Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 376
Filter
1.
Chem Soc Rev ; 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39363873

ABSTRACT

Organic luminophores have been widely utilized in cells and in vivo fluorescence imaging but face extreme challenges, including a low signal-to-noise ratio (SNR) and even false signals, due to non-negligible background signals derived from real-time excitation lasers. To overcome these challenges, in the last decade, functionalized organic long-persistent luminophores have gained much attention. Such luminophores could not only overcome the biological toxicity of inorganic long-persistent luminescent materials (metabolic toxicity and leakage risk of inorganic heavy metals), but also continue to emit long-persistent luminescence after removing the excitation source, thus effectively improving imaging quality. More importantly, organic long-persistent luminophores have good structure tailorability for the construction of activable probes, which is favorable for biosensing. Recently, the development of reactive oxygen species (ROS)-mediated long-persistent (ROSLP) luminophores (especially organic small-molecule ROSLP luminophores) is still in the rising stage. Notably, ROSLP luminophores for in vivo imaging have experienced from two-component separated nano-systems to integrated uni-luminophores, which obtained gradually better designability and biocompatibility. In this review, we summarize the progress and challenges of organic long-persistent luminophores, focusing on their development history, long-persistent luminescence working mechanisms, and biomedical applications. We hope that these insights will help scientists further develop functionalized organic long-persistent luminophores for the biomedical field.

2.
Stem Cells ; 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39283950

ABSTRACT

CRISPR-Cas9 editing triggers activation of the TP53-p21 pathway, but the impacts of different editing components and delivery methods have not been fully explored. In this study, we introduce a p21-mNeonGreen reporter iPSC line to monitor TP53-p21 pathway activation. This reporter enables dynamic tracking of p21 expression via flow cytometry, revealing a strong correlation between p21 expression and indel frequencies, and highlighting its utility in guide RNA screening. Our findings show that p21 activation is significantly more pronounced with double-stranded oligodeoxynucleotides (ODNs) or adeno-associated viral vectors (AAVs) compared to their single-stranded counterparts. Lentiviral vectors (LVs) and integrase-defective lentiviral vectors (IDLVs) induce notably lower p21 expression than AAVs, suggesting their suitability for gene therapy in sensitive cells such as hematopoietic stem cells or immune cells. Additionally, specific viral promoters like SFFV significantly amplify p21 activation, emphasizing the critical role of promoter selection in vector development. Thus, the p21-mNeonGreen reporter iPSC line is a valuable tool for assessing the potential adverse effects of gene editing methodologies and vectors.

3.
Angew Chem Int Ed Engl ; : e202414327, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39324841

ABSTRACT

Immune checkpoints blockade (ICB) therapies have demonstrated remarkable clinical success in treating cancer. However, its objective response rate remains suboptimal because current therapies rely on limited immune checkpoints that failed to cover the multiple immune evasion pathways of cancer. To explore potential ICB strategies, herein, we propose a glycoimmune checkpoint elimination (glycoICE) therapy depending on targeted edition of sialoglycans on tumor cell surface using aptamer-enzyme chimera (ApEC). The ApEC is readily generated via a one-step bioorthogonal procedure, allowing for large-scale and uniform production. The ApEC is able to target and desialylate cancer cells, leading to the elimination of sialoglycan-Siglec axis, which in turn activates immune cells and enhances immunotherapy efficiency. In addition to its remarkable therapeutic efficiency, the ApEC exhibits high tumor selectivity, which helps to avoid side effects caused by indiscriminate desialylation of normal tissues. Furthermore, the ApEC has the potential to be a versatile platform for specifical editing of sialoglycans in different tumor models by adjusting the aptamer sequences targeting associated with specific protein markers. This research not only introduces a novel molecular tool for the effective editing of sialoglycans in complex environments, but also provides valuable insights for advancing DNA-based drugs towards in vivo and clinical applications.

