Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 566
Filter
1.
J Agric Food Chem ; 72(38): 21266-21275, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39268855

ABSTRACT

Urethanase is a promising biocatalyst for degrading carcinogen ethyl carbamate (EC) in fermented foods. However, their vulnerability to high ethanol and/or salt and acidic conditions severely limits their applications. In this study, a novel urethanase from Alicyclobacillus pomorum (ApUH) was successfully discovered using a database search. ApUH shares 49.4% sequence identity with the reported amino acid sequences. It belongs to the Amidase Signature family and has a conserved "K-S-S" catalytic triad and the characteristic "GGSS" motif. The purified enzyme overexpressed in Escherichia coli exhibits a high EC affinity (Km, 0.306 mM) and broad pH tolerance (pH 4.0-9.0), with an optimum pH 7.0. Enzyme activity remained at 58% in 12% (w/v) NaCl, and 80% in 10% (v/v) ethanol or after 1 h treatment with the same ethanol solution at 37 °C. ApUH has no hydrolytic activity toward urea. Under 30 °C, the purified enzyme (200 U/L) degraded about 15.4 and 43.1% of the EC in soy sauce samples (pH 5.0, 6.0), respectively, in 5 h. Furthermore, the enzyme also showed high activity toward the class 2A carcinogen acrylamide in foods. These attractive properties indicate their potential applications in the food industry.


Subject(s)
Alicyclobacillus , Soy Foods , Urethane , Soy Foods/analysis , Urethane/metabolism , Urethane/chemistry , Alicyclobacillus/enzymology , Alicyclobacillus/genetics , Alicyclobacillus/metabolism , Hydrogen-Ion Concentration , Enzyme Stability , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Amidohydrolases/metabolism , Amidohydrolases/chemistry , Amidohydrolases/genetics , Kinetics , Substrate Specificity , Carcinogens/metabolism , Carcinogens/chemistry , Sodium Chloride/metabolism , Sodium Chloride/chemistry , Biocatalysis , Amino Acid Sequence
2.
Int J Biol Macromol ; 280(Pt 1): 135413, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39270887

ABSTRACT

Knockouts mediated by CRISPR/Cas9 technology are widely used to study insect gene functions, but the efficiency in Hemiptera is low. New strategies are urgently needed to improve gene knockout efficiency. This study initially explored the impact of modifying the fundamental backbone structure of single guide RNA (sgRNA) on knockout efficiency. The results indicated that both in vitro and in vivo transcription of sgRNA structures (Loop5bp + MT/C type) increased average knockout efficiency by 0.61-fold compared to the original sgRNA. In addition, the PTG/Cas9 system was observed to induce a 0.64-fold increase in average knockout efficiency using the original sgRNA. Notably, an integrated PTG/Cas9 system (iPTG/Cas9 system), the integration of optimized sgRNA structures (Loop5bp + MT/C type) into the conventional PTG/Cas9 system, demonstrated a synergistic effect, resulting in a 1.45-fold increase in average knockout efficiency compared to the original sgRNA structure. The iPTG/Cas9 system was effectively used to simultaneously knockout two different target sites within a single gene and to co-knockout two genes. This study represents the first application of the iPTG/Cas9 system to establish a double knockout system in Hemiptera, offering a promising approach to enhance knockout efficiency in species with low efficiency and improve genetic manipulation tools for pest control.

3.
Article in English | MEDLINE | ID: mdl-39341788

ABSTRACT

Pyrroquinoline quinone (PQQ) is one of the important coenzymes in living organisms. In acetic acid bacteria (AAB) it plays a crucial role in alcohol respiratory chain, as a coenzyme of alcohol dehydrogenase. In this work, the PQQ biosynthetic genes were overexpressed in Acetobacter pasteurianus CGMCC 3089 to improve the fermentation performance. The result shows that the intracellular and extracellular PQQ contents in the recombinant strain A. pasteurianus (pBBR1-p264-pqq) were 152.53% and 141.08% higher than those of the control A. pasteurianus (pBBR1-p264), respectively. The catalytic activity of alcohol dehydrogenase and aldehyde dehydrogenase increased by 52.92% and 67.04%, respectively. The results indicated that the energy charge and intracellular ATP were also improved in the recombinant strain. The acetic acid fermentation was carried out using a 5 L self-aspirating fermenter, and the acetic acid production rate of the recombinant strain was 23.20% higher compared with the control. Furthermore, the relationship between the PQQ and acetic acid tolerance of cells was analyzed. The biomass of recombinant strain was 180.2%, 44.3%, and 38.6% higher than those of control under 2%, 3%, and 4% acetic acid stress, respectively. After treated with 6% acetic acid for 40 min, the survival rate of the recombinant strain was increased by 76.20% compared with the control. Those result demonstrated that overexpression of PQQ biosynthetic genes increased the content of PQQ, therefore improving the acetic acid fermentation and the cell tolerance against acetic acid by improving the alcohol respiratory chain and energy metabolism.

