Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.007
Filter
1.
Article in English | MEDLINE | ID: mdl-39011513

ABSTRACT

Papillary adenomas, known precursors to papillary adenocarcinoma, warrant close monitoring due to their malignant potential. Historically, surgical resection represented the mainstay of treatment for papillary adenomas with intraductal extension. However, recent advancements in endoscopic techniques have facilitated the adoption of endoscopic papillectomy as a minimally invasive alternative in carefully selected cases. We report a case of an 82-year-old woman with a diagnosis of papillary adenoma exhibiting intraductal extension. This was managed with a novel endoscopic technique, balloon catheter-assisted endoscopic resection. Due to the obscured intraductal component of the papillary mass, a balloon occlusion catheter was deployed within the common bile duct and used as traction to facilitate endoscopic visualization of the mass. Endoscopic resection via papillectomy was subsequently performed. Histopathological examination of the resected specimen revealed a villous adenoma with high-grade dysplasia. Serial endoscopic ultrasound examinations with targeted papillary biopsies were performed to monitor for disease recurrence.

2.
Front Pharmacol ; 15: 1416295, 2024.
Article in English | MEDLINE | ID: mdl-38948469

ABSTRACT

Introduction: Genomic profiling has revolutionized therapeutic interventions and the clinical management of liver cancer. However, pathogenetic mechanisms, molecular determinants of recurrence, and predictive biomarkers for first-line treatment (anti-PD-(L)1 plus bevacizumab) in liver cancer remain incompletely understood. Materials and methods: Targeted next-generation sequencing (tNGS) (a 603-cancer-gene panel) was applied for the genomic profiling of 232 hepatocellular carcinoma (HCC) and 22 intrahepatic cholangiocarcinoma (ICC) patients, among which 47 unresectable/metastatic HCC patients underwent anti-PD-1 plus bevacizumab therapy. Genomic alterations were estimated for their association with vascular invasion (VI), location of onset, recurrence, overall survival (OS), recurrence-free survival (RFS), and anti-PD-1 plus bevacizumab therapy response. Results: The genomic landscape exhibited that the most commonly altered genes in HCC were TP53, FAT3, PDE4DIP, KMT2C, FAT1, and MYO18A, while TP53, FAT1, FAT3, PDE4DIP, ROS1, and GALNT11 were frequently altered in ICC; notably, KRAS (18.18% vs. 1.29%) and BAP1 (13.64% vs. 1.29%) alterations were significantly more prevalent in ICC. Comparison analysis demonstrated the distinct clinicopathological/genomic characterizations between Chinese and Western HCC cohorts. Genomic profiling of HCC underlying VI showed that LDLR, MSH2, KDM5D, PDE3A, and FOXO1 were frequently altered in the VI group compared to patients without VIs. Compared to the right hepatic lobes of HCC patients, the left hepatic lobe of HCC patients had superior OS (median OS: 36.77 months vs. unreached, p < 0.05). By further comparison, Notch signaling pathway-related alterations were significantly prevalent among the right hepatic lobes of HCC patients. Of note, multivariate Cox regression analysis showed that altered RB1, NOTCH3, MGA, SYNE1, and ZFHX3, as independent prognostic factors, were significantly correlated with the OS of HCC patients. Furthermore, altered LATS1 was abundantly enriched in the HCC-recurrent group, and impressively, it was independent of clinicopathological features in predicting RFS (median RFS of altered type vs. wild-type: 5.57 months vs. 22.47 months, p < 0.01). Regarding those treated HCC patients, TMB value, altered PTPRZ1, and cell cycle-related alterations were identified to be positively associated with the objective response rate (ORR), but KMT2D alterations were negatively correlated with ORR. In addition, altered KMT2D and cell cycle signaling were significantly associated with reduced and increased time to progression-free survival (PFS), respectively. Conclusion: Comprehensive genomic profiling deciphered distinct molecular characterizations underlying VI, location of onset, recurrence, and survival time in liver cancer. The identification of novel genetic predictors of response to anti-PD-1 plus bevacizumab in HCC facilitated the development of an evidence-based approach to therapy.