4.
Anal Chem ; 96(33): 13447-13454, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39119849

ABSTRACT

Small-molecule fluorescent probes have emerged as potential tools for cancer cell imaging-based diagnostic and therapeutic applications, but their limited selectivity and poor imaging contrast hinder their broad applications. To address these problems, we present the design and construction of a novel near-infrared (NIR) biotin-conjugated and viscosity-activatable fluorescent probe, named as QL-VB, for selective recognition and imaging of cancer cells. The designed probe exhibited a NIR emission at 680 nm, with a substantial Stokes shift of 100 nm and remarkably sensitive responses toward viscosity changes in solution. Importantly, QL-VB provided an evidently enhanced signal-to-noise ratio (SNR: 6.2) for the discrimination of cancer cells/normal cells, as compared with the control probe without biotin conjugation (SNR: 1.8). Moreover, we validated the capability of QL-VB for dynamic monitoring of stimulated viscosity changes within cancer cells and employed QL-VB for distinguishing breast cancer tissues from normal tissues in live mice with improved accuracy (SNR: 2.5) in comparison with the control probe (SNR: 1.8). All these findings indicated that the cancer-targeting and viscosity-activatable NIR fluorescent probe not only enables the mechanistic investigations of mitochondrial viscosity alterations within cancer cells but also holds the potential as a robust tool for cancer cell imaging-based applications.


Subject(s)
Fluorescent Dyes , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Humans , Viscosity , Animals , Mice , Optical Imaging , Female , Infrared Rays , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Cell Line, Tumor , Biotin/chemistry
5.
Nano Lett ; 24(37): 11335-11348, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39213537

ABSTRACT

Inspired by efficient natural biomolecule assembly with precise control on key parameters such as distance, number, orientation, and pattern, the constructions and applications of artificial precise molecule assembly are highly important in many research areas including chemistry, biology, and medicine. DNA origami, a sophisticated DNA nanotechnology with rational design, can offer a predictable, programmable, and addressable nanoscale scaffold for the precise assembly of various kinds of molecules. Herein, we summarize recent progress, particularly in the last three years, in DNA-origami-based precise molecule assembly and their emerging biological applications. We first introduce DNA origami and the progress on DNA-origami-based precise molecule assembly, including assembly of various kinds of molecules (e.g., nucleic acids, proteins, organic molecules, nanoparticles), and precise control of important parameters (e.g., distance, number, orientation, pattern). Their biological applications in sensing, imaging, therapy, bionics, biophysics, and chemical biology are then summarized, and current challenges and opportunities are finally discussed.


Subject(s)
DNA , Nanotechnology , DNA/chemistry , Nanotechnology/methods , Humans , Nanostructures/chemistry , Nucleic Acid Conformation , Nanoparticles/chemistry , Proteins/chemistry
6.
Nano Lett ; 24(35): 11002-11011, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39166738

ABSTRACT

Early stage hepatocellular carcinoma (HCC) presents a formidable challenge in clinical settings due to its asymptomatic progression and the limitations of current imaging techniques in detecting micro-HCC lesions. Addressing this critical issue, we introduce a novel ultrathin gadolinium-oxide (Gd-oxide) nanosheet-based platform with heightened sensitivity for high-field MRI and as a therapeutic agent for HCC. Synthesized via a digestive ripening process, these Gd-oxide nanosheets exhibit an exceptional acid-responsive profile. The integration of the ultrathin Gd-oxide with an acid-responsive polymer creates an ultrasensitive high-field MRI probe, enabling the visualization of submillimeter-sized tumors with superior sensitivity. Our research underscores the ultrasensitive probe's efficacy in the treatment of orthotopic HCC. Notably, the ultrasensitive probe functions dually as a companion diagnostic tool, facilitating simultaneous imaging and therapy with real-time treatment monitoring capabilities. In conclusion, this study showcases an innovative companion diagnostic tool that holds promise for the early detection and effective treatment of micro-HCC.