4.
J Transl Med ; 22(1): 859, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39334374

ABSTRACT

This study aimed to investigate the effect and potential mechanism of evodiamine (EVO) on proliferation and apoptosis of nasopharyngeal carcinoma (NPC) cells. EVO inhibited proliferation, blocked cell cycle progression, and induced apoptosis of NPC cells. There are 27 known anti-NPC targets of EVO, of which eight are core targets, namely SRC, ERBB2, STAT3, MAPK8, NOS3, CXCL8, APP, and HDAC1. Molecular docking analysis showed that the binding of EVO with its key targets (SRC, ERBB2) was good. EVO also reduced the expression of SRC and ERBB2, the key proteins p-MEK and p-ERK1/2 of the MAPK/ERK signaling pathway, and the downstream proteins PCNA and XIAP. EVO inhibited the growth of NPC xenografts in nude mice and reduced the expression levels of SRC, ERBB2, ERK1/2, p-ERK1/2, PCNA and XIAP in NPC tissue. When the MAPK/ERK signaling pathway was activated by epidermal growth factor (EGF), the expression levels of PCNA and XIAP increased, the cell proliferation index increased, and the apoptosis rate decreased in the EGF + EVO treatment group compared to treatment with EVO alone. These changes indicated that the inhibitory effect of EVO on proliferation and apoptosis of NPC cells was related to the down-regulation of SRC and ERBB2 expression, and further inhibition of the MAPK/ERK signaling pathway.


Subject(s)
Apoptosis , Cell Proliferation , MAP Kinase Signaling System , Mice, Nude , Nasopharyngeal Carcinoma , Quinazolines , Receptor, ErbB-2 , Apoptosis/drug effects , Cell Proliferation/drug effects , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Carcinoma/drug therapy , Humans , Animals , Receptor, ErbB-2/metabolism , MAP Kinase Signaling System/drug effects , Cell Line, Tumor , Quinazolines/pharmacology , Quinazolines/therapeutic use , src-Family Kinases/metabolism , Nasopharyngeal Neoplasms/pathology , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/drug therapy , Xenograft Model Antitumor Assays , Molecular Docking Simulation , Mice, Inbred BALB C , Mice
5.
Clin Exp Pharmacol Physiol ; 51(10): e13920, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39227014

ABSTRACT

This study aimed to investigate the effects and possible mechanisms of adenylate cyclase 1 (ADCY1) on pirarubicin-induced cardiomyocyte injury. HL-1 cells were treated with pirarubicin (THP) to induce intracellular toxicity, and the extent of damage to mouse cardiomyocytes was assessed using CCK-8, Edu, flow cytometry, ROS, ELISA, RT-qPCR and western blotting. THP treatment reduced the viability of HL-1 cells, inhibited proliferation, induced apoptosis and triggered oxidative stress. In addition, the RT-qPCR results revealed that ADCY1 expression was significantly elevated in HL-1 cells, and molecular docking showed a direct interaction between ADCY1 and THP. Western blotting showed that ADCY1, phospho-protein kinase A and GRIN2D expression were also significantly elevated. Knockdown of ADCY1 attenuated THP-induced cardiotoxicity, possibly by regulating the ADCY1/PKA/GRIN2D pathway.


Subject(s)
Adenylyl Cyclases , Cardiotoxicity , Doxorubicin , Gene Knockdown Techniques , Myocytes, Cardiac , Adenylyl Cyclases/metabolism , Adenylyl Cyclases/genetics , Animals , Mice , Cardiotoxicity/genetics , Doxorubicin/toxicity , Doxorubicin/pharmacology , Doxorubicin/analogs & derivatives , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Cell Line , Apoptosis/drug effects , Oxidative Stress/drug effects , Oxidative Stress/genetics , Molecular Docking Simulation , Cell Proliferation/drug effects , Cell Survival/drug effects , Cyclic AMP-Dependent Protein Kinases/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/toxicity
6.
Lipids Health Dis ; 23(1): 282, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39232759

