planar plate configuration can realize about 302.8 ±  35.2-fold enhancement with respect to the blackbody limit at a gap distance of 87  ±  0.8 nm. The radiative thermal conductance and effective gap heat transfer coefficient can reach unprecedented values of 0.136 WK-1 and 5440 Wm-2K-1. Additionally, a scattering-type scanning near-field optical measurement, in conjunction with full-wave numerical simulations, provides further evidence for the coupled polaritonic characteristics of the devices. Notably, this work experimentally demonstrates dynamic regulation of NFRHT can be achieved by modulating the bias voltage, leading to an ultrahigh dynamic range of ≈4.115. This work ambiguously elucidates the important role of coupled polaritons in NFRHT, paving the way for the manipulation of nanoscale heat transport, energy conversion, and thermal computing via the strong coupling effect.

13.
Heliyon ; 10(12): e33214, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39021924

ABSTRACT

Background: The pathogenesis of multiple sclerosis (MS) may be closely related to immune regulation and inflammatory cytokines induced by specific flora. Repairing the intestinal flora may alter the immune response in MS patients, thus opening up novel approaches for the treatment of MS. Objective: We aimed to test the therapeutic effect of fecal microbiota transplantation (FMT) on experimental autoimmune encephalomyelitis (EAE) and the characteristics of intestinal microbiota composition changes, explore the potential mechanisms of FMT treatment. Methods: EAE animals were treated with FMT, with the therapeutic effects were evaluated by observing neurological scores and measuring serum levels of cortisol, IL-17, and TLR-2. Fecal microbiome 16S rRNA sequencing was used to profile changes in microbiota composition, and adrenalectomy pretreatment was used to test whether FMT effects were dependent on HPA axis function. Results: FMT improved neurological function and reduced serum IL-17 to levels that were close to the control group. FMT reestablished intestinal homeostasis by altering the structure of the intestinal flora, increasing the abundance of beneficial flora, and regulating intestinal metabolites. We found that the therapeutic effects of FMT depended partly on the efferent function of the HPA axis; surgical disruption of the HPA axis altered the abundance and diversity of the intestinal flora. Conclusion: FMT showed a neuroprotective effect on EAE by increasing the abundance of the beneficial flora, rebuilding intestinal homeostasis, reducing IL-17 and cortisol serum levels, and promoting serum TLR-2; the therapeutic effect of FMT on EAE is partly dependent on the HPA axis.

14.
CNS Neurosci Ther ; 30(6): e14792, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38867393

ABSTRACT

AIMS: Parkinson's disease (PD) patients experience improvement in motor symptoms after deep brain stimulation (DBS) and before initiating stimulation. This is called the microlesion effect. However, the mechanism remains unclear. The study aims to comprehensively explore the changes in functional connectivity (FC) patterns in movement-related brain regions in PD patients during the microlesion phase through seed-based FC analysis. METHODS: The study collected the resting functional magnetic resonance imaging data of 49 PD patients before and after DBS surgery (off stimulation). The cortical and subcortical areas related to motor function were selected for seed-based FC analysis. Meanwhile, their relationship with the motor scale was investigated. RESULTS: The motor-related brain regions were selected as the seed point, and we observed various FC declines within the motor network brain regions. These declines were primarily in the left middle temporal gyrus, bilateral middle frontal gyrus, right supplementary motor area, left precentral gyrus, left postcentral gyrus, left inferior frontal gyrus, and right superior frontal gyrus after DBS. CONCLUSION: The movement-related network was extensively reorganized during the microlesion period. The study provided new information on enhancing motor function from the network level post-DBS.


Subject(s)
Deep Brain Stimulation , Magnetic Resonance Imaging , Parkinson Disease , Humans , Deep Brain Stimulation/methods , Parkinson Disease/therapy , Parkinson Disease/physiopathology , Parkinson Disease/diagnostic imaging , Male , Female , Middle Aged , Aged , Motor Cortex/physiopathology , Motor Cortex/diagnostic imaging , Brain/diagnostic imaging , Brain/physiopathology
15.
Rev Sci Instrum ; 95(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38860832

ABSTRACT

Ferrite-loaded gyromagnetic nonlinear transmission line (GNLTL) provides a possible option to compress an input pulse to a narrower width for its remarkable sharpening effect. However, it is difficult to accurately predict the output of the GNLTL due to the complex interaction between the magnetic moment of ferrite and the bias magnetic field. In this paper, a finite element model of the GNLTL is established based on the Landau-Lifshitz-Gilbert equation to investigate the performance of the GNLTL. To validate this model, a prototype is used for experimental comparison. The result demonstrates good agreement between experiment and simulation. This paper further explores the influence of the bias magnetic field and the length of the GNLTL on the output pulse. Moreover, a method to sharpen the falling edge is proposed based on the reflection and superposition of the GNLTL output. Simulation and experimental results show its effectiveness and feasibility.