3.
Am J Clin Nutr ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964658

ABSTRACT

BACKGROUND: The relationships between 25-hydroxyvitamin D (25(OH)D) and calcium and age-related macular degeneration (AMD) are unclear. OBJECTIVE: This study aimed to investigate the causal role of 25(OH)D concentrations, calcium concentrations, and dietary supplements use of vitamin D and calcium on the risk of AMD and its subtypes. METHODS: Independent genetic variants associated with 25(OH)D and calcium concentrations were used as instrumental variables in published genome-wide association studies (GWASs) of European ancestry. The bidirectional two-sample Mendelian randomization (MR) analyses were performed using summary-level data from the UK Biobank and FinnGen datasets. Sensitivity analyses were conducted to ensure the robustness of the MR results. The meta-analyses were conducted using both fixed-effect and random-effect models to provide comprehensive and reliable estimates. RESULTS: A standard deviation increase in calcium concentrations was linked to a 14%, 17%, and 13% reduction in the likelihood of developing AMD (95% confidence interval [CI] = 0.77, 0.97), wet AMD (95% CI = 0.73, 0.95), and dry AMD (95% CI = 0.75, 1.00), respectively. No significant causal relationships were detected between genetically predicted 25(OH)D concentrations and AMD and its subtypes (all P > 0.05). The combined analyses showed that higher calcium concentrations were associated with a reduced risk of overall AMD, with an OR of 0.89 (95% CI = 0.81, 0.98). CONCLUSIONS: This study provides evidence supporting the causal relationship between calcium concentrations and the risk of AMD and its subtypes, which may have important implications for the prevention, monitoring, and treatment of AMD.

4.
FASEB J ; 38(14): e23817, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39003633

ABSTRACT

Excessive apoptosis of intestinal epithelial cells leads to intestinal barrier dysfunction, which is not only one of the pathological features of inflammatory bowel disease (IBD) but also a therapeutic target. A natural plant extract, Ginkgetin (GK), has been reported to have anti-apoptotic activity, but its role in IBD is unknown. This study aimed to explore whether GK has anti-colitis effects and related mechanisms. An experimental colitis model induced by dextran sulfate sodium (DSS) was established, and GK was found to relieve colitis in DSS-induced mice as evidenced by improvements in weight loss, colon shortening, Disease Activity Index (DAI), macroscopic and tissue scores, and proinflammatory mediators. In addition, in DSS mice and TNF-α-induced colonic organoids, GK protected the intestinal barrier and inhibited intestinal epithelial cell apoptosis, by improving permeability and inhibiting the number of apoptotic cells and the expression of key apoptotic regulators (cleaved caspase 3, Bax and Bcl-2). The underlying mechanism of GK's protective effect was explored by bioinformatics, rescue experiments and molecular docking, and it was found that GK might directly target and activate EGFR, thereby interfering with PI3K/AKT signaling to inhibit apoptosis of intestinal epithelial cells in vivo and in vitro. In conclusion, GK inhibited intestinal epithelial apoptosis in mice with experimental colitis, at least in part, by activating EGFR and interfering with PI3K/AKT activation, explaining the underlying mechanism for ameliorating colitis, which may provide new options for the treatment of IBD.


Subject(s)
Apoptosis , Biflavonoids , Colitis , Dextran Sulfate , Epithelial Cells , ErbB Receptors , Intestinal Mucosa , Mice, Inbred C57BL , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Apoptosis/drug effects , Mice , Proto-Oncogene Proteins c-akt/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Colitis/pathology , ErbB Receptors/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Dextran Sulfate/toxicity , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Biflavonoids/pharmacology , Biflavonoids/therapeutic use , Male , Humans
5.
Metab Brain Dis ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954241