Subject(s)
Carcinoma, Hepatocellular , Contrast Media , Gadolinium , Liver Neoplasms , Magnetic Resonance Imaging , Magnetic Resonance Imaging/methods , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/diagnosis , Liver Neoplasms/diagnostic imaging , Humans , Gadolinium/chemistry , Contrast Media/chemistry , Animals , Mice , Nanostructures/chemistry , Nanostructures/therapeutic use , Cell Line, Tumor
7.
Proc Natl Acad Sci U S A ; 121(33): e2403740121, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39102540

ABSTRACT

The formation of macrophage-derived foam cells has been recognized as the pathological hallmark of atherosclerotic diseases. However, the pathological evolution dynamics and underlying regulatory mechanisms remain largely unknown. Herein, we introduce a single-particle rotational microrheology method for pathological staging of macrophage foaming and antiatherosclerotic explorations by probing the dynamic changes of lysosomal viscous feature over the pathological evolution progression. The principle of this method involves continuous monitoring of out-of-plane rotation-caused scattering brightness fluctuations of the gold nanorod (AuNR) probe-based microrheometer and subsequent determination of rotational relaxation time to analyze the viscous feature in macrophage lysosomes. With this method, we demonstrated the lysosomal viscous feature as a robust pathological reporter and uncovered three distinct pathological stages underlying the evolution dynamics, which are highly correlated with a pathological stage-dependent activation of the NLRP3 inflammasome-involved positive feedback loop. We also validated the potential of this positive feedback loop as a promising therapeutic target and revealed the time window-dependent efficacy of NLRP3 inflammasome-targeted drugs against atherosclerotic diseases. To our knowledge, the pathological staging of macrophage foaming and the pathological stage-dependent activation of the NLRP3 inflammasome-involved positive feedback mechanism have not yet been reported. These findings provide insights into in-depth understanding of evolutionary features and regulatory mechanisms of macrophage foaming, which can benefit the analysis of effective therapeutical drugs as well as the time window of drug treatment against atherosclerotic diseases in preclinical studies.


Subject(s)
Atherosclerosis , Foam Cells , Gold , NLR Family, Pyrin Domain-Containing 3 Protein , Atherosclerosis/pathology , Animals , Gold/chemistry , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Foam Cells/pathology , Foam Cells/metabolism , Macrophages/pathology , Macrophages/metabolism , Humans , Lysosomes/metabolism , Inflammasomes/metabolism , Nanotubes/chemistry , Rheology
8.
Angew Chem Int Ed Engl ; : e202411840, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39115358

ABSTRACT

Atherosclerosis, a major global health concern with high morbidity and mortality rates, involves complex interactions of chronic inflammation, oxidative stress, and proteolytic enzymes. Conventional imaging methods struggle to capture the dynamic biochemical processes in atherosclerotic plaques. Here, we introduce a novel unimolecular photoacoustic probe (UMAPP) designed with specific binding sites for neutrophil elastase (NE) and the redox pair O2⋅-/GSH, enabling real-time monitoring of oxidative stress and activated neutrophils in plaques. UMAPP, comprising a boron-dipyrromethene (BODIPY) core linked to a hydrophilic NE-cleavable tetrapeptide and dual oxidative stress-responsive catechol moieties, facilitates NE-mediated modulation of photoinduced electron transfer impacting photoacoustic intensity at 685 nm (PA685). Furthermore, oxidation and reduction of catechol groups by O2⋅- and GSH induce reversible, ratiometric changes in the photoacoustic spectrum (PA745/PA685 ratio). Initial UMAPP applications successfully distinguished atherosclerotic and healthy mice, evaluated pneumonia's effect on plaque composition and verified the probe's effectiveness in drug-treatment studies by detecting molecular alterations before visible histopathological changes. The integrated molecular imaging capabilities of UMAPP offer promising advancements in atherosclerosis diagnosis and management, enabling early and accurate identification of vulnerable plaques.