16.
Sci Rep ; 14(1): 13622, 2024 06 13.
Article in English | MEDLINE | ID: mdl-38871763

ABSTRACT

Cardiovascular disease (CVD) and depression are common diseases that lead to adverse health outcomes. Depressive Symptoms may be a risk factor for CVD. But few studies focused on the impact of socioeconomic factors, common medical history and dietary intake about this association. This study analyzed National Health and Nutrition Examination Survey (NHANES) 2007-2016. Complex sampling-weighted logistic regression models were used to compare the odds ratios (ORs) of CVD in participants with different depressive symptoms. 11,516 NHANES participants aged ≥ 40 years were included in the final analysis, of whom 1842 had CVD. Compared with participants with no/minimal depression, participants with mild, moderate, and moderately severe/severe depression had OR values of 1.25 (95%  CI 1.01-1.54), 1.98 (95% CI 1.32-2.96), and 2.41 (95% CI 1.63-3.57). The association of depressive symptoms with CVD follow a dose-dependent pattern. The interactions of depressive symptoms with gender (Interaction P = 0.009), diabetes (Interaction P = 0.010), household income level (Interaction P = 0.002), dietary cholesterol intake (Interaction P = 0.017) on CVD were observed. More severe depressive symptoms are associated with increased risk of CVD in US population. The association may be more pronounced in the female population, population with diabetes, low family income level, or high dietary cholesterol intake.


Subject(s)
Cardiovascular Diseases , Depression , Nutrition Surveys , Humans , Male , Female , Cardiovascular Diseases/epidemiology , Depression/epidemiology , Middle Aged , United States/epidemiology , Adult , Aged , Risk Factors , Socioeconomic Factors , Odds Ratio
18.
Clin Cardiol ; 47(6): e24301, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38895772

ABSTRACT

BACKGROUND: Statins are lipid-lowering drugs with favorable anti-inflammatory effects. This study aimed to explore different statin-based lipid-lowering strategies to reduce high-sensitivity C-reactive protein (hs-CRP). HYPOTHESIS: The hypothesis is that different statin-based lipid-lowering strategies might reduce hs-CRP. METHODS: This retrospective study included 3653 patients who underwent percutaneous coronary intervention (PCI). Three statin-based lipid-lowering strategies were investigated, including different types of statins (atorvastatin vs. rosuvastatin), statin combined with ezetimibe therapy (vs. without), and intensive statin therapy (vs. regular). The hs-CRP levels and blood lipid indicators were measured at baseline and after 1-month lipid-lowering therapy. Multivariable linear regression analysis and structural equation mode analysis were conducted to verify the association between different lipid-lowering strategies, Δhs-CRP (%) and ΔLDL-C (%). RESULTS: Totally, 3653 patients were enrolled with an average age of 63.81 years. Multivariable linear regression demonstrated that statin combined with ezetimibe therapy was significantly associated with decreased Δhs-CRP (%) (ß = -0.253, 95% CI: [-0.501 to -0.005], p = 0.045). The increased ΔLDL-C (%) was an independent predictor of elevated levels of Δhs-CRP (%) (ß = 0.487, 95% CI: [0.15-0.824], p = 0.005). Furthermore, structural equation model analysis proved that statin combined with ezetimibe therapy (ß = -0.300, p < 0.001) and intensive statin therapy (ß = -0.032, p = 0.043) had an indirect negative effect on Δhs-CRP via ΔLDL-C. CONCLUSIONS: Compared with routine statin use, statin combined with ezetimibe therapy and intensive statin therapy could further reduce hs-CRP levels.