ABSTRACT

The growing incidence of diabetes mellitus (DM) and depression is a global public health issue. Alpiniae oxyphyllae Fructus (AOF) is a kind of medicinal and edible plant which be found with anti-diabetic property, and could improve depression-like symptoms. This study aimed to screen active targets and potential mechanisms of AOF in treating DM with depression. Injection of streptozotocin (STZ) and exposure to chronic unpredictable mild stress (CUMS) for 4 weeks were used to conduct the DM with depression mice model. Behavioral tests, indexes of glucose metabolism, monoamine neurotransmitters, inflammatory cytokine and oxidative stress were measured. Histopathological change of hippocampus tissue was observing by HE and Nissl staining. UPLC-Q-Exactive Orbitrap/MS, network pharmacology and molecular docking were used to explore the chemical components and mechanisms of AOF on the DM with depression. AOF showed a reversed effect on body weight in DM with depression mice. Glucose metabolism and insulin resistance could be improved by treatment of AOF. In addition, AOF could alleviate depression-like behaviors based on the results of behavior tests and monoamine neurotransmitters. AOF also attenuated STZ-CUMS induced neuron injury in hippocampus. Next, a total of 61 chemical components were identified in the UPLC-Q-Exactive Orbitrap/MS analysis of the extract of AOF. Network pharmacology analysis suggested that 12 active components and 227 targets were screened from AOF, and 1802 target genes were screened from DM with depression, finally 126 intersection target genes were obtained. Drug-disease targets network was constructed and implied that the top five components with a higher degree value includes quercetin, nootkatone, baicalein, (-)-epicatechin and nootkatol. Protein-protein interaction (PPI) network showed that MAPK1, FOS, AKT1, IL6 and TP53 may be the core intersection targets. The mechanism of the effect of AOF on DM with depression was analyzed through gene ontology (GO), and kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis, mainly involved in AGE/RAGE, PI3K/AKT, and MAPK signaling pathways. The results of molecular docking indicated that quercetin, nootkatone, baicalein, (-)-epicatechin and nootkatol all had good binding to the core intersection targets. Overall, our experimental researches have demonstrated that AOF could exert the dual effects of anti-diabetic and anti-depression on DM with depression mice, through multi-targets and multi-pathways.

6.
Langmuir ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39019028

ABSTRACT

The use of graphene-based materials as anticorrosion coatings to protect metals is always a topic of discussion. In this work, silicon nitride (Si3N4) was aminated to improve its water dispersibility. Then it is attached to the graphene oxide (GO) surface to improve compatibility with epoxy (EP) resin as well as conductivity. The results of Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and zeta potentials test analyses indicated that Si3N4-NH2@GO with a layer-point structure has been successfully prepared. The corrosion resistance of the composite coatings was characterized by electrochemical impedance spectroscopy (EIS) and polarization curve analysis, and the wear resistance of the composite coatings was tested by friction and wear tests. The results showed that 1.0% Si3N4-NH2@GO has excellent corrosion and wear resistance. The use of Si3N4-NH2@GO layer point structures in this study broadens the way for GO applications.

7.
Adv Sci (Weinh) ; : e2403513, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39018207

ABSTRACT

Uncontrollable growth of Zn dendrites, irreversible dissolution of cathode material and solidification of aqueous electrolyte at low temperatures severely restrict the development of aqueous Zn-ion batteries. In this work, 2,2,2-trifluoroethanol (TFEA) with a volume fraction of 50% as a highly compatible polar-solvent is introduced to 1.3 M Zn(CF3SO3)2 aqueous electrolyte, achieving stable high-performance Zn-ion batteries. Massive theoretical calculations and characterization analysis demonstrate that TFEA weakens the tip effect of Zn anode and restrains the growth of Zn dendrites due to electrostatic adsorption and coordinate with H2O to disrupt the hydrogen bonding network in water. Furthermore, TFEA increases the wettability of the cathode and alleviates the dissolution of V2O5, thus improving the capacity of the full battery. Based on those positive effects of TFEA on Zn anode, V2O5 cathode, and aqueous electrolyte, the Zn//Zn symmetric cell delivers a long cycle-life of 782 h at 5 mA cm-2 and 2 mA h cm-2. The full battery still declares an initial capacity of 116.78 mA h g-1, and persists 87.73% capacity in 2000 cycles at -25 °C. This work presents an effective strategy for fully compatible co-solvent to promote the stability of Zn anode, V2O5 cathode and aqueous electrolyte for high-performance Zn-ion batteries.