ABSTRACT

OBJECTIVE: This study aimed to reveal the role and mechanism of MG-132 in delaying hyperlipidemia-induced senescence of vascular smooth muscle cells (VSMCs). METHODS: Immunohistochemistry and hematoxylin-eosin staining confirmed the therapeutic effect of MG-132 on arterial senescence in vivo and its possible mechanism. Subsequently, VSMCs were treated with sodium palmitate (PA), an activator (Recilisib) or an inhibitor (Pictilisib) to activate or inhibit PI3K, and CCK-8 and EdU staining, wound healing assays, Transwell cell migration assays, autophagy staining assays, reactive oxygen species assays, senescence-associated ß-galactosidase staining, and Western blotting were performed to determine the molecular mechanism by which MG-132 inhibits VSMC senescence. Validation of the interaction between MG-132 and PI3K using molecular docking. RESULTS: Increased expression of p-PI3K, a key protein of the autophagy regulatory system, and decreased expression of the autophagy-associated proteins Beclin 1 and ULK1 were observed in the aortas of C57BL/6J mice fed a high-fat diet (HFD), and autophagy was inhibited in aortic smooth muscle. MG-132 inhibits atherosclerosis by activating autophagy in VSMCs to counteract PA-induced cell proliferation, migration, oxidative stress, and senescence, thereby inhibiting VSMC senescence in the aorta. This process is achieved through the PI3K/AKT/mTOR signaling pathway. CONCLUSION: MG-132 activates autophagy by inhibiting the PI3K/AKT/mTOR pathway, thereby inhibiting palmitate-induced proliferation, migration, and oxidative stress in vascular smooth muscle cells and suppressing their senescence.


Subject(s)
Autophagy , Cellular Senescence , Leupeptins , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Autophagy/drug effects , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/cytology , TOR Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Animals , Cellular Senescence/drug effects , Humans , Phosphatidylinositol 3-Kinases/metabolism , Mice , Signal Transduction/drug effects , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Leupeptins/pharmacology , Male , Mice, Inbred C57BL , Palmitic Acid/pharmacology , Cell Proliferation/drug effects , Cell Movement/drug effects , Diet, High-Fat/adverse effects
7.
Cell Rep ; 43(8): 114604, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39146185

ABSTRACT

Exo70, a key exocyst complex component, is crucial for cell motility and extracellular matrix (ECM) remodeling in cancer metastasis. Despite its potential as a drug target, Exo70's post-translational modifications (PTMs) are poorly characterized. Here, we report that Exo70 is transamidated on Gln5 with Lys56 of cystatin A by transglutaminases TGM1 and TGM3, promoting tumor metastasis. This modification enhances Exo70's association with other exocyst subunits, essential for secreting matrix metalloproteinases, forming invadopodia, and delivering integrins to the leading edge. Tumor suppressor liver kinase B1 (LKB1), whose inactivation accelerates metastasis, phosphorylates TGM1 and TGM3 at Thr386 and Thr282, respectively, to inhibit their interaction with Exo70 and the following transamidation. Cantharidin, a US Food and Drug Administration (FDA)-approved drug, inhibits Exo70 transamidation to restrain tumor cell migration and invasion. Together, our findings highlight Exo70 transamidation as a key molecular mechanism and target and propose cantharidin as a therapeutic strategy with direct clinical translational value for metastatic cancers, especially those with LKB1 loss.


Subject(s)
Cell Movement , Neoplasm Metastasis , Protein Serine-Threonine Kinases , Transglutaminases , Humans , Protein Serine-Threonine Kinases/metabolism , Transglutaminases/metabolism , Animals , Cell Line, Tumor , Mice , Cell Movement/drug effects , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/genetics , AMP-Activated Protein Kinase Kinases , Mice, Nude , Phosphorylation/drug effects
8.
Front Pharmacol ; 15: 1415352, 2024.
Article in English | MEDLINE | ID: mdl-39092222

ABSTRACT

Introduction: Natural plants are valuable resources for exploring new bioactive compounds. Artemisia vulgaris L. is a traditional Chinese medicinal herb that has been historically used for treating multiple diseases. Active compounds isolated and extracted from A. vulgaris L. typically possess immunomodulatory and anti-inflammatory properties. Artemvulactone E (AE) is a new sesquiterpene lactone isolated and extracted from A. vulgaris L. with unclear biological activities. Methods: The immunoregulatory effects of AE on macrophages were assessed by ELISA, RT-qPCR, immunofluorescence, and western blot assay. The effect of AE on lipopolysaccharide (LPS) -relates signaling pathways was examined by western blot assay. In zebrafish models, the larvae were yolk-microinjected with LPS to establish inflammation model and the effect of AE was evaluated by determining the survival rate, heart rate, yolk sac edema size, neutrophils and macrophages infiltration of zebrafish. The interaction between AE and Toll-like receptor 4 (TLR4) was examined by molecular docking and dynamic stimulation. Results: AE reduced the expression and secretion of pro-inflammatory cytokines (TNF-α and IL-6), inflammatory mediators iNOS and COX-2, as well as decreases the production of intracellular NO and ROS in LPS-stimulated macrophages. In addition, AE exerted its anti-inflammatory effect synergistically by inhibiting MAPK/JAK/STAT3-NF-κB signaling pathways. Furthermore, AE enhanced the survival rate and attenuated inflammatory response in zebrafish embryos treated with LPS. Finally, the molecular dynamics results indicate that AE forms stable complexes with LPS receptor TLR4 through the Ser127 residue, thus completely impairing the subsequent activation of MAPK-NF-κB signaling. Conclusion: AE exhibits notable anti-inflammatory activity and represents as a potential agent for treating inflammation-associated diseases.