Subject(s)
Biomarkers , C-Reactive Protein , Coronary Artery Disease , Ezetimibe , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Percutaneous Coronary Intervention , Humans , Male , Retrospective Studies , Female , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , C-Reactive Protein/analysis , C-Reactive Protein/metabolism , Coronary Artery Disease/blood , Coronary Artery Disease/drug therapy , Middle Aged , Biomarkers/blood , Treatment Outcome , Percutaneous Coronary Intervention/methods , Ezetimibe/therapeutic use , Drug Therapy, Combination , Aged , Rosuvastatin Calcium/therapeutic use , Atorvastatin/therapeutic use , Cholesterol, LDL/blood , Anticholesteremic Agents/therapeutic use , Dyslipidemias/blood , Dyslipidemias/drug therapy , Dyslipidemias/diagnosis
19.
Front Plant Sci ; 15: 1387102, 2024.
Article in English | MEDLINE | ID: mdl-38916037

ABSTRACT

Sesuvium portulacastrum L. is a flowering succulent halophyte in the ice plant family Aizoaceae. There are various ecotypes distributed in sandy coastlines and salty marshlands in tropical and subtropical regions with the common name of sea purslane. These plants are tolerant to salt, drought, and flooding stresses and have been used for the stabilization of sand dunes and the restoration of coastal areas. With the increased salinization of agricultural soils and the widespread pollution of toxic metals in the environment, as well as excessive nutrients in waterbodies, S. portulacastrum has been explored for the desalination of saline soils and the phytoremediation of metals from contaminated soils and nitrogen and phosphorus from eutrophic water. In addition, sea purslane has nutraceutical and pharmaceutical value. Tissue analysis indicates that many ecotypes are rich in carbohydrates, proteins, vitamins, and mineral nutrients. Native Americans in Florida eat it raw, pickled, or cooked. In the Philippines, it is known as atchara after being pickled. S. portulacastrum contains high levels of ecdysteroids, which possess antidiabetic, anticancer, and anti-inflammatory activities in mammals. In this review article, we present the botanical information, the physiological and molecular mechanisms underlying the tolerance of sea purslane to different stresses, its nutritional and pharmaceutical value, and the methods for its propagation and production in saline soils and waterbodies. Its adaptability to a wide range of stressful environments and its role in the production of valuable bioactive compounds suggest that S. portulacastrum can be produced in saline soils as a leafy vegetable and is a valuable genetic resource that can be used for the bioremediation of soil salinity and eutrophic water.

20.
Sci Adv ; 10(19): eadl3549, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38718121

ABSTRACT

Metabolic reprogramming is critical in the onset of pressure overload-induced cardiac remodeling. Our study reveals that proline dehydrogenase (PRODH), the key enzyme in proline metabolism, reprograms cardiomyocyte metabolism to protect against cardiac remodeling. We induced cardiac remodeling using transverse aortic constriction (TAC) in both cardiac-specific PRODH knockout and overexpression mice. Our results indicate that PRODH expression is suppressed after TAC. Cardiac-specific PRODH knockout mice exhibited worsened cardiac dysfunction, while mice with PRODH overexpression demonstrated a protective effect. In addition, we simulated cardiomyocyte hypertrophy in vitro using neonatal rat ventricular myocytes treated with phenylephrine. Through RNA sequencing, metabolomics, and metabolic flux analysis, we elucidated that PRODH overexpression in cardiomyocytes redirects proline catabolism to replenish tricarboxylic acid cycle intermediates, enhance energy production, and restore glutathione redox balance. Our findings suggest PRODH as a modulator of cardiac bioenergetics and redox homeostasis during cardiac remodeling induced by pressure overload. This highlights the potential of PRODH as a therapeutic target for cardiac remodeling.


Subject(s)
Mice, Knockout , Myocytes, Cardiac , Proline , Ventricular Remodeling , Animals , Proline/metabolism , Myocytes, Cardiac/metabolism , Mice , Rats , Proline Oxidase/metabolism , Proline Oxidase/genetics , Energy Metabolism , Myocardium/metabolism , Myocardium/pathology , Cardiomegaly/metabolism , Cardiomegaly/pathology , Cardiomegaly/etiology , Disease Models, Animal , Oxidation-Reduction , Male , Metabolic Reprogramming
SELECTION OF CITATIONS
SEARCH DETAIL