8.
Clin Transl Oncol ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967738

ABSTRACT

OBJECTIVE: To examine the impact of a combined craniocaudal approach on pain and complications during laparoscopic D3 lymph node dissection in clients diagnosed with right colon cancer (RCC). METHODS: 100 RCC patients were divided into Group A and Group B. Both groups underwent laparoscopic D3 lymph node dissection, with Group A undergoing an intermediate approach and Group B undergoing a combined head and tail approach. Two groups of patients' perioperative (surgical time, intraoperative blood loss, number of lymph node dissection) indicators, postoperative recovery (postoperative exhaust time, postoperative hospital stay, drainage tube removal time) indicators, perioperative pain level (VAS scores 1, 3, and 5 days following surgery), and incidence of complications (vascular injury, intestinal obstruction, anastomotic bleeding, incision infection), and the therapeutic efficacy [CEA, CA19-9] indicators were compared. RESULTS: Clients in the B team had substantially shorter operating times and considerably fewer intraoperative hemorrhage than those in the A team. The VAS grades of clients in the B team were considerably lower than those in the A team the day following surgery. Clients in the B team experienced vascular injury at a substantially lower rate than those in the A team. The overall incidence rate of problems did not differ statistically significantly between the A team and the B team. Following therapy, teams A and B's CEA and CA19-9 levels were considerably lower than those of the same team prior to therapy. CONCLUSION: Combined craniocaudal technique can significantly reduce intraoperative bleeding, postoperative pain, and the risk of sequelae from vascular injuries.

9.
Biomed Pharmacother ; 177: 117080, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38972151

ABSTRACT

Cholangiocarcinoma (CCA) is becoming more common and deadly worldwide. Tumor-infiltrating T cell subtypes make distinct contributions to the immune system; collectively, they constitute a significant portion of the tumor microenvironment (TME) in CCA. By secreting cytokines and other chemicals, regulatory T cells (Tregs) decrease activated T cell responses, acting as immunosuppressors. Reduced CD8+ T cell activation results in stimulating programmed death-1 (PD-1), which undermines the immunological homeostasis of T lymphocytes. On the other hand, cancer cells are eliminated by activated cytotoxic T lymphocyte (CTL) through the perforin-granzyme or Fas-FasL pathways. Th1 and CTL immune cell infiltration into the malignant tumor is also facilitated by γδ T cells. A higher prognosis is typically implied by CD8+ T cell infiltration, and survival is inversely associated with Treg cell density. Immune checkpoint inhibitors, either singly or in combination, provide novel therapeutic strategies for CCA immunotherapy. Furthermore, it is anticipated that immunotherapeutic strategies-such as the identification of new immune targets, combination treatments involving several immune checkpoint inhibitors, and chimeric antigen receptor-T therapies (CAR-T)-will optimize the effectiveness of anti-CCA treatments while reducing adverse effects.

10.
Fitoterapia ; : 106117, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38996878

ABSTRACT

Lanxangia tsaoko (L. tsaoko) is a natural medicine which could be used to treat type 2 diabetes mellitus (T2DM). However, there is no systematic and comprehensive research on the its active compounds and mechanism. This study aimed to investigate the active ingredients and potential mechanism of L. tsaoko for the treatment of T2DM. The chemical constituents of L. tsaoko were identified by UPLC-Q-Exactive Orbitrap/MS. The active compounds and mechanism of L. tsaoko were predicted by network pharmacology. Then the docking modes of key components and core targets were analyzed by molecular docking. Finally, animal experiments were conducted to verify the efficacy and targets of L. tsaoko in T2DM treatment. 70 compounds from L. tsaoko were identified. We obtained 37 active components, including quercetin, genistein and kaempferol, 5 core targets were AKT1, INS, TP53, TNF and IL-6. Mainly involved in PI3K/Akt, MAPK, RAGE/AGE, HIF-1, FoxO signaling pathways. Molecular docking results showed that the L. tsaoko had good binding potential to TNF. Therefore, we took the inflammatory mechanism as the prediction target for experimental verification. Animal experiments showed that L. tsaoko could alleviated colon injury of T2DM mice, improve glucose metabolism and decrease inflammatory levels. L. tsaoko exerted therapeutic effects on T2DM through multi-component, multi-target and multi-pathway regulation. Its action mechanisms were related to PI3K/Akt, MAPK, RAGE/AGE, HIF-1 and FoxO signaling pathways. This study provided new insights for the clinical treatment of T2DM.