9.
Australas J Dermatol ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39031070

ABSTRACT

Infantile bullous pemphigoid (BP) is a rare autoantibody-mediated skin disorder. We report the effective treatment of a 6-month-old infant with BP using baricitinib, a Janus kinase (JAK) inhibitor, after failure with steroids and intravenous immunoglobulin. The patient achieved full remission and discontinued all medications without any relapses. To our knowledge, this is the first case of baricitinib used in an infant with BP.

10.
Environ Int ; 190: 108890, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39033732

ABSTRACT

BACKGROUND: The growing consensus links exposure to fine particulate matter (PM2.5) with an increased risk of respiratory diseases. However, little is known about the additional effects of particulate matter on brainstem function in allergic rhinitis (AR). Furthermore, it is unknown to what extent the PM2.5-induced effects in the brainstem affect the inflammatory response in AR. This study aimed to determine the effects, mechanisms and consequences of brainstem neural activity altered by allergenic stimulation and PM2.5 exposure. METHODS: Using an AR model of ovalbumin (OVA) elicitation and whole-body PM2.5 exposure, the metabolic profile of the brainstem post-allergen stimulation was characterized through in vivo proton magnetic resonance imaging (1H-MRS). Then, the transient receptor potential vanilloid-1 (TRPV1) neuronal expression and sensitivity in the trigeminal nerve in AR were investigated. The link between TRPV1 expression and brainstem differential metabolites was also determined. Finally, we evaluated the mediating effects of brainstem metabolites and the consequences in the brain-spleen axis in the inflammatory response of AR. RESULTS: Exposure to allergens and PM2.5 led to changes in the metabolic profiles of the brainstem, particularly affecting levels of glutamine (Gln) and glutamate (Glu). This exposure also increased the expression and sensitivity of TRPV1+ neurons in the trigeminal nerve, with the levels of TRPV1 expression closely linked to the brainstem metabolism of Glu and Gln. Moreover, allergens increased the activity of p38, while PM2.5 led to the phosphorylation of p38 and ERK, resulting in the upregulation of TRPV1 expression. The brainstem metabolites Glu and Gln were found to partially mediate the impact of TRPV1 on AR inflammation, which was supported by the presence of pro-inflammatory changes in the brain-spleen axis. CONCLUSION: Brainstem metabolites are altered under allergen stimulation and additional PM2.5 exposure in AR via sensitization of the trigeminal nerve, which exacerbates the inflammatory response via the brain-splenic axis.


Subject(s)
Allergens , Brain Stem , Particulate Matter , Rhinitis, Allergic , Spleen , TRPV Cation Channels , Brain Stem/metabolism , Rhinitis, Allergic/metabolism , Animals , Allergens/adverse effects , TRPV Cation Channels/metabolism , Spleen/metabolism , Male , Ovalbumin , Air Pollutants/adverse effects , Mice
11.
Eur J Med Chem ; 276: 116664, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39018921

ABSTRACT

Colorectal cancer (CRC) has been becoming one of the most common causes of cancer mortality worldwide. Accumulating studies suggest that the progressive up-regulation of Wnt/ß-catenin signaling is a crucial hallmark of CRC, and suppressing it is a promising strategy to treat CRC. Herein, we reported our latest efforts in the discovery of novel fused tetrahydroisoquinoline derivatives with good anti-CRC activities by screening our in-house berberine-like library and further structure-activity relationship (SAR) studies, in which we identified compound 10 is a potent lead compound with significant antiproliferation potencies. By the biotinylated probe and LC-MS/MS study, Hsp90 was identified as its molecular target, which is a fully different mechanism of action from what we reported before. Further studies showed compound 10 directly engaged the N-terminal site of Hsp90 and promoted the degradation of ß-catenin, thereby suppressing the Wnt/ß-catenin signaling. More importantly, compound 10 exhibits favorable pharmacokinetic parameters and significant anti-tumor efficacies in the HCT116 xenograft model. Taken together, this study furnished the discovery of candidate drug compound 10 possessing a novel fused tetrahydroisoquinoline scaffold with excellent in vitro and in vivo anti-CRC activities by targeting Hsp90 to disturb Wnt/ß-catenin signaling pathway, which lay a foundation for discovering more effective CRC-targeted therapies.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Colorectal Neoplasms , Drug Screening Assays, Antitumor , Tetrahydroisoquinolines , Wnt Signaling Pathway , beta Catenin , Humans , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Wnt Signaling Pathway/drug effects , Tetrahydroisoquinolines/pharmacology , Tetrahydroisoquinolines/chemistry , Tetrahydroisoquinolines/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Structure-Activity Relationship , Animals , Cell Proliferation/drug effects , beta Catenin/metabolism , beta Catenin/antagonists & inhibitors , Mice , Molecular Structure , Dose-Response Relationship, Drug , Mice, Nude , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/metabolism , Mice, Inbred BALB C
12.
Plants (Basel) ; 13(14)2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39065521