9.
ACS Cent Sci ; 10(6): 1201-1210, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38947212

ABSTRACT

Coacervates formed by liquid-liquid phase separation emerge as important biomimetic models for studying the dynamic behaviors of membraneless organelles and synchronously motivating the creation of smart architectures with the regulation of cell fate. Despite continuous progress, it remains challenging to balance the trade-offs among structural stability, versatility, and molecular communication for regulation of cell fate and systemic investigation in a complex physiological system. Herein, we present a self-stabilizing and fastener-bound gain-of-function methodology to create a new type of synthetic DNA membraneless organelle (MO) with high stability and controlled bioactivity on the basis of DNA coacervates. Specifically, long single-strand DNA generated by rolling circle amplification (RCA) is selected as the scaffold that assembles into membraneless coacervates via phase separation. Intriguingly, the as-formed DNA MO can recruit RCA byproducts and other components to achieve self-stabilization, nanoscale condensation, and function encoding. As a proof of concept, photoactivatable DNA MO is constructed and successfully employed for time-dependent accumulation and spatiotemporal management of cancer in a mouse model. This study offers new, important insights into synthetic membraneless organelles for the basic understanding and manipulation of important life processes.

10.
Angew Chem Int Ed Engl ; 63(42): e202410666, 2024 Oct 14.
Article in English | MEDLINE | ID: mdl-39007416

ABSTRACT

Near-infrared region (NIR; 650-1700 nm) dyes offer many advantages over traditional dyes with absorption and emission in the visible region. However, developing new NIR dyes, especially organic dyes with long wavelengths, small molecular weight, and excellent stability and biocompatibility, is still quite challenging. Herein, we present a general method to enhance the absorption and emission wavelengths of traditional fluorophores by simply appending a charge separation structure, dihydropyridopyrazine. These novel NIR dyes not only exhibited greatly redshifted wavelengths compared to their parent dyes, but also displayed a small molecular weight increase together with retained stability and biocompatibility. Specifically, dye NIR-OX, a dihydropyridopyra-zine derivative of oxazine with a molecular mass of 386.2 Da, exhibited an absorption at 822 nm and an emission extending to 1200 nm, making it one of the smallest molecular-weight NIR-II emitting dyes. Thanks to its rapid metabolism and long wave-length, NIR-OX enabled high-contrast bioimaging and assessment of cholestatic liver injury in vivo and also facilitated the evalua-tion of the efficacy of liver protection medicines against cholestatic liver injury.


Subject(s)
Fluorescent Dyes , Molecular Weight , Xanthenes , Fluorescent Dyes/chemistry , Xanthenes/chemistry , Pyrazines/chemistry , Animals , Mice , Molecular Structure , Infrared Rays , Humans , Optical Imaging
11.
Commun Biol ; 7(1): 696, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844522

ABSTRACT

The potential for off-target mutations is a critical concern for the therapeutic application of CRISPR-Cas9 gene editing. Current detection methodologies, such as GUIDE-seq, exhibit limitations in oligonucleotide integration efficiency and sensitivity, which could hinder their utility in clinical settings. To address these issues, we introduce OliTag-seq, an in-cellulo assay specifically engineered to enhance the detection of off-target events. OliTag-seq employs a stable oligonucleotide for precise break tagging and an innovative triple-priming amplification strategy, significantly improving the scope and accuracy of off-target site identification. This method surpasses traditional assays by providing comprehensive coverage across various sgRNAs and genomic targets. Our research particularly highlights the superior sensitivity of induced pluripotent stem cells (iPSCs) in detecting off-target mutations, advocating for using patient-derived iPSCs for refined off-target analysis in therapeutic gene editing. Furthermore, we provide evidence that prolonged Cas9 expression and transient HDAC inhibitor treatments enhance the assay's ability to uncover off-target events. OliTag-seq merges the high sensitivity typical of in vitro assays with the practical application of cellular contexts. This approach significantly improves the safety and efficacy profiles of CRISPR-Cas9 interventions in research and clinical environments, positioning it as an essential tool for the precise assessment and refinement of genome editing applications.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Induced Pluripotent Stem Cells , Humans , Gene Editing/methods , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/cytology , Mutation , RNA, Guide, CRISPR-Cas Systems/genetics , HEK293 Cells
12.
Anal Chem ; 96(19): 7697-7705, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38697043