11.
World J Clin Cases ; 12(19): 3854-3865, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38994299

ABSTRACT

BACKGROUND: Cold-dampness-type knee osteoarthritis is a common middle-aged and elderly disease, but its pathogenesis is not fully understood, and its clinical treatment has limitations. Glucosamine sulfate capsules are commonly used for treating arthritis, and San Bi Tang is a classic formula of traditional Chinese medicine (TCM) that has the effects of warming yang, dispelling dampness, relaxing muscles, and activating collaterals. This research hypothesized that the combination of modified San Bi Tang and glucosamine sulfate capsules could enhance the clinical efficacy of treating cold-dampness-type knee osteoarthritis through complementary effects. AIM: To analyze the clinical efficacy of San Bi Tang combined with glucosamine sulfate capsules when treating cold-dampness-type knee osteoarthritis. METHODS: A total of 110 patients with cold-dampness-type knee osteoarthritis were selected as research subjects and randomly divided into a control group and an experimental group of 55 cases each. The control group received only treatment with glucosamine sulfate capsules, while the experimental group received additional treatment with modified San Bi Tang for a duration of 5 wk. The patients' knee joint functions, liver and kidney function indicators, adverse reactions, and vital signs were evaluated and analyzed using SPSS 26.0 software. RESULTS: Before treatment, the two groups' genders, ages, and scores were not significantly different, indicating comparability. Both groups' scores improved after treatment, which could indicate pain and knee joint function improvement, but the test group had better scores. The TCM-specific symptoms and the clinical efficacy of the treatment in the test group were higher. Before and after treatment, there were no abnormalities in the patients' liver and kidney function indicators. CONCLUSION: The combination of modified San Bi Tang and glucosamine sulfate capsules is superior to treatment with sulfated glucosamine alone and has high safety.

12.
Polymers (Basel) ; 16(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000684

ABSTRACT

Bamboo is composed of thick-walled fibrous tissue and thin-walled parenchymal tissue. To compare the energy consumption of preparing lignocellulose nanofibrils (LCNF) from these bamboo tissues, the crystallinity, sol. viscosity, morphology and mechanical properties of LCNF at different preparation stages were characterized in detail. It required at least nine homogenization cycles for dissociating the fibrous tissue, but only six cycles for the parenchymal tissue. The average diameter of LCNF isolated from fibrous and parenchymal tissues was 45.1 nm and 36.2 nm, respectively. The tensile strength of the LCNF film prepared from parenchymal tissue reached 142.46 MPa, whereas the film from fibrous tissue reached only 122.82 MPa. Additionally, a metal organic framework (MOF) was used to produce MOF-LCNF film with enhanced UV protection and antibacterial properties. The results indicated that the energy consumption for preparing LCNF from parenchymal tissue is significantly lower than that for preparing LCNF from fibrous tissue. This study offers a low-cost and eco-friendly method for preparing LCNF, promoting the precise utilization of different tissues from bamboo based on their unique characteristics.