ABSTRACT

Sphingolipids play an important role in cotton fiber development, but the regulatory mechanism is largely unclear. We found that serine palmitoyltransferase (SPT) enzyme inhibitors, myriocin and sphingosine (dihydrosphingosine (DHS) and phytosphingosine (PHS)), affected early fiber elongation in cotton, and we performed a sphingolipidomic and transcriptomic analysis of control and PHS-treated fibers. Myriocin inhibited fiber elongation, while DHS and PHS promoted it in a dose-effect manner. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we found that contents of 22 sphingolipids in the PHS-treated fibers for 10 days were changed, of which the contents of 4 sphingolipids increased and 18 sphingolipids decreased. The transcriptome analysis identified 432 differentially expressed genes (238 up-regulated and 194 down-regulated) in the PHS-treated fibers. Among them, the phenylpropanoid biosynthesis pathway is the most significant enrichment. The expression levels of transcription factors such as MYB, ERF, LBD, and bHLH in the fibers also changed, and most of MYB and ERF were up-regulated. Auxin-related genes IAA, GH3 and BIG GRAIN 1 were up-regulated, while ABPs were down-regulated, and the contents of 3 auxin metabolites were decreased. Our results provide important sphingolipid metabolites and regulatory pathways that influence fiber elongation.

13.
Nano Lett ; 24(31): 9494-9504, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39058893

ABSTRACT

Chronic diabetic wound patients usually show high glucose levels and systemic immune disorder, resulting in high reactive oxygen species (ROS) levels and immune cell dysfunction, prolonged inflammation, and delayed wound healing. Herein, we prepared an antioxidant and immunomodulatory polymer vesicle for diabetic wound treatment. This vesicle is self-assembled from poly(ε-caprolactone)36-block-poly[lysine4-stat-(lysine-mannose)22-stat-tyrosine)16] ([PCL36-b-P[Lys4-stat-(Lys-Man)22-stat-Tyr16]). Polytyrosine is an antioxidant polypeptide that can scavenge ROS. d-Mannose was introduced to afford immunomodulatory functions by promoting macrophage transformation and Treg cell activation through inhibitory cytokines. The mice treated with polymer vesicles showed 23.7% higher Treg cell levels and a 91.3% higher M2/M1 ratio than those treated with PBS. Animal tests confirmed this vesicle accelerated healing and achieved complete healing of S. aureus-infected diabetic wounds within 8 days. Overall, this is the first antioxidant and immunomodulatory vesicle for diabetic wound healing by scavenging ROS and regulating immune homeostasis, opening new avenues for effective diabetic wound healing.


Subject(s)
Antioxidants , Reactive Oxygen Species , Wound Healing , Animals , Reactive Oxygen Species/metabolism , Wound Healing/drug effects , Mice , Antioxidants/chemistry , Antioxidants/pharmacology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , Polymers/chemistry , Polymers/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Macrophages/drug effects , Macrophages/immunology , Humans , Immunomodulating Agents/pharmacology , Immunomodulating Agents/chemistry , Staphylococcus aureus/drug effects , Mannose/chemistry , Mannose/pharmacology , Staphylococcal Infections/drug therapy , Staphylococcal Infections/immunology
14.
Autophagy ; 20(10): 2297-2313, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38873931