ABSTRACT

Dual/multimodal imaging strategies are increasingly recognized for their potential to provide comprehensive diagnostic insights in cancer imaging by harnessing complementary data. This study presents an innovative probe that capitalizes on the synergistic benefits of afterglow luminescence and magnetic resonance imaging (MRI), effectively eliminating autofluorescence interference and delivering a superior signal-to-noise ratio. Additionally, it facilitates deep tissue penetration and enables noninvasive imaging. Despite the advantages, only a limited number of probes have demonstrated the capability to simultaneously enhance afterglow luminescence and achieve high-resolution MRI and afterglow imaging. Herein, we introduce a cutting-edge imaging platform based on semiconducting polymer nanoparticles (PFODBT) integrated with NaYF4@NaGdF4 (Y@Gd@PFO-SPNs), which can directly amplify afterglow luminescence and generate MRI and afterglow signals in tumor tissues. The proposed mechanism involves lanthanide nanoparticles producing singlet oxygen (1O2) upon white light irradiation, which subsequently oxidizes PFODBT, thereby intensifying afterglow luminescence. This innovative platform paves the way for the development of high signal-to-background ratio imaging modalities, promising noninvasive diagnostics for cancer.


Subject(s)
Lanthanoid Series Elements , Magnetic Resonance Imaging , Nanoparticles , Polymers , Semiconductors , Magnetic Resonance Imaging/methods , Animals , Lanthanoid Series Elements/chemistry , Polymers/chemistry , Nanoparticles/chemistry , Mice , Humans , Gadolinium/chemistry , Luminescence , Singlet Oxygen/chemistry , Yttrium/chemistry , Fluorides/chemistry , Mice, Nude
13.
Anal Chem ; 96(23): 9453-9459, 2024 06 11.
Article in English | MEDLINE | ID: mdl-38818873

ABSTRACT

Selective and sensitive imaging of intracellular mature microRNAs (miRNAs) is of great importance for biological process study and medical diagnostics. However, this goal remains challenging because of the interference of precursor miRNAs (pre-miRNAs) and the low abundance of mature miRNAs. Herein, we develop an endogenous enzyme-driven amplified DNA nanocage probe (Acage) for the selective and sensitive imaging of mature miRNAs in living cells. The Acage consists of a microRNA-responsive probe, an endogenous enzyme-driven fuel strand, and a DNA nanocage framework with an inner cavity. Benefiting from the size selectivity of DNA nanocage, smaller mature miRNAs rather than larger pre-miRNAs are allowed to enter the cavity of DNA nanocage for molecular recognition; thus, Acage can significantly reduce the signal interference of pre-miRNAs. Moreover, with the driving force of an endogenous enzyme apurinic/apyrimidinic endonuclease 1 (APE1) for efficient signal amplification, Acage enables sensitive intracellular miRNA imaging without an additional external intervention. With these features, Acage was successfully applied for intracellular imaging of mature miRNAs during drug treatment. We believe that this strategy provides a promising pathway for better understanding the functions of mature microRNAs in biological processes and medical diagnostics.


Subject(s)
DNA Probes , MicroRNAs , MicroRNAs/analysis , MicroRNAs/metabolism , Humans , DNA Probes/chemistry , Nanostructures/chemistry , Optical Imaging , HeLa Cells
14.
Angew Chem Int Ed Engl ; 63(32): e202406332, 2024 08 05.
Article in English | MEDLINE | ID: mdl-38781113