13.
Neural Regen Res ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38845225

ABSTRACT

ABSTRACT: Some studies have confirmed the neuroprotective effect of remote ischemic conditioning against stroke. Although numerous animal researches have shown that the neuroprotective effect of remote ischemic conditioning may be related to neuroinflammation, cellular immunity, apoptosis, and autophagy, the exact underlying molecular mechanisms are unclear. This review summarizes the current status of different types of remote ischemic conditioning methods in animal and clinical studies and analyzes their commonalities and differences in neuroprotective mechanisms and signaling pathways. Remote ischemic conditioning has emerged as a potential therapeutic approach for improving stroke-induced brain injury owing to its simplicity, non-invasiveness, safety, and patient tolerability. Different forms of remote ischemic conditioning exhibit distinct intervention patterns, timing, and application range. Mechanistically, remote ischemic conditioning can exert neuroprotective effects by activating the Notch1/phosphatidylinositol 3-kinase/ Akt signaling pathway, improving cerebral perfusion, suppressing neuroinflammation, inhibiting cell apoptosis, activating autophagy, and promoting neural regeneration. While remote ischemic conditioning has shown potential in improving stroke outcomes, its full clinical translation has not yet been achieved.

14.
Food Funct ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38898781

ABSTRACT

High-fat diets (HFDs) predispose to obesity and liver dysfunctions, and α-dicarbonyl compounds (α-DCs) present in highly processed foods are also implicated in relevant pathological processes. However, the synergistic harmful effects of α-DCs co-administered with HFDs remain to be elucidated. In this study, 6-week-old C57BL/6 mice were fed with a HFD co-administered with 0.5% methylglyoxal (MGO)/glyoxal (GO) in water for 8 weeks, and multi-omics approaches were employed to investigate the underlying toxicity mechanisms. The results demonstrated that the MGO intervention with a HFD led to an increased body weight and blood glucose level, accompanied by the biological accumulation of α-DCs and carboxymethyl-lysine, as well as elevated serum levels of inflammatory markers including IL-1ß, IL-6, and MIP-1α. Notably, hepatic lesions were observed in the MGO group under HFD conditions, concomitant with elevated levels of malondialdehyde. Transcriptomic analysis revealed enrichment of pathways and differentially expressed genes (DEGs) associated with inflammation and oxidative stress in the liver. Furthermore, α-DC intervention exacerbated gut microbial dysbiosis in the context of a HFD, and through Spearman correlation analysis, the dominant genera such as Fusobacterium and Bacteroides in the MGO group and Colidextribacter and Parabacteroides in the GO group were significantly correlated with a set of DEGs involved in inflammatory and oxidative stress pathways in the liver. This study provides novel insights into the healthy implications of dietary ultra-processed food products in the context of obesity-associated disorders.

15.
Ecol Evol ; 14(6): e11409, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38826162

ABSTRACT

This study modeled the habitat distribution of Pterocarpus santalinus, a valuable rosewood species, across China under current and future climate scenarios (SSPs126, SSPs245, and SSPs585) using MaxEnt. Our findings reveal that the current suitable habitat, spanning approximately 409,600 km2, is primarily located in the central and southern parts of Guangdong, Guangxi, Fujian, and Yunnan, as well as in the Hainan provinces, along with the coastal regions of Taiwan, and the Sichuan-Chongqing border. The habitat's distribution is significantly influenced by climatic factors such as temperature seasonality (bio4), mean temperature of the wettest quarter (bio8), annual mean temperature (bio1), and annual precipitation (bio12), while terrain and soil factors play a lesser role. Under future climate scenarios, the suitable habitat for P. santalinus is projected to expand, with a northeastward shift in its distribution center. This research not only sheds light on the geoecological characteristics and geographical distribution of P. santalinus in China but also offers a scientific basis for planning its cultivation areas and enhancing cultivation efficiency under changing climate conditions.