ABSTRACT

Microglia are specialized macrophages responsible for the clearance of dead neurons and pathogens by phagocytosis and degradation. The degradation requires phagosome maturation and acidification provided by the vesicular- or vacuolar-type H+-translocating adenosine triphosphatase (V-ATPase), which is composed of the cytoplasmic V1 domain and the membrane-embedded Vo domain. The V-ATPase a subunit, an integral part of the Vo domain, has four isoforms in mammals. The functions of different isoforms on phagosome maturation in different cells/species remain controversial. Here we show that mutations of both the V-ATPase Atp6v0a1 and Tcirg1b/Atp6v0a3 subunits lead to the accumulation of phagosomes in zebrafish microglia. However, their mechanisms are different. The V-ATPase Atp6v0a1 subunit is mainly distributed in early and late phagosomes. Defects of this subunit lead to a defective transition from early phagosomes to late phagosomes. In contrast, The V-ATPase Tcirg1b/Atp6v0a3 subunit is primarily located on lysosomes and regulates late phagosome-lysosomal fusion. Defective Tcirg1b/Atp6v0a3, but not Atp6v0a1 subunit leads to reduced acidification and impaired macroautophagy/autophagy in microglia. We further showed that ATP6V0A1/a1 and TCIRG1/a3 subunits in mouse macrophages preferentially located in endosomes and lysosomes, respectively. Blocking these subunits disrupted early-to-late endosome transition and endosome-to-lysosome fusion, respectively. Taken together, our results highlight the essential and conserved roles played by different V-ATPase subunits in multiple steps of phagocytosis and endocytosis across various species.Abbrevations: Apoe: apolipoprotein E; ANXA5/annexin V: annexin A5; ATP6V0A1/a1: ATPase H+-transporting V0 subunit a1; ATP6V0A2/a2: ATPase H+-transporting V0 subunit a2; ATP6V0A4/a4: ATPase H+-transporting V0 subunit a4; dpf: days post-fertilization; EEA1: early endosome antigen 1; HOPS: homotypic fusion and protein sorting; LAMP1: lysosomal associated membrane protein 1; Lcp1: lymphocyte cytosolic protein 1 (L-plastin); Map1lc3/Lc3: microtubule-associated protein 1 light chain 3; NR: neutral red; PBS: phosphate-buffered saline; PtdIns: phosphatidylinositol; PtdIns3P: phosphatidylinositol-3-phosphate; PtdIns(3,5)P2: phosphatidylinositol (3,5)-bisphosphate; RAB4: RAB4, member RAS oncogene family; RAB5: RAB5, member RAS oncogene family; RAB7: RAB7, member RAS oncogene family; TCIRG1/Atp6v0a3/a3: T cell immune regulator 1, ATPase H+-transporting V0 subunit a3; V-ATPase: vacuolar-type H+-translocating adenosine triphosphatase; Xla.Tubb2b/NBT: tubulin beta 2B class IIb.


Subject(s)
Autophagy , Endocytosis , Lysosomes , Phagocytosis , Phagosomes , Vacuolar Proton-Translocating ATPases , Zebrafish , Animals , Phagocytosis/physiology , Vacuolar Proton-Translocating ATPases/metabolism , Autophagy/physiology , Phagosomes/metabolism , Lysosomes/metabolism , Endocytosis/physiology , Microglia/metabolism , Protein Subunits/metabolism , Mice , Mutation/genetics
15.
J Cosmet Dermatol ; 23(10): 3327-3334, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38895860

ABSTRACT

OBJECTIVE: In this study, we investigated the safety and practicability of ultra-fast track anesthesia (UFTA) for endoscopic thoracic sympathectomy (ETS). METHODS: A total of 72 patients with palmar hyperhidrosis undergoing ETS were randomly divided into three groups: the UFTA group (group I), the group undergoing single-lumen tracheal intubation with local infiltration anesthesia technique (group II), and the group undergoing single-lumen tracheal intubation with routine anesthesia (group III). Mean arterial pressure (MAP) and heart rate (HR) were recorded for all three groups at the following six time points: Before anesthetics administration (T0), the time of intubating or inserting laryngeal mask airway (T1), the time of incising skin (T2), the time of disconnecting of the right sympathetic nerve (T3), the time of disconnecting of the left sympathetic nerve (T4), the time of withdrawing the tracheal tube or laryngeal mask airway (T5), and the time of transferring the patient to a post-anesthesia care unit (PACU) (T6). The three groups were compared from the following perspectives: surgery duration; anesthesia recovery duration, that is, the duration from discontinuation of anesthesia to extubating the tracheal tube; the dose of propofol and remifentanil per kilogram body mass per unit time interval (the time at the end of the procedure, which lasted from anesthesia induction to incision suturing); and the visual analog scale (VAS) in the resting state in the PACU. RESULTS: Based on pairwise comparisons, the average HR and average MAP values of the three groups differed significantly from T2 to T6 (p < 0.05). As demonstrated by the correlation analysis between remifentanil and propofol with HR and MAP, the doses of the total amount of remifentanil and propofol were lower, and group I used less remifentanil and propofol than group II. No patient in group I experienced throat discomfort following surgery. Patients in groups II and III experienced a range of postoperative discomfort. The VAS scores of groups I and II were significantly lower than those of group III, with group I lower than group II. CONCLUSION: When utilized in ETS, UFTA can provide effective anesthesia for minor traumas. It is safe, effective, and consistent with the enhanced recovery philosophy of fast-track surgery departments.