ABSTRACT

Clear delineation of tumor margins is essential for accurate resection and decreased recurrence rate in the clinic. Fluorescence imaging is emerging as a promising alternative to traditional visual inspection by surgeons for intraoperative imaging. However, traditional probes lack accuracy in tumor diagnosis, making it difficult to depict tumor boundaries accurately. Herein, we proposed an offensive and defensive integration (ODI) strategy based on the "attack systems (invasive peptidase) and defense systems (reductive microenvironment)" of multi-dimensional tumor characteristics to design activatable fluorescent probes for imaging tumor boundaries precisely. Screened out from a series of ODI strategy-based probes, ANQ performed better than traditional probes based on tumor unilateral correlation by distinguishing between tumor cells and normal cells and minimizing false-positive signals from living metabolic organs. To further improve the signal-to-background ratio in vivo, derivatized FANQ, was prepared and successfully applied to distinguish orthotopic hepatocellular carcinoma tissues from adjacent tissues in mice models and clinical samples. This work highlights an innovative strategy to develop activatable probes for rapid diagnosis of tumors and high-precision imaging of tumor boundaries, providing more efficient tools for future clinical applications in intraoperative assisted resection.


Subject(s)
CD13 Antigens , Fluorescent Dyes , Optical Imaging , Oxidation-Reduction , Fluorescent Dyes/chemistry , Humans , Animals , Mice , CD13 Antigens/metabolism , CD13 Antigens/analysis , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/pathology , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor
15.
Anal Chem ; 96(23): 9551-9560, 2024 06 11.
Article in English | MEDLINE | ID: mdl-38787915

ABSTRACT

The discovery and identification of broad-spectrum antiviral drugs are of great significance for blocking the spread of pathogenic viruses and corresponding variants of concern. Herein, we proposed a plasmonic imaging-based strategy for assessing the efficacy of potential broad-spectrum antiviral drugs targeting the N-terminal domain of a nucleocapsid protein (NTD) and nucleic acid (NA) interactions. With NTD and NA conjugated gold nanoparticles as core and satellite nanoprobes, respectively, we found that the multivalent binding interactions could drive the formation of core-satellite nanostructures with enhanced scattering brightness due to the plasmonic coupling effect. The core-satellite assembly can be suppressed in the presence of antiviral drugs targeting the NTD-NA interactions, allowing the drug efficacy analysis by detecting the dose-dependent changes in the scattering brightness by plasmonic imaging. By quantifying the changes in the scattering brightness of plasmonic nanoprobes, we uncovered that the constructed multivalent weak interactions displayed a 500-fold enhancement in affinity as compared with the monovalent NTD-NA interactions. We demonstrated the plasmonic imaging-based strategy for evaluating the efficacy of a potential broad-spectrum drug, PJ34, that can target the NTD-NA interactions, with the IC50 as 24.35 and 14.64 µM for SARS-CoV-2 and SARS-CoV, respectively. Moreover, we discovered that ceftazidime holds the potential as a candidate drug to inhibit the NTD-NA interactions with an IC50 of 22.08 µM from molecular docking and plasmonic imaging-based drug analysis. Finally, we validated that the potential antiviral drug, 5-benzyloxygramine, which can induce the abnormal dimerization of nucleocapsid proteins, is effective for SARS-CoV-2, but not effective against SARS-CoV. All these demonstrations indicated that the plasmonic imaging-based strategy is robust and can be used as a powerful strategy for the discovery and identification of broad-spectrum drugs targeting the evolutionarily conserved viral proteins.


Subject(s)
Antiviral Agents , Gold , Metal Nanoparticles , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , SARS-CoV-2/drug effects , SARS-CoV-2/chemistry , Humans , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/metabolism , Nucleic Acids/chemistry , Nucleic Acids/metabolism , COVID-19 Drug Treatment , Protein Domains , Phosphoproteins
16.
Nat Food ; 5(5): 349-350, 2024 May.
Article in English | MEDLINE | ID: mdl-38773275

Subject(s)
Climate Change , Paris , Humans , Goals
17.
Haematologica ; 109(9): 2833-2845, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38572553