16.
Int Immunopharmacol ; 136: 112380, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38850790

ABSTRACT

BACKGROUND AND AIMS: Impaired intestinal barrier function is key in maintaining intestinal inflammation in Crohn's disease (CD). However, no targeted treatment in clinical practice has been developed. Peiminine (Pm) strongly protects the epithelial barrier, the purpose of this study is to investigate whether Pm affects CD-like colitis and potential mechanisms for its action. METHODS: Trinitro-benzene-sulfonic acid (TNBS)-induced mice and Il-10-/- mice were used as CD animal models. Colitis symptoms, histological analysis, and intestinal barrier permeability were used to assess the Pm's therapeutic effect on CD-like colitis. The colon organoids were induced by TNF-α to evaluate the direct role of Pm in inhibiting apoptosis of the intestinal epithelial cells. Western blotting and small molecule inhibitors were used to investigate further the potential mechanism of Pm in inhibiting apoptosis of intestinal epithelial cells. RESULTS: Pm treatment reduced body weight loss, disease activity index (DAI) score, and inflammatory score, demonstrating that colonic inflammation in mice were alleviated. Pm decreased the intestinal epithelial apoptosis, improved the intestinal barrier function, and prevented the loss of tight junction proteins (ZO1 and claudin-1) in the colon of CD mice and TNF-α-induced colonic organoids. Pm activated Nrf2/HO1 signaling, which may protect intestinal barrier function. CONCLUSIONS: Pm inhibits intestinal epithelial apoptosis in CD mice by activating Nrf2/HO1 pathway. This partially explains the potential mechanism of Pm in ameliorating intestinal barrier function in mice and provides a new approach to treating CD.


Subject(s)
Apoptosis , Colitis , Crohn Disease , Disease Models, Animal , Intestinal Mucosa , Mice, Inbred C57BL , Mice, Knockout , NF-E2-Related Factor 2 , Signal Transduction , Trinitrobenzenesulfonic Acid , Animals , NF-E2-Related Factor 2/metabolism , Crohn Disease/drug therapy , Crohn Disease/pathology , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism , Colitis/drug therapy , Colitis/chemically induced , Colitis/pathology , Mice , Signal Transduction/drug effects , Apoptosis/drug effects , Humans , Male , Colon/pathology , Colon/drug effects , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Heme Oxygenase (Decyclizing)/metabolism , Heme Oxygenase (Decyclizing)/genetics , Interleukin-10/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Membrane Proteins
17.
Nanomaterials (Basel) ; 14(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38921871

ABSTRACT

Self-made agglomerated nanometer CeO2-Y2O3-ZrO2 (CYSZ) powders for plasma spray-physical vapor deposition (PS-PVD) were prepared by spray-drying, followed by calcination treatment at four different temperatures (600 °C, 700 °C, 800 °C, 900 °C). The physical properties, microstructure, and phase composition of the calcined powders were investigated using a laser particle size analyzer, scanning electron microscopy (SEM), and X-ray diffraction (XRD). The results showed that compared to the agglomerated powders obtained through spray-drying, the particle size of the agglomerated powders changed with increasing calcination temperature, accompanied by an increase in the self-bonding force of the agglomerated powder particles. The proper calcination temperature improved the sprayability of the powders. Additionally, with the increase in the calcination temperature, a transformation from the m-phase to the t-phase occurred in the powder, with Ce4+ partially entering the Zr lattice to form the t-Zr0.84Ce0.16O2 phase, which facilitated the suppression of the m-phase and improved the high-temperature phase stability. It was also found that the PS-PVD coatings prepared using the aforementioned powders exhibited coarser columnar structures with increasing powder calcination temperature.

18.
J Virol Methods ; 329: 114990, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925439

ABSTRACT

BACKGROUND: Mixed infections of multiple viruses significantly contribute to the prevalence of swine diseases, adversely affecting global livestock production and the economy. However, effectively monitoring multiple viruses and detecting mixed infection samples remains challenging. This study describes a method that combines single-base extension PCR with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to detect important porcine viruses. RESULTS: Our approach accurately and simultaneously identified 14 porcine viruses, including porcine circovirus types 1-3, porcine bocaviruses groups 1-3, African swine fever virus, pseudorabies virus, porcine parvovirus, torque teno sus virus, swine influenza virus, porcine reproductive and respiratory syndrome virus, classical swine fever virus, and foot-and-mouth disease virus. The low limit of detection for multiplex identification ranges from 13.54 to 1.59 copies/µL. Inter- and intra-assay stability was found to be ≥98.3 %. In a comprehensive analysis of 114 samples, the assay exhibited overall agreement with qPCR results of 97.9 %. CONCLUSIONS: The developed MALDI-TOF NAMS assay exhibits high sensitivity, specificity, and reliability in detecting and distinguishing a wide spectrum of porcine viruses in complex matrix samples. This underscores its potential as an efficient diagnostic tool for porcine-derived virus surveillance and swine disease control.