Subject(s)
Hyperhidrosis , Propofol , Sympathectomy , Humans , Hyperhidrosis/surgery , Sympathectomy/methods , Sympathectomy/adverse effects , Female , Male , Adult , Young Adult , Propofol/administration & dosage , Anesthesia, Local/methods , Anesthetics, Intravenous/administration & dosage , Remifentanil/administration & dosage , Remifentanil/adverse effects , Anesthesia Recovery Period , Intubation, Intratracheal/methods , Intubation, Intratracheal/adverse effects , Treatment Outcome , Heart Rate , Operative Time , Thoracoscopy/adverse effects , Thoracoscopy/methods , Adolescent , Time Factors , Pain, Postoperative/etiology , Pain, Postoperative/prevention & control , Pain, Postoperative/diagnosis
16.
Adv Mater ; 36(33): e2406623, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38899799

ABSTRACT

Morphology control is crucial in achieving high-performance organic solar cells (OSCs) and remains a major challenge in the field of OSC. Solid additive is an effective strategy to fine-tune morphology, however, the mechanism underlying isomeric solid additives on blend morphology and OSC performance is still vague and urgently requires further investigation. Herein, two solid additives based on pyridazine or pyrimidine as core units, M1 and M2, are designed and synthesized to explore working mechanism of the isomeric solid additives in OSCs. The smaller steric hindrance and larger dipole moment facilitate better π-π stacking and aggregation in M1-based active layer. The M1-treated all-small-molecule OSCs (ASM OSCs) obtain an impressive efficiency of 17.57%, ranking among the highest values for binary ASM OSCs, with 16.70% for M2-treated counterparts. Moreover, it is imperative to investigate whether the isomerization engineering of solid additives works in state-of-the-art polymer OSCs. M1-treated D18-Cl:PM6:L8-BO-based devices achieve an exceptional efficiency of 19.70% (certified as 19.34%), among the highest values for OSCs. The work provides deep insights into the design of solid additives and clarifies the potential working mechanism for optimizing the morphology and device performance through isomerization engineering of solid additives.

17.
Stem Cell Res Ther ; 15(1): 172, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38886858

ABSTRACT

BACKGROUND: Development of hematopoietic stem and progenitor cells (HSPC) is a multi-staged complex process that conserved between zebrafish and mammals. Understanding the mechanism underlying HSPC development is a holy grail of hematopoietic biology, which is helpful for HSPC clinical application. Chromatin conformation plays important roles in transcriptional regulation and cell fate decision; however, its dynamic and role in HSPC development is poorly investigated. METHODS: We performed chromatin structure and multi-omics dissection across different stages of HSPC developmental trajectory in zebrafish for the first time, including Hi-C, RNA-seq, ATAC-seq, H3K4me3 and H3K27ac ChIP-seq. RESULTS: The chromatin organization of zebrafish HSPC resemble mammalian cells with similar hierarchical structure. We revealed the multi-scale reorganization of chromatin structure and its influence on transcriptional regulation and transition of cell fate during HSPC development. Nascent HSPC is featured by loose conformation with obscure structure at all layers. Notably, PU.1 was identified as a potential factor mediating formation of promoter-involved loops and regulating gene expression of HSPC. CONCLUSIONS: Our results provided a global view of chromatin structure dynamics associated with development of zebrafish HSPC and discovered key transcription factors involved in HSPC chromatin interactions, which will provide new insights into the epigenetic regulatory mechanisms underlying vertebrate HSPC fate decision.


Subject(s)
Chromatin , Hematopoietic Stem Cells , Zebrafish , Zebrafish/genetics , Animals , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Chromatin/metabolism , Chromatin/genetics , Genome , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Gene Expression Regulation, Developmental , Cell Differentiation , Proto-Oncogene Proteins , Trans-Activators
18.
Article in English | MEDLINE | ID: mdl-38843054