ABSTRACT

Resistance to glucocorticoids (GC), the common agents for remission induction in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL), poses a significant therapeutic hurdle. Therefore, dissecting the mechanisms shaping GC resistance could lead to new treatment modalities. Here, we showed that CD9- BCP-ALL cells were preferentially resistant to prednisone and dexamethasone over other standard cytotoxic agents. Concordantly, we identified significantly more poor responders to the prednisone prephase among BCP-ALL patients with a CD9- phenotype, especially for those with adverse presenting features including older age, higher white cell count and BCR-ABL1. Furthermore, gain- and loss-offunction experiments dictated a definitive functional linkage between CD9 expression and GC susceptibility, as demonstrated by the reversal and acquisition of relative GC resistance in CD9low and CD9high BCP-ALL cells, respectively. Despite physical binding to the GC receptor NR3C1, CD9 did not alter its expression, phosphorylation or nuclear translocation but potentiated the induction of GC-responsive genes in GC-resistant cells. Importantly, the MEK inhibitor trametinib exhibited higher synergy with GC against CD9- than CD9+ lymphoblasts to reverse drug resistance in vitro and in vivo. Collectively, our results elucidate a previously unrecognized regulatory function of CD9 in GC sensitivity, and inform new strategies for management of children with resistant BCP-ALL.


Subject(s)
Drug Resistance, Neoplasm , Glucocorticoids , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Tetraspanin 29 , Humans , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Tetraspanin 29/metabolism , Tetraspanin 29/genetics , Glucocorticoids/pharmacology , Glucocorticoids/therapeutic use , Drug Resistance, Neoplasm/genetics , Child , Animals , Mice , Receptors, Glucocorticoid/metabolism , Receptors, Glucocorticoid/genetics , Cell Line, Tumor , Male , Female , Child, Preschool , Dexamethasone/pharmacology
18.
J Am Chem Soc ; 146(17): 11669-11678, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38644738

ABSTRACT

Accurate in vivo imaging of G-quadruplexes (G4) is critical for understanding the emergence and progression of G4-associated diseases like cancer. However, existing in vivo G4 fluorescent probes primarily operate within the near-infrared region (NIR-I), which limits their application accuracy due to the short emission wavelength. The transition to second near-infrared (NIR-II) fluorescent imaging has been of significant interest, as it offers reduced autofluorescence and deeper tissue penetration, thereby facilitating more accurate in vivo imaging. Nonetheless, the advancement of NIR-II G4 probes has been impeded by the absence of effective probe design strategies. Herein, through a "step-by-step" rational design approach, we have successfully developed NIRG-2, the first small-molecule fluorescent probe with NIR-II emission tailored for in vivo G4 detection. Molecular docking calculations reveal that NIRG-2 forms stable hydrogen bonds and strong π-π interactions with G4 structures, which effectively inhibit twisted intramolecular charge transfer (TICT) and, thereby, selectively illuminate G4 structures. Due to its NIR-II emission (940 nm), large Stokes shift (90 nm), and high selectivity, NIRG-2 offers up to 47-fold fluorescence enhancement and a tissue imaging depth of 5 mm for in vivo G4 detection, significantly outperforming existing G4 probes. Utilizing NIRG-2, we have, for the first time, achieved high-contrast visualization of tumor metastasis through lymph nodes and precise tumor resection. Furthermore, NIRG-2 proves to be highly effective and reliable in evaluating surgical and drug treatment efficacy in cancer lymphatic metastasis models. We are optimistic that this study not only provides a crucial molecular tool for an in-depth understanding of G4-related diseases in vivo but also marks a promising strategy for the development of clinical NIR-II G4-activated probes.