19.
BMC Med Genomics ; 17(1): 168, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38907304

ABSTRACT

BACKGROUND: Collagen (COL) genes, play a key role in tumor invasion and metastasis, are involved in tumor extracellular matrix (ECM)-receptor interactions and focal adhesion pathways. However, studies focusing on the diagnostic value of the COL4 family in stomach adenocarcinoma (STAD) are currently lacking. METHODS: The TCGA database was employed to retrieve the clinical features and RNA sequencing expression profiles of patients with STAD. We conducted an investigation to examine the expression disparities between STAD and adjacent normal tissues. Kaplan-Meier survival analysis was utilized to assess their prognostic significance, while Spearman correlation analysis was employed to determine their association with immune checkpoint genes and immunomodulatory molecules. Furthermore, GO and KEGG analyses were performed on the COL4s-related genes, revealing potential biological pathways through gene set enrichment analysis (GSEA). Subsequently, we explored the extent of immune infiltration of the COL4 family in STAD using the TIMER database. Lastly, the expression levels of the COL4 family in STAD were further validated through quantitative PCR (qPCR) and western blot techniques. RESULTS: The expression levels of COL4A1/2 were significantly upregulated, while COL4A5/6 were conspicuously downregulated in STAD. The survival analysis revealed that the upregulated COL4s indicated poorer overall survival, first progression and post-progression survival outcomes. Additionally, our findings demonstrated a positive correlation between the expressions of COL4A1/2/3/4 and the infiltration of immune cells, including CD8 + T cells, dendritic cells, macrophages, neutrophils and CD4 + T cells. Further correlation analysis uncovered a favorable association between the expression of COL4A1/2/3/4 and various crucial immunomodulatory molecules, immunological checkpoint molecules, and chemokines. Quantitative PCR analysis confirmed that the expression patterns of COL4A1/3/4/6 genes aligned with the finding from the TCGA database. However, gastric cancer cells exhibited downregulation of COL4A2. Consistently, the protein level of COL4A1 was elevated, whereas the protein level of COL4A2 was reduced in the gastric cancer cell lines. CONCLUSION: COL4s could potentially serve as biomarkers for diagnosing and predicting the prognosis of STAD.


Subject(s)
Adenocarcinoma , Collagen Type IV , Gene Expression Regulation, Neoplastic , Stomach Neoplasms , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/immunology , Humans , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adenocarcinoma/immunology , Prognosis , Collagen Type IV/genetics , Collagen Type IV/metabolism , Male , Female , Biomarkers, Tumor/genetics , Middle Aged , Kaplan-Meier Estimate
20.
iScience ; 27(5): 109272, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38706868

ABSTRACT

For a long time, myeloid-derived suppressor cells (MDSCs) dilated in circulation system of colorectal cancer (CRC) patients have been puzzling clinicians. Various evidence shows that MDSCs constitute the bulk of immunosuppression in CRC, which is related to tumor growth, adhesion, invasion, metastasis, and immune escape. However, the mechanisms underlying these cells formation remain incompletely understood. In this study, we reported that CRC cell-derived LC3-dependent extracellular vesicles (LDEVs)-mediated M-MDSCs formation via TLR2-MYD88 pathway. Furthermore Hsp60 was the LDEVs surface ligand that triggered these MDSCs induction. In clinical studies, we reported that accumulation of circulating M-MDSCs as well as IL-10 and arginase1 secretion were reliant upon the levels of tumor cell-derived LDEVs in CRC patients. These findings indicated how local tumor cell-derived extracellular vesicles influence distal hematopoiesis and provided novel justification for therapeutic targeting of LDEVs in patients with CRC.

SELECTION OF CITATIONS
SEARCH DETAIL
...