ABSTRACT

Open-world instance-level scene understanding aims to locate and recognize unseen object categories that are not present in the annotated dataset. This task is challenging because the model needs to both localize novel 3D objects and infer their semantic categories. A key factor for the recent progress in 2D open-world perception is the availability of large-scale image-text pairs from the Internet, which cover a wide range of vocabulary concepts. However, this success is hard to replicate in 3D scenarios due to the scarcity of 3D-text pairs. To address this challenge, we propose to harness pre-trained vision-language (VL) foundation models that encode extensive knowledge from image-text pairs to generate captions for multi-view images of 3D scenes. This allows us to establish explicit associations between 3D shapes and semantic-rich captions. Moreover, to enhance the fine-grained visual-semantic representation learning from captions for object-level categorization, we design hierarchical point-caption association methods to learn semantic-aware embeddings that exploit the 3D geometry between 3D points and multi-view images. In addition, to tackle the localization challenge for novel classes in the open-world setting, we develop debiased instance localization, which involves training object grouping modules on unlabeled data using instance-level pseudo supervision. This significantly improves the generalization capabilities of instance grouping and, thus, the ability to accurately locate novel objects. We conduct extensive experiments on 3D semantic, instance, and panoptic segmentation tasks, covering indoor and outdoor scenes across three datasets. Our method outperforms baseline methods by a significant margin in semantic segmentation (e.g., 34.5%∼65.3%), instance segmentation (e.g., 21.8%∼54.0%), and panoptic segmentation (e.g., 14.7%∼43.3%). Code will be available.

19.
Carbohydr Polym ; 340: 122259, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38858019

ABSTRACT

Our previous investigations have successfully identified the repeating structural units of EPS53, an exopolysaccharide derived from Streptococcus thermophilus XJ53 fermented milk, and substantiated its potential immunomodulatory properties. The present study further elucidated the structural characteristics of EPS53 and investigated the underlying mechanisms governing its in vitro immunoreactivity as well as its in vivo immunoreactivity. The results obtained from multi-detector high performance gel filtration chromatography revealed that EPS53 adopted a rigid rod conformation in aqueous solution, with the weight-average molecular weight of 1464 kDa, the number-average molecular weight of 694 kDa, and the polydispersity index of 2.11. Congo red experiment confirmed the absence of a triple helix conformation. Scanning electron microscopy showed that EPS53 displayed a three-dimensional fibrous structure covered with flakes. The in vitro findings indicated that EPS53 enhanced phagocytosis ability, reactive oxygen species (ROS) production, and cytokine levels of macrophages via the TLR4-mediated NF-κB/MAPK signaling pathways as confirmed by immunofluorescence staining experiments, inhibition blocking experiments, and Western blot assay. Additionally, the in vivo experiments demonstrated that EPS53 significantly increased macrophage and neutrophil number while enhancing NO and ROS levels in zebrafish larvae; thus, providing further evidence for the immunomodulatory efficacy of EPS53.


Subject(s)
Phagocytosis , Polysaccharides, Bacterial , Streptococcus thermophilus , Zebrafish , Animals , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/pharmacology , Mice , RAW 264.7 Cells , Phagocytosis/drug effects , Toll-Like Receptor 4/metabolism , NF-kappa B/metabolism , Reactive Oxygen Species/metabolism , Macrophages/drug effects , Macrophages/metabolism , Cytokines/metabolism , Immunologic Factors/pharmacology , Immunologic Factors/chemistry , Immunomodulating Agents/pharmacology , Immunomodulating Agents/chemistry , Signal Transduction/drug effects
20.
Front Bioeng Biotechnol ; 12: 1396892, 2024.
Article in English | MEDLINE | ID: mdl-38720877

ABSTRACT

Hydrogel is considered as a promising candidate for wound dressing due to its tissue-like flexibility, good mechanical properties and biocompatibility. However, traditional hydrogel dressings often fail to fulfill satisfied mechanical, antibacterial, and biocompatibility properties simultaneously, due to the insufficient intrinsic bactericidal efficacy and the addition of external antimicrobial agents. In this paper, hydroxyl-contained acrylamide monomers, N-Methylolacrylamide (NMA) and N-[Tris (hydroxymethyl)methyl] acrylamide (THMA), are employed to prepare a series of polyacrylamide hydrogel dressings xNMA-yTHMA, where x and y represent the mass fractions of NMA and THMA in the hydrogels. We have elucidated that the abundance of hydroxyl groups determines the antibacterial effect of the hydrogels. Particularly, hydrogel 35NMA-5THMA exhibits excellent mechanical properties, with high tensile strength of 259 kPa and large tensile strain of 1737%. Furthermore, the hydrogel dressing 35NMA-5THMA demonstrates remarkable inherent antibacterial without exogenous antimicrobial agents owing to the existence of abundant hydroxyl groups. Besides, hydrogel dressing 35NMA-5THMA possesses excellent biocompatibility, in view of marginal cytotoxicity, low hemolysis ratio, and negligible inflammatory response and organ toxicity to mice during treatment. Encouragingly, hydrogel 35NMA-5THMA drastically promote the healing of bacteria-infected wound in mice. This study has revealed the importance of polyhydroxyl in the antibacterial efficiency of hydrogels and provided a simplified strategy to design wound healing dressings with translational potential.

SELECTION OF CITATIONS
SEARCH DETAIL