Subject(s)
Fluorescent Dyes , G-Quadruplexes , Optical Imaging , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Humans , Animals , Neoplasm Metastasis , Mice , Molecular Docking Simulation , Drug Design , Infrared Rays , Cell Line, Tumor , Molecular Structure
19.
Blood Adv ; 8(9): 2217-2234, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38457926

ABSTRACT

ABSTRACT: Multiple myeloma (MM) cells are addicted to MYC and its direct transactivation targets IRF4 for proliferation and survival. MYC and IRF4 are still considered "undruggable," as most small-molecule inhibitors suffer from low potency, suboptimal pharmacokinetic properties, and undesirable off-target effects. Indirect inhibition of MYC/IRF4 emerges as a therapeutic vulnerability in MM. Here, we uncovered an unappreciated tumor-suppressive role of C-terminal binding protein 2 (CTBP2) in MM via strong inhibition of the MYC-IRF4 axis. In contrast to epithelial cancers, CTBP2 is frequently downregulated in MM, in association with shortened survival, hyperproliferative features, and adverse clinical outcomes. Restoration of CTBP2 exhibited potent antitumor effects against MM in vitro and in vivo, with marked repression of the MYC-IRF4 network genes. Mechanistically, CTBP2 impeded the transcription of MYC and IRF4 by histone H3 lysine 27 deacetylation (H3K27ac) and indirectly via activation of the MYC repressor IFIT3. In addition, activation of the interferon gene signature by CTBP2 suggested its concomitant immunomodulatory role in MM. Epigenetic studies have revealed the contribution of polycomb-mediated silencing and DNA methylation to CTBP2 inactivation in MM. Notably, inhibitors of Enhance of zeste homolog 2, histone deacetylase, and DNA methyltransferase, currently under evaluation in clinical trials, were effective in restoring CTBP2 expression in MM. Our findings indicated that the loss of CTBP2 plays an essential role in myelomagenesis and deciphers an additional mechanistic link to MYC-IRF4 dysregulation in MM. We envision that the identification of novel critical regulators will facilitate the development of selective and effective approaches for treating this MYC/IRF4-addicted malignancy.


Subject(s)
Alcohol Oxidoreductases , Co-Repressor Proteins , Interferon Regulatory Factors , Multiple Myeloma , Proto-Oncogene Proteins c-myc , Animals , Humans , Mice , Alcohol Oxidoreductases/metabolism , Alcohol Oxidoreductases/antagonists & inhibitors , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Interferon Regulatory Factors/metabolism , Interferon Regulatory Factors/genetics , Multiple Myeloma/metabolism , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , Proto-Oncogene Proteins c-myc/metabolism , Signal Transduction/drug effects , Tumor Suppressor Proteins/metabolism , Co-Repressor Proteins/antagonists & inhibitors , Co-Repressor Proteins/metabolism
20.
BMC Genomics ; 25(1): 189, 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38368357

ABSTRACT

BACKGROUND: CRISPR-Cas9 technology has advanced in vivo gene therapy for disorders like hemophilia A, notably through the successful targeted incorporation of the F8 gene into the Alb locus in hepatocytes, effectively curing this disorder in mice. However, thoroughly evaluating the safety and specificity of this therapy is essential. Our study introduces a novel methodology to analyze complex insertion sequences at the on-target edited locus, utilizing barcoded long-range PCR, CRISPR RNP-mediated deletion of unedited alleles, magnetic bead-based long amplicon enrichment, and nanopore sequencing. RESULTS: We identified the expected F8 insertions and various fragment combinations resulting from the in vivo linearization of the double-cut plasmid donor. Notably, our research is the first to document insertions exceeding ten kbp. We also found that a small proportion of these insertions were derived from sources other than donor plasmids, including Cas9-sgRNA plasmids, genomic DNA fragments, and LINE-1 elements. CONCLUSIONS: Our study presents a robust method for analyzing the complexity of on-target editing, particularly for in vivo long insertions, where donor template integration can be challenging. This work offers a new tool for quality control in gene editing outcomes and underscores the importance of detailed characterization of edited genomic sequences. Our findings have significant implications for enhancing the safety and effectiveness of CRISPR-Cas9 gene therapy in treating various disorders, including hemophilia A.


Subject(s)
Hemophilia A , Nanopore Sequencing , Mice , Animals , CRISPR-Cas Systems , RNA, Guide, CRISPR-Cas Systems , Hemophilia A/genetics , Hemophilia A/therapy , Gene Editing/methods , DNA
SELECTION OF CITATIONS
SEARCH DETAIL